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Abstract

Current cardiac implantable devices (I1D) are equipped with a set of sensors that can provide useful information to improve patient
follow-up and to prevent health deterioration in the postoperative period. In this paper, data obtained from an ID with two such sensors
(atransthoracic impedance sensor and an accelerometer) are analyzed in order to evaluate their potential application for the follow-up of
patients treated with a cardiac resynchronization therapy (CRT). A methodology combining spatio-temporal fuzzy coding and multiple
correspondence analysis (MCA) isapplied in order to: i) reduce the dimensionality of the data and provide new synthetic indices based on
the “factorial axes’ obtained from MCA, ii) interpret these factorial axesin physiological termsand iii) analyze the evolution of the patient’
s status by projecting the acquired data into the plane formed by the first two factorial axes named “factorial plane’. In order to classify
the different evolution patterns, a new similarity measure is proposed and validated on simulated datasets, and then used to cluster
observed data from 41 CRT patients. The obtained clusters are compared with the annotations on each patient’s medical record. Two
areas on the factorial plane are identified, one being correlated with a health degradation of patients and the other with a stable clinical
state.

time-series ; trajectories ; monitoring ; cardiac implantable devices ; data mining

I ntroduction

Cardiac resynchronization therapy (CRT) isindicated for patients suffering from drug-refractory congestive heart failure (CHF) associated
with intraventricular dyssynchrony [1]. CRT improves hemodynamic parameters, gjection fraction or distance covered in the 6 minutes walking
test [2]. Furthermore, CRT has shown to decrease hospitalizations for patients treated with the implantable devices (ID). Although the
efficiency of this treatment has been proven, 20 to 30% of patients show either no improvement or worsening of their symptoms [3].

Individual follow-up of implanted patients is a key to understand the difference between responders and non-responders, and to prevent
severe health degradation. Besides regular follow-up visits, during the post-operative period, an everyday follow-up is possible with the new
IDs recently developed for CRT. They offer an increased storage capability of data acquired by the ID, providing information on the ID itself
(e.g. event counters of pacing and sensing activities) or on the state of the patient (e.g. arrhythmias, electrograms) and on its activity [4].
Recorded data are very promising towards the home monitoring of patients, the prediction of adverse events or the reduction of
hospitalizations. However, this source of information is under-exploited because data are large, multivariate, time-dependent and
heterogeneous, and consequently difficult to interpret for caregivers.

The objective of the present study is to propose a methodology to process this amount of multivariate data, in order to i) evaluate and
extract the information content of the time-dependent data downloaded from the pacemaker memory, ii) define synthetic indices which are easy
to interpret and iii) characterize and compare different populations of patients. Given the dimensionality of the recorded data, methods of data
reduction are investigated. The interest of the multidimensional analysis of the data recorded in the ID memory to objectively assess the
patients response to the therapy and the validity of the exploratory techniques to process these data have been shown in two previous studies,
using principal component analysis (PCA) [5] and multiple correspondence analysis (MCA) associated with a spatio-temporal fuzzy coding of
the time-series [6]. The former method has been successfully used to differentiate a test population (patients with rate-responsive pacemakers)



from a population of patients suffering from CHF by jointly exploiting a number of physiological variables and using a simple representation
for the temporal dimension. Providing an appropriate adaptation of its table of analysis, MCA has been successfully applied to the analysis of
the evolution of time-series across time, and is then used here as well. MCA performs a reduction of the dimensionality of the data and
provides synthetic indices called “factorial axes’. A plane formed by two factorial axes is called “factorial plane”. Each patient is finally
represented by trajectories on the factorial plane.

From a methodological point of view, several questions are raised: i) how to link the factorial axes with the variables acquired from the ID?
ii) do patients with similar trajectories on the factorial plane have a similar clinical state, and if yes, how to cluster patients according to their
evolution in the factorial plane? and iii) are the obtained clusters consistent with the clinical data available from the patients? The study
addresses the clustering of trgjectories with different numbers of points in the factorial plane, which implies the choice of appropriate distance
measure and clustering method. This problem is related to temporal clustering (i.e. the clustering of time-series) [7], [8].

The paper is organized as follows. In section 1, the clinical protocol and the ID data are presented. Then, in section 111, the proposed
methodology is described and the issues arising from the clustering of tragjectories are presented and solutions are proposed. The proposed
methodology is tested on simulated datasets and applied on the rea recorded data in Section VI. The validity of the obtained clusters is
evaluated in comparison with the medical records of patients participating in the protocol.

Data recorded by cardiac implantable devices

Patients

Forty-one patients (34 males, 7 females) participated in the present study. The mean age was 64 (minimum 38 and maximum 87). They
suffered from refractory heart failure (RHF) associated with intraventricular dyssynchrony and present a thin QRS complex (< 120 ms), a
NYHA class from Il to IV and a left ventricular gjection fraction (LVEF) = 25% (+ 7). They were candidate for cardiac resynchronization
therapy and were then implanted with cardiac implantable devices. The patients were informed about the research protocol and gave their fully
informed consent for participating in this study.

Description of the follow-up time-series

Data stored in the ID memory are retrieved in individual records at the end of the third, the sixth and the twelfth postoperative months.
Each record covers a three-month length period. These data result from two sensors [9]: a transthoracic impedance sensor which reflects the
respiratory activity of the patient and its intensity of effort, and an 1-D accelerometer which is linked to the intensity of the physical activity of
the patient.

By combining information from the two sensors, the activity level of the patientsis classified automatically by the device into two states:
exercise and rest. For each state, 24-hour cumulative values of a number of variables are computed and recorded in the ID memory over 30-day
follow-up periods. More details concerning the two sensors can be found in [10], [11]. The final set of thirteen physiological variablesis listed
in Table | and is constituted of seven recorded variables and of six additional variables deducted from the seven recorded ones.

A methodology for clustering multivariate time-series

An overview of the proposed methodology is provided in Figure 1. The analysisis first performed on a reference population to determine
significant factorial axes and clusters of similar evolutions in the factorial planes. In a follow-up situation, new data would regularly be
retrieved from patients implantable cardiac devices. The results of the analysis (i.e. factorial axes and clusters) would then be used by
projecting the new data on the factorial planes and assigning the evolution of the patient to an existing cluster towards the diagnosis (i.e. the
patient isimproving or degrading). In this paper, only the analysisis presented.

The analysis consists of 2 successive steps, namely fuzzy coding of the data and multidimensional analysis with smoothed multiple
correspondence analysis (SMCA), described in the following subsections.

Space-time fuzzy coding

A coding of the recorded data is required, as MCA has been at first conceived for categorical variables. MCA exploits disjunctive tables Z
=(Z;)(i,j)eln, R X[, c | Where z; is the membership value of the it object to the j™ modality. As a coding of the multivariate time-series, a
fuzzy space-time windowing, defined by Loslever and Bouilland for characterizing and coding biomechanical temporal data [12], is proposed.
Instead of an indicator matrix Z (i.e. z; € {0,1}), the MCA analyses a fuzzy version of Z where z; € [0,1] with the condition jey %= 1],

being the set of modalities of the vt attribute (variable). In statistics, one modality of a variable is one possible level of this variable. In



classical crisp coding, continuous variables are divided into several modalities (whose number depends on the distribution of the variable). For
example, the variable “age” of a population can be split into 3 modalities “age < 30", “30 < age < 60” and “age = 60".

As depicted in Figure 2, the fuzzy space-time windowing divides the time domain of each variable into N, overlapping windows. The
membership value of the g time sample t, to the time window T, is denoted p (‘[q ) and falls between [0,1]. The membership values of each
]
Nt
. ) ) - Z_}'=1HT-(ICI):1 . . . :
data point in the N time windows meet the condition J . The amplitudes of each variable (referred to as spatial domain)
are coded in asimilar manner with N, spatial fuzzy windows verifying the same properties.

1l
From the membership values in the time and the spatial (amplitude) domains, the membership value of the space-time window LJ, for

agiven time-series (signal) TS, and the variable V  , is denned as:

Sa=altr(to) 1s, (Vilty)
ZqQ:lHrj(tq)

whereV (tq ) isthe value taken by the n' variable at time unit ty . by (tq ) is the membership value of the time window Tj for the time unit t
]

HW?J'(TSK) =

qr Ha v, (tq )) is the membership value of the it space window A, nfortheV, (tq ) value, and Q is the number of time unitsin TS, . With

Hyn
this definition, W? J (TS, ) isthe weighted average of the space membership values with the time membership values as weights and verifies

Ny
Z;g‘:lli-]],.-br".'E (T‘S‘L) =1 . . . _ - HW” 7 .
LJ . This property is required to maintain the statistical context and to allow LJ (TS, ) to beinterpreted as the
¥l

frequency of appearance of the signal in the space-timewindow ' @ L .J .
Multiple correspondence analysis (MCA)

MCA is of great interest to explore the data recorded by 1D, as it handles both quantitative and qualitative data and captures nonlinear
relationships between variables. It deals with a two-way cross-table with the observations (also called statistical individuals) as rows and the
variables (or attributes) characterizing these observations as columns in the table. In MCA, rows and columns of the cross-table play a
symmetric role and can be represented on the same plot. Another advantage of this method is the possibility of displaying supplementary
variables and individuals jointly with the variables and individuals of analysis. They are not involved in the MCA but their projection on the
factorial plane: i) refines and enriches the interpretation of the MCA factoria axes by relating them to meaningful variables (e.g. age, sex, etc.)
and ii) enables the characterization of supplementary individuals according to their location with respect to individuals of analysis.
Consequently in MCA, data acquired from other patients 1D can be represented on the factorial plane jointly with the reference population: itis
possible to study their evolution with respect to the evolution of the patients of analysis.

Being in a follow-up frame, the temporal information contained in the recorded data is primordial and has to be taken into account.
Inherently MCA does not exploit time, but the temporal dimension can be introduced artificially. A simple way consists in representing each
time sample (or time window) of atime-series by one statistical individual (a row of the cross-table of analysis) and in applying MCA to the
resulting table [12]. Data can then be organized in a table such as Table Il, where atime-series is represented by as many rows as it has time
samples or time windows. This method is simple and leads to a rather easy interpretation of the results. However, the temporal dimension is not
explicitly exploited by the subjacent model of data representation (e.g. the same factorial axes would be obtained by introducing the lines on
the analysis table in any particular order). Details and examples on the computation and interpretation of MCA can be found in [13]. With this
convention, each time-series (i.e, in this study, each three-month length period of a given patient) is represented by a trgjectory onto the
factoria plane.

One of our objectivesis to cluster the patients according to the evolution of their trajectories in the factorial plane defined by MCA. To
facilitate this clustering, it is possible to smooth the trajectories in the factorial plane by applying a weighted and smoothed temporal average
on the table Z analyzed by MCA. This method is named smoothed multiple correspondence analysis (SMCA) and has been introduced by
Benali and Escofier [14]. The final table of analysisisS=P - Z, where P = (pij )( ielL L is a proximity matrix denning the weighted and

L
. 2. i=1P;; = 1
smoothed temporal average and is such as i .

Application of the fuzzy coding and multidimensional analysison the recorded database



The first two steps of the proposed methodology, namely the fuzzy spatio-temporal coding and the SMCA, are applied to the time-series
available in the recorded database. In this study, afuzzy window set T=(T ,,---, T,, - -, TNT}, where each Tj is 7-day long, is considered. The
length of the fuzzy time windows has been chosen by considering the patients’ behaviors, being quite similar from one week to another. Each
trajectory, representing a three-month length period (i.e. around 13 7-day long), links then around 13 points.

For each variable V, , N, = 3 modalities are considered: “Low” corresponding to the spatial fuzzy window A ; | = [-», median(V, )],
Medium” corresponding to A ,, | = [pretile(V,, 2.5), prctile(V  , 97.5)] and “High” corresponding to A , | = [median(V ), +=], where prctile(V,
,p) isthe pi" percentile of the variable V. The 3 spatial fuzzy windows are denoted with the suffixes “~H” for the higher level (moddlity), “-M”
for the medium level and “~L" for the lower level.

The elements of the proximity matrix P are defined as:

' 0.2 ifj=i+1
0.1 ifj=i+2
P =P, =| 0.05 ifj=i+3
1~ 34os kujPy,  fJ =1
\ 0 otherwise
performing atemporal average of the statistical individuals and respecting the condition Zi:lp ij 1.

The protocol provided 58 records for 41 patients. SMCA is thus applied to 793 statistical individuals related to these 41 patients, i.e. to an
array of 793 rows and 39 columns (13 variableswith N, = 3 spatial fuzzy windows).

The 1 s and 2 ™ factorial axes represent respectively 68.0% and 15.7% of the total variance, showing that the majority (83.7%) of the
information is contained in the first factorial plane. So a great part of the variance of the initial data can be represented by only two factorial
axes when 13 variables were initially considered. These first two factors define synthetic indices for patient follow-up but their interpretation,
from physiological and functional points of view, has to be performed. Consequently, this study will focus on the clustering of trajectories on
this factorial plane.

The projections of the variables and individuals of analysis on the first factorial plane of the SMCA are provided in Figures 3 and 4,
respectively. The first axisis mainly defined by the lower (-L) and higher (-H) modalities of Imp, , Dur. , NbCardCyc, , NbBreaths. , ACC.
and ImpRate, which reflect the time spent in exercise and the intensity of the efforts made by the patient. Consequently, in Figure 4, the more
the individuals are located to the right of the plane, the lower is the time spent in exercise and the less important are the efforts they make. The
second axis is mainly defined by the medium (-M) and extreme (-H, -L) modalities of ImpMinVent. , ImpOverAcc, Impy and HeartRate, ,
which define the ventilation activity in terms of amplitude, frequency and flow rate, especialy in rest. This axis can be interpreted as an “axis of
cardiovascular efficiency”. In Figure 4 the more the individuals are located to the lower part of the plane, the less important is their ventilation
in rest (i.e. their cardiovascular system is more “efficient”), independently of the daily activity duration and intensity (i.e. of the position along
thefirst axis).

Asit can be seen on Figure 4, trajectories present different locations and evolutions on the factorial plane, with a high overlapping.

Clustering trajectorieson the factorial plane

The aim of the present study is to cluster patients according to their clinical state during the follow-up period, which, in terms of
methodology, corresponds to the clustering of trajectories on the factorial plane according to their location and evolution. Considering the
characteristics of the tragjectories, the clustering methodology has to address the following issues:

® Unsupervised: no apriori knowledge on the clustersis required.

® Similarity measure: relevance in comparing trajectories on the factorial plane having different numbers of points and possibly subjects to
nonlinear spatio-temporal deformations.



¢ Location and evolution: both locations and evolutions of the trajectories on the factorial plane have to be taken into account, as they are
both informative.

Each of the previous three pointsis described in the following sections.
An appropriate clustering algorithm
Among the unsupervised clustering algorithms, k-means and agglomerative hierarchical clustering (AHC) are two classical methods.

The k-means algorithm implies the definition of centroids for each cluster, which in the present study is not trivial as the considered objects
are trgjectories possibly constituted of different numbers of points within the same cluster. The k-means method seems then not relevant for this
particular problem.

Agglomerative hierarchical clustering only reguires the definition of the dissimilarity matrix between the objects (i.e. the trgjectories) and
of the aggregation link. It is chosen as the clustering technique is the present study with the complete link as an aggregation link.

A relevant similarity measure between trajectories

The main difficulty is the definition of a similarity measure corresponding to the trgjectories on factoria planes. As mentioned above, these
trajectories can potentially be subject to deformations and are constituted of different numbers of points. Consequently, the Euclidian distance
is not suitable. Among the measures of dissimilarity, dynamic time warping (DTW) and longest common subseguence (LCSS) both alow
stretching in time and comparing time-series of different lengths. DTW has been widely used as a measure of dissimilarity in time-series
clustering, indexing and retrieving [15], in speech or handwriting recognition [16]. LCSS has also been studied as a similarity measure for
heterogeneous multivariate time-series or for multidimensional trgjectories [17]. DTW presents the advantage over LCSS to be non-parametric
and seems thus more appropriate for unsupervised clustering.

The computation of the DTW vector can be adapted in two dimensions to deal with two trajectories instead of two time-series. Given one
trajectory Traj, = {(Traj, (x; ),Traj, (¥; )} ; et m] constituted of m data points and one trajectory Traj, = {(Traj, (xj ), Traj, (yj )} i e[t n]
constituted of n data points, the DTW vector is denoted DTW, , (i, j). It is defined according to the equation:

Dmk, f(i: J) = D.l.', F(i: j)+mln [DWK, f(l - ]-1 J - 1):
DIW, (i, j —1), DTW, (i — 1, j)]

where D, | (i, j) is the Euclidian distance between the coordinates (Traj, (x; ),Traj, (y; )} and (Tra, (xj ). Traj, (yj )). Then, the distance
DTW between the two trgjectoriesis DTW, | = DTW, | (m, n).

A similarity measure considering both locations and evolutions of thetrajectoriesin the factorial plane

The positions of the modalities on the factorial plane in Figure 3 indicate that two trajectories with similar shapes but located at different
positions on the factorial plane are related to different modalities. This observation underlines the fact that both their location and their
evolution, i.e. both their coordinates and their derivatives, in the factorial plane are informative to cluster similar trgjectories and to compute the
dissimilarity matrix. The DTW can then be used with the following modifications.

Given the k" trgjectory Traj, , its derivativeis:

dTraj, ={(Traj (x) — Traj,(x; _,),
Traj (v) - Traj (v._ Wi mr

The DTW vector dDTW, | (i, J) between the two derivatives dTrgj, and dTrgj, is defined according to equation 3 and the distance DTW
between the two derivativesis dDTW, | =dDTW, | (m,n).

o _Deuclid, ;= euclidimean(Traj, ), mean(ITraj)) o
Thus in this study, given . k I"" the Euclidian distance between the

means of the coordinates of Traj, and Trgj, in the factorial plane, the dissimilarity measure between the two trajectories Traj, and Traj, is
defined as:



DM&J 1= dDWkJ 3+ DEHCIiko I

where dDTW, | takesinto account the derivatives of the trajectories and Deucli d& I their locations.
The N x N dissimilarity matrix used for the AHC is then DM = {DM, |} ¢[1, n J2- N being the number of trajectories to be clustered.
After computation of the AHC with complete linkage and the dissimilarity matrix DM, a dendrogram is obtained.

Cluster validity criterion

In AHC, in order to choose the threshold of cut in the dendrogram (i.e. the number of clusters) and to verify the validity of the clustering,
cluster validity indices are used (for a review, see [18]). As no information on the data is available (unsupervised clustering), only internal
validation indices are suitable. They are based on computing the properties of the resulting clusters, as the intra- and inter-cluster distances. The
internal validation index used in the study is the mean silhouette value, denoted S and described in [19]. Sisin the interval [-1, +1], where
values close to -1 indicate awrong clustering and values close to +1 indicate a correct clustering.

Results obtained with the clustering

Before applying the proposed clustering method, namely agglomerative hierarchical clustering with complete linkage and the dissimilarity
matrix based on dynamic time warping, it is tested on two simulated datasets, described in the following sections.

Testson simulated datasets

The aim of the first test is to explore the capability of the proposed similarity measure to take into account both locations and evolutions of
the trajectories on the factorial plane. The second test interests in the complete methodology described in Figure 1, from the fuzzy space-time
coding to the clustering.

1. Test on the similarity measure

From two trajectories selected among the trajectories obtained with the real dataset (cf. Figure 4), three prototypes of trajectories are
computed, the third being obtained by inverting the time samples of the first one.

Nine trgjectories are simulated from the first prototype at different locations in the factorial plane, 6 from the second prototype and 12 from
the third prototype. For each trajectory, a white noise is added to obtain slightly different trajectories for the same prototype. The simulated
dataset of 27 artificial trajectories is represented in Figure 5. Figure 5 shows that the simulation reproduces the characteristics of the real
dataset, namely the overlapping of several trajectories of different shapes at different locations on the factorial plane.

The clustering method proposed above is applied to the simulated dataset with three dissimilarity measures based on the DTW which is
alternately computed on: i) the coordinates of the trajectories, ii) the derivatives of the trajectories, iii) the derivatives with addition of the
Euclidian distance between the means of the coordinates as proposed in equation 5.

Figure 6 illustrates the resulting dendrogram for each dissimilarity measure and provides the mean silhouette value against the number of
clusters. A dendrogram is atree-like plot where each step of hierarchical clustering is represented as a fusion of two branches of the treeinto a
single one. The branches represent clusters obtained on each step of hierarchical clustering. This representation eases the choice of the number
of clusters. The dendrogram is cut at the threshold (horizontal dashed line) producing the number of clusters corresponding to the maximum
mean silhouette value.

For each of the three measures, the mean silhouette value S presents one global maximum, indicating a value for the number of clusters K
to be chosen, and leads to a different clustering. For the DTW on coordinates, max , S is obtained for K = 3 and it tends to group the
trajectories close in the sense of their location on the factorial plane. For the DTW on derivatives, max  Sis obtained for K = 3, but it regroups
trajectories only according to their evolution. For the DTW on derivatives with the addition of the Euclidian distance between coordinates, max
k S is obtained for K = 9 and each obtained cluster is composed of trgjectories with similar evolutions and close locations. Despite the
overlapping of several tragjectories with different evolutions at the same location, the proposed dissimilarity measure is able to group similar
trajectories. Moreover, it is suitable to distinguish between shapes (independent of any notion of time) and evolutions (with start- and
end-points), as trgjectories created with the first prototype and with the third prototype are assigned to two different clusters, even if they have
similar shapes.

Test of the complete method



In this section, the noise robustness of the proposed methodology, described in Figure 1, is tested. Among the trajectories obtained with the
real database (cf. Figure 4), seven trajectories with different evolutions and locations are selected. The corresponding time-series (i.e. the 13
variables of analysis) are retrieved. For each selected trgectory, a white noise is added independently to each of its 13 variables with a given
signal-to-noise ratio (SNR). The original time-series and 10 readlizations of the noisy time-series are coded by fuzzy space-time coding and
constitute the individual s of analysis for the SMCA. The 77 resulting trgjectories are then clustered by AHC with the DTW on derivatives with
the addition of the Euclidian distance between coordinates as a dissimilarity measure (cf. equation 5). Figure 7 presents the mean silhouette
value against the number of clusters for SNR = 3 dB, and the clusters obtained for the maximum value of the silhouette value being K = 7.
Despite the noise, the correct number of clusters is determined by the internal validation indices, the trajectories being grouped according to
their evolution and location.

It appears that above SNR = 0 dB the clustering is correct and is not disturbed by the noise added to the time-series and that under SNR = 0
dB, Sisunable to provide the correct value of K. The method seems then robust to noise on the variables of analysis, which can be explained
by two of its steps: the time fuzzy coding and the smoothing performed during the SMCA. The mean silhouette value increases when the length
of the time fuzzy windows increases and is higher with the SMCA than with the MCA. The averaging performed by both the fuzzy coding and
the SMCA smoothes the time-series and the tragjectories, respectively, improving the performance of the clustering.

The previous two tests, performed on datasets close to the real database, have proven the validity of the proposed approach in terms of
clustering methodology and dissimilarity measure relevant for the processed trgjectories, and of noise robustness.

Performance of the clustering on the recorded database

In this section, the recorded database, constituted of 58 trajectories on the first factorial plane, is clustered with the proposed approach.
Figure 8 provides the mean silhouette value S against the number of clusters K. The number of clustersis chosen at K = 10, after the maximum
value of S. The resulting clusters are provided in Figure 8, where for each cluster individuals of analysis are in gray and individuals of the
given cluster are in black. One can notice that trajectories within a given cluster have visually similar evolutions and close locations.

To evaluate the methodology, the resulting clusters have to be compared with the appreciation of the physicians on the evolution of the
patients during each of the three-month length periods. For the present protocol, information is available on the global state of each patient,
updated at the end of each 3-month period of the follow-up, and each “adverse event” is reported (date and type). In the present study, the
records with adverse events other than cardiac events are discarded, as a non cardiac event like a fall or a bronchitis can have very different
effects on patients with RHF. As no everyday report of patients clinical stateis available, the difficulty resides in defining the actual evolution
of agiven patient: has a patient undergoing a cardiac adverse event at the beginning of his/her three-month length period and recovering rapidly
after hospitalization a favorable or an unfavorable evolution? In this context, indices like the specificity or the sensitivity are difficult to
compute. Consequently, the present study can only focus on the relation between the different areas of the factorial plane defined by SMCA
and the health of the patients as reported at the end of each follow-up period. More data would be necessary to study the evolutions of patients
on thisfactorial plane.

According to the analysis performed on the position of the individuals of analysis relatively to the position of the modalities of analysis (cf.
Figures 3 and 4), the evolution of a patient (during one of higher three-month length period) is a priori i) favorable if the corresponding
trajectory is located on the left of the plane or evolves from the right to the left of the plane, and ii) unfavorable if the corresponding trajectory
islocated on the right part of the plane or evolves from the left to the right of the plane. The study of each cluster is necessary to confirm this
division of the factorial plane into several areas with different meaningsin terms of patient’s health.

On the left of the plane, clusters 2, 4 and 5 contain 13 trajectories in total. The medical reports indicate that all the corresponding patients
were, during the given period, in a favorable state. On the right of the plane, clusters 8 and 9 contain 5 trajectories in total, associated with
patients all undergoing a health deterioration during the given period. These five clusters enable the definition of two distinct areas in the
factorial plane, the left one associated with a favorable state and the right one with a health deterioration.

The other five clusters are interesting as their trajectories show transitions from one area to the other. Cluster 1 comprises 27 trajectories,
with small evolutions on the upper half-plane, overlapping both right and left half-planes. During the given period, patients whose trajectories
belong to cluster 1 were al in good health, except one patient. According to the medical records on this patient, he was tired during the period
of interest (3 months post-op) and died 1 month after the end of this period, the date of his/her adverse event is not reported. Figure 9 shows
that the corresponding trajectory (solid line) is evolving from the upper-plane to the right of the plane, with aloop around the 7 t post-op week.
The trgjectory in cluster 3 is very specific, evolving bottom-to-top firstly and right-to-left secondly. This patient underwent an adverse event
(heart failure) 28 days after the beginning of the period of interest, corresponding to the changing of direction in his/her trajectory, and



recovered rapidly which explains why the trajectory evolves from right to left. Cluster 6 groups 6 trajectories evolving in the same direction
(bottom-right to top), associated with patients all, except one, presenting a favorable state during the given period. This patient (bold line in
Figure 9) underwent a cardiac adverse event around 2 months after the beginning of the period of interest. He was hospitalized for 1 week and
recovered rapidly, as can be seen from hig'her trajectory finally evolving right to left. In Figure 9, the arrow corresponds to the reported date of
the adverse event, and one can notice that a changing in the direction of the trajectory has occurred around 5 weeks before the adverse event.
Cluster 7 comprises 2 trajectories evolving from top-right to top-left of the plane and corresponding to one patient with a favorable evolution
and one patient with an unfavorable evolution. This patient underwent a cardiac adverse event around 2 weeks before the end of the period of
interest, as can be seen with the abrupt U-turn in his’her trajectory (dashed linein Figure 9). Cluster 10 groups 4 trajectories with two different
evolutions, two trajectories have very small dynamics, associated with patients in good health, and the two others have large evolutions from
the top to the right of the plane, associated with patients undergoing adverse events during the given period.

The clustering performed on the real dataset provides 10 clusters, grouping trajectories with similar evolutions and close locations, as
expected. The obtained clusters seem consistent with the medical records of the patients, but no quantitative evaluation is available. Two areas
in the factorial plane have been identified, the bottom-right quarter-plane is related with a health degradation and the bottom-left one with a
stable clinical state. The other two areas, although being distinguished by the clustering algorithm, are not so easily identifiable.

Discussion and conclusion

This study was designed to show the informative potential of acceleration and impedance data recorded in implantable devices and to
evaluate the appropriateness of a multiple correspondence analysis in this particular context. A clinical protocol has been designed to provide
data on patients that suffer from heart failure.

MCA has been chosen as it is a multivariate method that exhibits linear and non-linear relationships between variables. However, MCA
demands to transform continuous variables into nominal ones, i.e. to code amplitude and time domains of the variables by means of crisp or
fuzzy modalities. MCA does not explicitly exploit time, but the temporal dimension is introduced in this study with a basic solution that
consists in representing each time sample (or time window) of atime-series by one statistical individual (arow of the table of analysis) and to
perform MCA. Statistical individuals are represented by trajectories onto the factorial plane and their temporal evolution can then be exploited.
Consequently, the proposed method can be useful for graphically follow the evolution of a given patient’s state by means of a synthetic
representation that takes into account the most pertinent information in the data.

In the present study, it has been possible to evaluate and discuss the synthetic indices provided by the first two factorial axes of the MCA
and to explain them according to functional and physiological points of view. The 58 records provided by the clinical protocol have been
represented by trajectories on the first factorial plane of the MCA. The definition of an appropriate similarity measure has been discussed and
has enabled the clustering of the trajectories into groups of trajectories with similar locations and evolutions on the factorial plane. The
proposed distance has been validated on simulated datasets and enables the clustering of trajectories in the factorial plane according to their
location and/or their evolution depending on the problem to be solved. Experiments on simulated datasets regarding the noise robustness also
show the relevance of the association of fuzzy spatio-temporal coding and smoothed MCA. The proposed method is robust to white noise with
SNR aslow as 3 dB.

A database constituted of clinical observations from 41 patients has also been analyzed by using a data mining approach so as to
characterize the data. Two areas in the factorial plane, corresponding to two large groups of patients, have been identified, the bottom-right
quarter-plane being related with a health degradation and the bottom-left one with a stable clinical state. Most of the trajectories projected on
this first factorial plane were correctly clustered according to their location and shape. Discussed individually, these clusters were efficient in
grouping trajectories corresponding to similar patients' clinical state. The present study has shown that patients undergoing an adverse event
often present trajectories with abrupt variations. A detection of such phenomenawould permit to identify patients with acritical evolution.

In the future, additional data would enable the identification and detection of typical evolutions related to health deterioration. Rules may
be extracted from the location of modalities on the factorial plane, and enable the definition of thresholds on time-series to generate alarms
associated with adverse events or health deterioration. These alarms could be sent from the pacemaker, via a data communication device (such
as amobile phone, PDA, etc.), to atelemonitoring center. These results are encouraging and may be useful for the definition of new selection
criteria of candidate patients for CRT. Finally, the proposed methodology can be generalized to other monitoring problems.
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Fig. 1
Overview of the proposed methodology. The analysisis performed on the reference population and leads to the determination of clusters of similar
evolutions — according to an appropriately chosen dissimilarity measure — on the factoria plane defined by the smoothed multiple correspondence
analysis (SMCA). A practical application of this methodology would be the projection of subsequent follow-up data as supplementary individuals
on the factorial axes defined during the analysis and the assignation of the obtained trajectories to the “closest” cluster, in the sense of the chosen
distance.
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Fig. 2
Temporal and spatia (amplitude) fuzzy coding of a continuous signal.
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Fig. 3

Variables of analysis represented on the first plane of the Smoothed Multiple Correspondence Analysis (SMCA). For each variable, only the first

(Low, -L) and the third (High, —H) levels are labelled, unlabelled squares correspond to the second levels (Medium, -M).
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Fig. 4
Individuals of analysis represented on the first plane of the Smoothed Multiple Correspondence Analysis (SMCA). Each record of each patient

(corresponding a three-month period) is represented by one trajectory. The first point in time for each trajectory is marked up by acircle.
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Fig. 5
Simulated dataset of 27 trajectories obtained from three real trajectories and represented on the first factorial plane. The first point in time for each

trajectory is marked up by acircle.
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Fig. 6
Dendrograms and mean silhouette value vs. the number of clusters, for three dissimilarity measures based on the DTW. The clustering is applied

to the simulated dataset of 27 trajectories. The dendrogram is cut at the threshold whose value is obtained after the maximum of the mean

silhouette.
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Fig. 7

Test of the complete method on 77 tragjectories computed from 7 selected trgjectories of the real dataset. For each selected tragjectory, a white noise
is added independently to each of its 13 variables with a given signal-to-noise ratio (SNR = 3 dB), and the resulting 77 trajectories are clustered.
For each cluster, individuals of analysis (in gray) and individuas of the given cluster (in black) are represented in the first plane of the SMCA. The

first point in time for each trajectory is marked up by acircle.
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Fig. 8
Mean silhouette value S against the number of clusters K. Ten clusters are determined with the proposed methodology for the recorded database

(max  Sfor K = 10). For each cluster, individuals of analysis (in gray) and individuals of the given cluster (in black) are represented in the first
plane of the SMCA. Each record of each patient (corresponding to a three-month period) is represented by one trajectory. The first point in time

for each trgjectory is marked up by acircle.
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Fig. 9
Three specific trajectories of patients undergoing an adverse event during the period of interest. Solid line: trgjectory in cluster 1, bold line:

trajectory in cluster 6, dashed line: trgjectory in cluster 7. Reported dates of adverse events are indicated by an arrow. The first point in time for
each trgjectory is marked up by acircle.
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TABLE I
List of 7 physiological variables recorded in the cardiac implantable devices and 6 variables computed from these recorded variables.

Description Names Units
Total duration within the activity level Durg 1 s
Cumulative values of acceleration ACC, M-s ~2(g)
Imp
Cumulative values of impedance Fmp millivolts (mV)
R
NbBreaths
Cumulative number of ventilation cycles Eler eaths NbvC
R
Cumulative number of cardiac cycles NbCardCyc NbCC
“Mean’2 activity intensity Actint gs™?t
Imp. over ACC, ImpOverAcc mV-g l
“Mean” heart rate HeartRate. Beats per minute (bpm)
“Mean” impedance minute ventilation ImpMinVent. mV-min ~1
“Mean” ventilation frequency VentFreqe NbVC-min 1
Impg over Impg ImpRate none

1 Subscripts E and R are for Exercise and Rest, respectively.
2 The duration of each Exercise and Rest period that occurs within 24 hours is unknown. Only the cumulative duration is known. Consequently, this “mean” is not the average of the variable value
hours, excepted if all the periods are of the same duration.



TABLE Il
Construction of the table Z for multiple correspondence analysis (MCA) applied to fuzzy coded data and implicitly exploiting the temporal dimension.

Variables vV,
Fuzzy space windows Ain

TS, at fuzzy time window 1

TS, at fuzzy time window 2

TS, at fuzzy time window | ,

i

n

(TS0)
A, , is the fuzzy space window corresponding to the i modality of the ni" variable, TS, is the k" time-series and (TS, ) is the membership value of the n'" variable to the fuzzy time-space window f
time-series.



