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Abstract  

Background: Principal component analysis (PCA) and partial least square (PLS) 

regression may be useful to summarize the HIV genotypic information. Without pre-

selection each mutation presented in at least one patient is considered with a 

different weight. We compared these two strategies with the construction of a usual 

genotypic score. 

Methods: We used data from the ANRS-CO3 Aquitaine Cohort Zephir sub-study. We 

used a subset of 87 patients with a complete baseline genotype and plasma HIV-1 

RNA available at baseline and at week 12. PCA and PLS components were 

determined with all mutations that had prevalences >0. For the genotypic score, 

mutations were selected in two steps: 1) p-value <0.01 in univariable analysis and 

prevalences between 10% and 90% and 2) backwards selection procedure based on 

the Cochran-Armitage Test. The predictive performances were compared by means 

of the cross-validated area under the receiver operating curve (AUC).  

Results: Virological failure was observed in 46 (53%) patients at week 12. Principal 

components and PLS components showed a good performance for the prediction of 

virological response in HIV infected patients. The cross-validated AUCs for the PCA, 

PLS and genotypic score were 0.880, 0.868 and 0.863, respectively. The strength of 

the effect of each mutation could be considered through PCA and PLS components. 

In contrast, each selected mutation contributes with the same weight for the 

calculation of the genotypic score. Furthermore, PCA and PLS regression helped to 

describe mutation clusters (e.g. 10, 46, 90).  

Conclusion: In this dataset, PCA and PLS showed a good performance but their 

predictive ability was not clinically superior to that of the genotypic score. 
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Background 

The development of HIV resistance mutations is one of the major problems for 

optimizing treatment of HIV-infected patients. Therefore, resistance testing before 

starting highly active antiretroviral therapy (HAART) or before switching to a new 

antiretroviral component is widely recommended [1-4] and now routinely 

implemented in industrialised countries. Resistance is due to mutations in the viral 

genome, e.g. mutations in the reverse transcriptase (RT), protease or integrase 

genes that cause resistance to nucleoside RT inhibitors (NRTIs) and non-nucleoside 

RT Inhibitors (NNRTIs), protease inhibitors (PIs), or integrase inhibitors, respectively. 

Genotypic and phenotypic resistance testing are the two commonly used tests. The 

impact of genotypic mutations on virological response in patients treated with a 

particular drug regimen are based on in vitro informations or on the virological 

response reported in patients who switched to that particular regimen. Before the 

initiation of an optimized treatment, a genotype of the main (major) patients’ virus 

populations (only virus species present at >20-30% are detected and therefore 

analysed) is assessed. Statistical analyses aim at finding the baseline genotypic 

mutations associated with virological response in order to predict whether a patient 

who will switch to a similar regimen is resistant or not. Noteworthy, data are mostly 

analysed for the main drug of a given regimen only, i.e. NNRTI and/or PI. 

However, traditional statistical analyses of the association between genotypic 

mutations and virological response are hampered by i) the high number of potential 

mutations, ii) the correlations between mutations and iii) the low number of patients 

usually available for this type of study. Specifically, the analysis of the effect of high 

number of mutations measured in a limited number of patients may lead to over-

fitting issues. Hence, inflated variances result in non-significant associations. In order 
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to circumvent these problems and to simplify the interpretation, genotypic mutations 

are summarised in a so-called genotypic score. This score is the sum of observed 

resistance mutations at baseline for the given drug in a given patient. The mutations 

composing the score are selected by different strategies [5, 6]. The drawbacks of this 

analysis are that a preselection of mutations is required and that every mutation has 

the same weighting. Alternative strategies such as principal component analysis 

(PCA) and partial least square (PLS) regression have been suggested for the sake of 

size reduction of correlated predictors [5, 7-9] and may present advantages to 

improve the description of associations between mutations. The two techniques do 

not lead to a selection of mutations but to a different weighting of each mutation 

presented in the dataset. We aimed at comparing these two strategies with the usual 

construction of a genotypic score using data from an existing study evaluating the 

impact of protease mutations on the virological response in patients switching to a 

fosamprenavir/ritonavir-based HAART [10]. 

 

Methods 

Data 

The Zephir study was designed to investigate the impact of baseline protease 

genotypic mutations in HIV-1 infected PI-experienced patients on virological 

response. All patients had baseline HIV-1 RNA levels >1.7 log10 copies/mL and 

switched to a ritonavir-boosted fosamprenavir-based HAART [10]. Patients included 

were followed at the Bordeaux University hospital and at four other public hospitals in 

Aquitaine, south western France, all participating to the ANRS CO3 Aquitaine Cohort. 

We used a subset of 87 patients with a complete baseline genotype and plasma HIV-

1 RNA available at baseline and at week 12. Virological failure was defined as a HIV-
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1 RNA ≥400 copies/mL and <1log10 copies/mL decrease of HIV-1 RNA between 

baseline and week 12 (virological success: HIV-1 RNA <400 copies/mL or ≥1 log10 

copies/mL reduction). A mutation was defined as a difference between the amino 

acid sequence of the studied virus and the wild type (HXB2) virus. In total, we 

created 69 dummy variables (69 mutations among the 99 possible protease 

mutations were encountered at least once).  

 

Statistical analysis 

Construction of a genotypic score 

The genotypic score was created in two steps. The first step considered mutations 

with prevalences ≥10% and ≤90% [5] to assess their association with virological 

failure. Mutations associated with a p-value <0.01 (univariable logistic regression) 

were selected. Second, the backwards procedure selected the combination with the 

strongest association with virological response [6]. These m selected mutations were 

used to calculate the first genotypic score for each patient. For instance, a first set 

contains the six mutations V32, I47, I50, V77, I84 and L90. The score is defined as 

S= IV32 + II47 + II50 + IV77 + II84 + IL90 (S varying from 0 to 6). During the backwards 

selection procedure every mutation was removed one by one and all combinations of 

(m-1) mutations were investigated. The Cochran-Armitage test for linear trends in 

proportions was used to compare the probability of virological failure in patients 

having none to (m-1) mutations [11]. The combination providing the lowest p-value 

was kept and the procedure was repeated with all combinations of (m-2) mutations. 

The procedure stopped when removal of a mutation did not result in a lower p-value. 

We performed 200 bootstrap samples from the original data set to analyze the 

variability in mutations’ selection. We assumed that variability in the selection of 
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mutations due to the restricted sample size might essentially play a role in the first 

selection step. Therefore, a bootstrap analysis was performed only to the first 

selection criteria. In each sample the prevalence of each mutation was calculated. A 

univariable logistic regression was performed to determine the association of each 

mutation with virologic failure in each sample. Then we calculated the frequencies of 

selection of each mutation in the 200 bootstrap samples under the conditions 

mentioned above (prevalence between 10% and 90% and a p-value <0.01 in 

univariable analysis).  

 

Principal component analysis (PCA) 

Each principal component is a linear combination of the original variables, with 

coefficients equal to the eigenvectors of the correlation or covariance matrix [7, 9]. 

Principal components analysis determines components which are representing the 

variability of the mutations. The association between the principal components and 

the response variable was tested with the Wald test statistics of the estimated 

regression coefficient related to the principal components. We only tested principal 

components with an eigenvalue >2 reflecting that ≥3% of the variability of the 

mutations was explained. Any principal component was kept when it was related to 

the virological response using a logistic regression according to the Wald test.  

 

Partial least square (PLS) regression 

PLS regression is a technique widely used for dealing with numerous correlated 

explanatory variables [8, 12]. PLS regression aims also at identifying components 

explaining as much as possible the variance of the predictor variables. These 

components are simultaneously correlated with the response variable.  Over-fitting 
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issues were controlled with a leave-one-out cross-validation during the construction 

process. The number of factors chosen is usually the one that minimizes the 

predicted residual sum of squares (PRESS) [13]. 

 

Comparison 

The probability of virological failure at week 12 was studied using a logistic 

regression model adjusted for either the genotypic score or the principal components 

or the PLS components as explanatory variables. The performance of each strategy 

was compared using the cross-validated AUC [7, 8]. We used 5-fold cross-validation. 

We split the dataset in five equal parts. That way we selected five times a dataset 

with 1/5 of the patients as ‘validation set’ and the remaining 4/5 of the patients served 

as ‘test set’. In the test set, we determined i) the genotypic score ii) the principal 

components and iii) the PLS components. The selected mutations were then used to 

calculate the genotypic score for the patients included in the validation set. The 

weights for each mutation derived by PCA and PLS were applied to calculate the 

score of the principal component and the PLS component respectively for the 

patients of the validation set. For each validation set the AUC under the ROC curve 

was calculated by means of a logistic regression for the three different methods. 

Thus, we obtained for each method 5 AUCs and the cross-validated AUC was 

calculated as the mean of these 5 AUCs. This approach allows to avoid over-fitting 

because the performance of the methods is tested in a subset of patients that were 

not used to determine the genotypic score and the weights of mutations in the PCA 

and PLS components. 

Statistical analyses were performed using SAS® version 9.1 software (SAS Institute, 

Inc., Cary, NC). We used the procedures PROC PRINCOMP for principal component 
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analysis and PROC PLS for partial least square regression. Principal components 

and PLS components were determined considering all mutations being present in at 

least one patient. 

 

Results 

Study population characteristics have been reported before [10]. We used a subset 

of 87 patients with a complete baseline genotype and plasma HIV-1 RNA available at 

baseline and at week 12. Virological failure was observed in 46 (53%) patients at 

week 12. Mutations at codon 63 had the highest prevalence in this population 80% 

followed by mutations at codons 10 (58%), 71 (51%), 46 (47%), 54 (47%), 37 (47%), 

35 (41%), 82 (40%) and 90 (40%). Mutations at codons 11, 12, 13, 14, 15, 19, 20, 

32, 33, 34, 36, 41, 43, 47, 55, 57, 60, 61, 62, 64, 69, 72, 73, 77, 84, 89 and 93 had 

prevalences between 10% and 40%. Mutations at codons 10, 46, 54, 82 and 90 

showed the highest association with virological failure in univariable analysis  

(p<10-5). All patients with virological failure presented a mutation at codon 84. 

 

Genotypic score 

Among mutations occurring in more than 10% and less than 90% of the patients, 27, 

18 and 11 mutations were selected according to p-value thresholds of <0.25, <0.05 

and <0.01, respectively. The backward selection procedure using the Cochrane 

Armitage trend test was started with the 11 mutations (10, 33, 36, 46, 54, 62, 71, 73, 

82, 84, 90) selected with the most restrictive criteria (p<0.01) to avoid computational 

issues. The stability of this selection step was checked on 200 bootstrap samples. 

Seven (10:100%, 46: 100%, 54: 100%, 71: 95.5%, 82: 97%, 84: 100%, 90: 96%) of 

the 11 mutations were selected in over 90% of the samples. The other four mutations 
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were selected between 50% and 90% (33: 88%, 36: 68%, 62: 50%, 73: 68.5%). 

Mutations not included in the IAS list [14] were in general not selected in the 

bootstrap samples (exceptions: 19: 36.5%, 37: 19% and 41: 19%). This additional 

bootstrap analysis confirmed that mutations known to be associated with virological 

failure were chosen for further steps. Mutations (also known as polymorphisms) that 

also occur occasionally in untreated patients, thus generally without any relation to 

antiretroviral treatment, were chosen in less than 3% of the bootstrap samples.  

During the backward selection procedure the following six mutations 10, 36, 46, 62, 

84, and 90 were selected for the calculation of a genotypic score. The genotypic 

score calculated with these six mutations was significantly associated with virological 

failure (OR=4.1 for a difference of one mutation, CI95%[2.4; 7.0]; p<10-4; cross-

validated OR=4.9). 

 

Principal component analysis 

The first and second principal components explained 11% and 6% of mutations 

variability. Principal components accounted for a small variability overall. Therefore, 

their interpretation was difficult. The correlation of the mutations amongst them and 

to the principal components allowed identifying some clusters as for example 

mutations 10, 46 and 90 or mutations 32 and 47 already known to be associated 

together (figure 1). Figure 2 represents the relative weight of each mutation in the 

dataset to calculate the first principal component. The relative weight of each 

mutation to calculate the PCA ‘score’ ranged between 0% (e.g. mutation at codon 22) 

and 4.3% (e.g. mutations at codons 10 and 54). The sum of the relative weights of 

mutations represented in the IAS list was 70%, meaning that mutations of the IAS list 

contributed the most to calculate the first principal component. The mutations at the 
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following six positions 10, 33, 46, 54, 82 and 90 contributed mostly to the first 

component (figure 2). Among others, mutations at positions 77, 88 and 30 

contributed with a negative scoring coefficient to the first component, meaning that 

the presence of such mutation would decrease the value of the score. Medians of the 

first and the second principal component were -0.10 (IQR: -0.5-0.84) and 0 

 (IQR: -0.53-0.40), respectively. The first principal component was significantly 

associated with virological failure with an OR of 11.9 (CI95% [4.8; 29.7], p<10-4) for a 

difference of one unit whereas the second was not OR=1.1 (CI95% 0.7; 1.7, p=0.62). 

 

Partial least Square 

One PLS component was chosen according to the PRESS criterion. This component 

explained 11% of the variability of the mutations and 60% of the variability of the 

response variable. The median of the first PLS component was -0.17  

(IQR: -2.69-2.64). This PLS component was significantly associated with virological 

failure OR=2.6 (CI95%1.8; 3.9 p<10-4). Figure 3 represents the relative weight of each 

mutation in the dataset to calculate the first PLS component. Mutations at positions 

10, 46, 54, 82, 84, and 90 had the highest contribution to the calculation of the first 

component (figure 3). Negative weight for the calculation of the first PLS component 

was amongst others given by mutations 77, 30 and 48. Mutation at codon 69 

contributed with the smallest relative weight (0.03%) and mutation at codon 10 with 

the highest (4.7%). The contribution of mutations included into the IAS list was 69% 

(i.e. the sum of relative weights). Thus, mutations already known to be associated 

with virological failure were given more weight than polymorphisms (mutations that 

also occur occasionally generally without association to antiretroviral treatment). 
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Comparison  

We compared the results of the PCA and PLS with the results obtained using the 

classical strategy to build a genotypic score. Mutations 10, 46 and 90 were found 

among the six mutations contributing with the highest weight for the calculation of the 

first PC, the first PLS component and were selected for the genotypic score. Major 

mutations 54 and 82, which were found among the mutations with the highest 

association to virological failure in univariable analysis, were also found among the 

six mutations contributing with the highest weight for the calculation of the first PC 

and the first PLS component. In contrast, these two mutations were eliminated from 

the score during the backward selection procedure (figure 4). Therefore, one first 

advantage of methods based on PCA and PLS is that they helped in reducing the 

number of predictors without neglecting mutations that could play a significant role. 

We compared the performance of these three methods with the area under the ROC 

curve. The cross-validated AUCs for the PCA, PLS and genotypic score were 0.880, 

0.868 and 0.863, respectively. The model with the first principal component slightly 

outperformed the model with one PLS component. The predictive quality of the 

genotypic score was slightly lower than the two AUCs obtained for PCA and PLS but 

still showed a very good performance.  

To compare the methods in an illustrative way we used a patient presenting the 

following 21 protease gene mutations at baseline: mutations at positions 33, 54, 82, 

90 defined as major, mutations at positions 10, 13, 20, 35, 36 43, 53, 60, 63, 64, 74 

defined as minor and mutations at positions 14, 15, 19, 37, 67, 98 defined as 

polymorphisms. Virological failure was observed for this patient. The genotypic score 

was S = I10+I36+I90 = 3 and the probability of virological failure was 77% using this 

score. The main difference between the genotypic score and the principal component 
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value or the PLS component value is that with the latter methods we can take in 

consideration the fact that the patient has 21 protease gene mutations and give them 

different weights. For instance, the relative weights for mutations 10, 36, 90 were 

4.4%, 2.2%, 4.1% and 4.7%, 2.4%, 4.4% for the PCA and PLS ‘score’, respectively 

(figure 2 and 3). The predicted probability of virological failure was 94% and 96% 

using the PC “score” and the PLS “score”, respectively. 

 

 

Discussion 

We investigated PCA and PLS regression to analyse associations between baseline 

protease mutations and virological failure. PCA and PLS are easily applicable 

because they are implemented in standard statistical analyses programs such as 

SAS (SAS Institute, Inc., Cary, NC).  

We compared these two techniques with the construction of a genotypic score 

because they allow considering each mutation with a different weight. The objective 

of PCA is to find a set of new “latent variables” in form of a linear transformation of 

the original predictors. The properties of these latent variables are that they are 

uncorrelated and that they account for as much of the variance of the predictor 

variables as possible. PCA has been recently used to determine clusters of 

mutations in patients that were treated with at least one PI [15] and to predict the 

phenotypic fold change from genotypic information [16]. PLS regression reduces also 

a set of predictor variables to a set of uncorrelated “latent variables”, the so-called 

PLS components. The main difference between the two techniques is that PLS also 

considers the strength of each mutation effect on the virological response to 

construct the components. Hence, these two methods can help solving the issues of 
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the high number of predictors and their different effects. They may also help in 

describing the relationship between mutations by detecting potential groups of 

mutations. PLS was mentioned to be a useful analysing strategy for genotypic 

mutation data [5] but neither applications nor comparisons had been published yet.  

In this study population, these two methods were able to identify some mutations that 

were expected to contribute with higher weights to virologic failure (e.g. mutations at 

codons 10, 82 and 90 which contribute to resistance to at least 7 of the 8 currently 

used PIs [5]). Furthermore, known clusters of mutations could be described. Recent 

papers including co-variation analysis [15, 17-19] found some correlated pairs and 

clusters which are associated with a specific treatment. Two of them used PCA to 

visualise correlations of mutations. We identified some clusters of mutations, e.g. 

mutations at codons 10, 46, and 90 and at codons 33, 46, 54 and 82, which were 

also found to be correlated with each other. Mutations 32 and 47 had the highest 

correlation coefficient (r=0.78) in this population and are known to be key mutations 

for amprenavir [20] and lopinavir [14]. The cluster of mutations at positions 10, 46, 90 

[19] and a high correlation between 32 and 47 were also determined by Wu et al and 

Kagan et al [19, 21]. The mutations 10, 33, 46, 54, 71, 82, 84 and 90 are separated 

from all other mutations by the PCA and are contributing with the highest weight to 

calculate this component. The cluster 10, 46, 54, 71, 90 was recently described [17] 

to appear under lopinavir treatment and these mutations are also related to 

amprenavir-resistance [22]. We found that PCA had indeed detected this latter 

cluster in our patient’s population previously treated by lopinavir or amprenavir (25% 

and 32% of the patients, respectively). Furthermore, the fact that the principal 

component was related to virological response highlights that PCA can detect 

mutation clusters on the way to lopinavir and fosamprenavir resistance although 



 - 14 - 

principal component analysis did not consider the virologic response for the 

construction of the component. As mentioned above, PLS searches latent variables 

but takes into account the response variable. Consequently one might expect 

differences for the distribution of the weights given by the mutations. Actually, the 

mutations found to contribute the highest weight on the PLS component are almost 

the same. Among the six mutations contributing with the highest weight, mutations at 

codons 10, 46, 54 82 and 90 were found for the principal component and the PLS 

component. Mutation at codon 33 was found on the principal component, while 

mutation 84 was found on the PLS component. In addition, the mutations which 

contributed with a higher weight for the calculation of the first principal and first PLS 

components are those which showed the highest association with virological 

response in univariable analysis. In conclusion, the weightings of the mutations found 

were consistent across these alternative strategies. A possible explanation is that the 

patients were mainly pre-treated with two PIs known to induce similar mutation 

patterns than fosamprenavir. In other cases, PLS might outperform PCA when a drug 

induces completely different mutations since the virological response is considered 

during the construction of the component.  

The above presented example (patient presenting 21 protease gene mutations) 

highlights the advantage of taking into account all mutations and giving them different 

weights by either PCA or PLS. This results in a better prediction of virological failure. 

After cross-validation the first principal component and the first PLS component only 

slightly outperformed the genotypic score in the prediction ability. However, it has to 

be stated that the cross-validated AUCs showed no clinical relevant difference. In this 

study population this might partly be explained by the fact that there was an explicit 

subset of mutations strongly associated with virological failure. This was also 
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substantiated by the bootstrap analyses in which four of the six mutations remaining 

in the final genotypic score had been selected in over 95% of the bootstrap samples. 

This clear separation between mutations associated with virological failure from 

those which are not, could have facilitated the detection of a predictive subset using 

the classical strategy to construct a genotypic score. 

One of the reasons to apply PCA and PLS analyses to these kind of data was that 

these approaches do not need a pre-selection of variables (i.e. mutations) as they 

are summarized in predictors. Hence, all mutations can be considered even when 

they are present in a small proportion of patients. Among others, the attempt to study 

these approaches was to study whether considering all mutations has an advantage 

and if mutations known to be associated with virologic failure are given higher 

weights. However, the slightly better performance of the alternative approaches may 

be simply linked with the use of a larger amount of information. This was the 

minimum expected gain of these approaches compared to the usual one. 

Therefore, it would be very helpful to study the performance of PCA and PLS in 

other, potentially bigger, trials considering other antiretroviral regimen/patients. 

 

Conclusion 

PCA and PLS regression were helpful in describing the association between 

mutations and to detect mutation clusters. PCA and PLS showed a good 

performance but their predictive ability was not clinically superior to that of the 

genotypic score.  
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Appendix 

Aquitaine Cohort composition 

Scientific Committee: J. Beylot, M. Dupon, M. Longy-Boursier, J.L. Pellegrin, J.M. Ragnaud 

and R. Salamon (Chair).  

Scientific Coordination: M. Bruyand, G. Chêne, F. Dabis (Coordinator), S. Lawson-Ayayi, 

C. Lewden, R. Thiébaut.  

Medical Coordination: N. Bernard, M. Dupon, D. Lacoste, D. Malvy JF. Moreau, P. Mercié, 

P. Morlat, D. Neau, JL. Pellegrin, and JM. Ragnaud.  

Data Management and Statistical Analysis: E. Balestre, L. Dequae-Merchadou, V. 

Lavignolle-Aurillac.  

Technical Team: MJ. Blaizeau, M. Decoin, S. Delveaux, D. Dutoit, C. Hanappier, L. 

Houinou, S. Labarrère, G. Palmer, D. Touchard, and B. Uwamaliya.  

Participating Hospital Departments (participating physicians): Bordeaux University 

Hospitals: J. Beylot (N. Bernard, M. Bonarek, F. Bonnet, D. Lacoste, P. Morlat, and R. 

Vatan), P. Couzigou, H. Fleury (ME. Lafon, B. Masquelier, and I. Pellegrin), M. Dupon (H. 

Dutronc, F. Bocquentin, and S. Lafarie), J. L. Pellegrin (O. Caubet, E. Lazaro C. Nouts, and 

J. F. Viallard), M. Longy-Boursier (D. Malvy, P. Mercié, T. Pistonne and C. Receveur), J. F. 

Moreau (P. Blanco), J. M. Ragnaud (C. Cazorla, D. Chambon, C. De La Taille, D. Neau, and 

A. Ochoa); Dax Hospital: P. Loste (L. Caunègre); Bayonne Hospital: F. Bonnal (S. Farbos, 

and M. C. Gemain); Libourne Hospital: J. Ceccaldi (S. Tchamgoué); Mont-de-Marsan 

Hospital: S. de Witte. 



 - 17 - 

Abbreviations 

ANRS : Agence Nationale de Recherche sur le SIDA,  

AUC: Area under the receiver operating characteristics curve, CI: Confidence 

interval, HAART: Highly active antiretroviral therapy, HIV: Human immunodeficiency 

virus, IAS: International AIDS society, IQR: Interquartiles range, NNRTI: Non-

nucleoside reverse transcriptase inhibitor, NRTI: Nucleoside reverse transcriptase 

inhibitor, OR: Odds ratio, PC: Principal component, PCA: Principal component 

analysis, PLS: Partial least square, PRESS: Predicted residual sum of squares, RT: 

Reverse transcriptase 

 

Competing interests 

The authors declare that they have no competing interests. 

 

Authors' contributions 

LW carried out the statistical analysis and drafted the manuscript. RT and DC 

participated in the statistical analysis and helped to draft the manuscript. IP, DB, DN, 

DL, JLP, GC and FD performed the clinical trial and helped to draft the manuscript. 

All authors read and approved the final manuscript. 

 

Acknowledgments 

We kindly thank Marta Avalos for reading and commenting this paper. 



 - 18 - 

References 

 

1. Gazzard B, Bernard AJ, Boffito M, Churchill D, Edwards S, Fisher N, Geretti AM, 

Johnson M, Leen C, Peters B, et al: British HIV Association (BHIVA) guidelines 

for the treatment of HIV-infected adults with antiretroviral therapy (2006). HIV 

Med 2006, 7:487-503. 

2. Hammer SM, Saag MS, Schechter M, Montaner JS, Schooley RT, Jacobsen DM, 

Thompson MA, Carpenter CC, Fischl MA, Gazzard BG, et al: Treatment for adult 

HIV infection: 2006 recommendations of the International AIDS Society-USA 
panel. Jama 2006, 296:827-843. 

3. Hirsch MS, Brun-Vezinet F, Clotet B, Conway B, Kuritzkes DR, D'Aquila RT, 

Demeter LM, Hammer SM, Johnson VA, Loveday C, et al: Antiretroviral drug 

resistance testing in adults infected with human immunodeficiency virus type 1: 
2003 recommendations of an International AIDS Society-USA Panel. Clin Infect 

Dis 2003, 37:113-128. 

4. Yeni P, (under the direction of): Report 2006: Prise en charge médicale des 

personnes infectées par le VIH, recommandations du groupe d’experts. 
République française, Médecines-Sciences, Flammarion; 2006. 

5. Brun-Vezinet F, Costagliola D, Khaled MA, Calvez V, Clavel F, Clotet B, Haubrich 

R, Kempf D, King M, Kuritzkes D, et al: Clinically validated genotype analysis: 

guiding principles and statistical concerns. Antivir Ther 2004, 9:465-478. 

6. Flandre P, Marcelin AG, Pavie J, Shmidely N, Wirden M, Lada O, Bernard MC, 

Molina JM, Calvez V: Comparison of tests and procedures to build clinically 

relevant genotypic scores: application to the Jaguar study. Antivir Ther 2005, 

10:479-487. 

7. Aguilera A, Escabias M, Valderrama M: Using principal components for estimating 

logistic regression with high-dimensional multicollinear data. Comput Stat Data 

Anal 2006, 50:1905-1924. 

8. Bastien P, Esposito Vinzi V, Tenenhaus M: PLS generalised linear regression. 

Comput Stat Data Anal 2005, 48:17-46. 

9. Massy W: Principal Components Regression in Exploratory Statistical Research. 

Journal of the American Statistical Association 1965, 60:234-256. 

10. Pellegrin I, Breilh D, Coureau G, Boucher S, Neau D, Merel P, Lacoste D, Fleury H, 

Saux MC, Pellegrin JL, et al: Interpretation of genotype and pharmacokinetics for 

resistance to fosamprenavir-ritonavir-based regimens in antiretroviral-
experienced patients. Antimicrob Agents Chemother 2007, 51:1473-1480. 

11. Marcelin A-G, Masquelier B, Descamps D, Izopet J, Charpentier C, Alloui C, 

Bouvier-Alias M, Signori-Schmuck A, Montes B, Chaix M-L, et al: Tipranavir-

Ritonavir Genotypic Resistance Score in Protease Inhibitor-Experienced 
Patients. Antimicrob Agents Chemother 2008, 52:3237-3243. 

12. Tenenhaus M, Esposito Vinzi V: PLS regression, PLS path modeling and 

generalized Procrustean analysis: a combined approach for multiblock analysis. 
Journal of Chemometrics 2005, 19:145-153. 

13. SAS, Institute, Inc: The PLS Procedure. In SAS Online Doc 913, vol. SAS Online 

Doc. 9.1.3: SAS Institute Inc., Cary, NC, USA; 2002-2007. 

14. Johnson VA, Brun-Vezinet F, Clotet B, Gunthard HF, Kuritzkes DR, Pillay D, 

Schapiro JM, Richman DD: Update of the Drug Resistance Mutations in HIV-1: 

2007. Top HIV Med 2007, 15:119-125. 



 - 19 - 

15. Rhee SY, Liu TF, Holmes SP, Shafer RW: HIV-1 subtype B protease and reverse 

transcriptase amino acid covariation. PLoS Comput Biol 2007, 3:e87. 

16. Rabinowitz M, Myers L, Banjevic M, Chan A, Sweetkind-Singer J, Haberer J, 

McCann K, Wolkowicz R: Accurate prediction of HIV-1 drug response from the 

reverse transcriptase and protease amino acid sequences using sparse models 
created by convex optimization. Bioinformatics 2006, 22:541-549. 

17. Garriga C, Perez-Elias MJ, Delgado R, Ruiz L, Najera R, Pumarola T, Alonso-Socas 

Mdel M, Garcia-Bujalance S, Menendez-Arias L: Mutational patterns and 

correlated amino acid substitutions in the HIV-1 protease after virological failure 
to nelfinavir- and lopinavir/ritonavir-based treatments. J Med Virol 2007, 

79:1617-1628. 

18. Hoffman NG, Schiffer CA, Swanstrom R: Covariation of amino acid positions in 

HIV-1 protease. Virology 2003, 314:536-548. 

19. Wu TD, Schiffer CA, Gonzales MJ, Taylor J, Kantor R, Chou S, Israelski D, Zolopa 

AR, Fessel WJ, Shafer RW: Mutation patterns and structural correlates in human 

immunodeficiency virus type 1 protease following different protease inhibitor 
treatments. J Virol 2003, 77:4836-4847. 

20. Maguire M, Shortino D, Klein A, Harris W, Manohitharajah V, Tisdale M, Elston R, 

Yeo J, Randall S, Xu F, et al: Emergence of resistance to protease inhibitor 

amprenavir in human immunodeficiency virus type 1-infected patients: selection 

of four alternative viral protease genotypes and influence of viral susceptibility to 
coadministered reverse transcriptase nucleoside inhibitors. Antimicrob Agents 

Chemother 2002, 46:731-738. 

21. Kagan RM, Cheung PK, Huard TK, Lewinski MA: Increasing prevalence of HIV-1 

protease inhibitor-associated mutations correlates with long-term non-
suppressive protease inhibitor treatment. Antiviral Res 2006, 71:42-52. 

22. Johnson VA, Brun-Vezinet F, Clotet B, Conway B, D'Aquila RT, Demeter LM, 

Kuritzkes DR, Pillay D, Schapiro JM, Telenti A, Richman DD: Update of the drug 

resistance mutations in HIV-1: 2004. Top HIV Med 2004, 12:119-124. 

 

 
 
 

 

 

 

 

 

 

 



 - 20 - 

Figure legends: 

Figure 1: Mutations on the first and second principal components. All mutations 
having prevalences different from 0 are depicted.  
 
The wild type amino acid is cited before the codon of the mutation. 
Interpretation: The two circles highlight the cluster of mutations 10, 46 and 90 and the highly 
correlated pair of mutations 32 and 47. PC1: First principal component (representing 11% of the 
variability), PC2: Second principal component (representing 6% of the variability). Mutations are 
represented by the component when they are close to the corresponding axis. When two mutations 
are far from the center, then, if they are: i) Close to each other, they are significantly positively 
correlated; ii) If they are in a rectangular position, they are not correlated; iii) If they are on the 
opposite side of the center, then they are negatively correlated.  When the mutations are close to the 
center, it means that some information is carried on other axes.  
 

Figure 2: Relative weights of each mutation to calculate the ‘score’ of the first 
principal component.  
 
Black line: separation of mutations represented in the IAS list [14] and polymorphisms. 
 
 

Figure 3: Relative weights of each mutation to calculate the ‘score’ of the first PLS 
component.  
 
Black line: separation of mutations represented in the IAS list [14] and polymorphisms. 

 

Figure 4: Codons of mutations taken into consideration by the presented methods to 
predict virological (Codons at which polymorphisms occur are not depicted). 
 
The IAS mutation list shows all codons which have been described to be related with resistance to any 
of the protease inhibitors. Black boxes: Codons where major mutations occur.  
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