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Abstract. Diffusion-Weighted MRI (DW-MRI) is subject to random
noise yielding measures that are different from their real values, and
thus biasing the subsequently estimated tensors. The Non-Local Means
(NLMeans) filter has recently been proposed to denoise MRI with high
signal-to-noise ratio (SNR). This filter has been shown to allow the
best restoration of image intensities for the estimation of diffusion ten-
sors (DT) compared to state-of-the-art methods. However, for DW-MR
images with high b-values (and thus low SNR), the noise, which is
strictly Rician-distributed, can no longer be approximated as additive
white Gaussian, as implicitly assumed in the classical formulation of the
NLMeans. High b-values are typically used in high angular resolution dif-
fusion imaging (HARDI) or q-space imaging (QSI), for which an optimal
restoration is critical. In this paper, we propose to adapt the NLMeans
filter to Rician noise corrupted data. Validation is performed on syn-
thetic data and on real data for both conventional MR images and DT
images. Our adaptation outperforms the original NLMeans filter in terms
of peak-signal-to-noise ratio (PSNR) for DW-MRI.

1 Introduction

In MRI the data are acquired as complex values which are corrupted by Johnson
noise. This noise is well modeled by a Gaussian probability density function in
the real and imaginary parts of the complex data. The scanner usually only
provides the magnitude of the complex data. In this magnitude image, the initial
Gaussian noise in complex space is nonlinearly transformed and the resulting
noise is Rician-distributed. This noise induces a bias in the MR intensities, which
on average are overestimated compared to their true, unknown value. However,
when the SNR is high, the Rician distribution can be conveniently approximated
by a Gaussian distribution.

In previous works [1, 2], the non-local means (NLMeans) filter has been ap-
plied to conventional MRI and DW-MRI with high SNR and allows the best
restoration of image intensities for DT images compared to state-of-the-art meth-
ods. The quality of image restoration was compared for three variants of the
NLMeans filter and with the anisotropic diffusion (AD) and total variation (TV)
method.



However, for DW-MR images with high b-values, the signal is very much at-
tenuated, which yields low SNR values. The noise can no longer be approximated
as additive white Gaussian, as implicitly assumed in the classical formulation of
the NLMeans. High b-values are typically used in high angular resolution diffu-
sion imaging (HARDI) or q-space imaging (QSI), for which an optimal restora-
tion is critical.

In this paper, we adapt the NLMeans filter to Rician noise corrupted data and
we show that our new version outperforms the previously proposed NLMeans
filter. In Section 3, we give an overview of the NLMeans filter and the adaptation
to Rician distributed noise, and in Section 4, we describe the experiments for
the validation of the method on synthetic and real data.

2 Related work

Some methods have been proposed to correct the Rician bias, but most often
assume either that 1) the complex data is available (which is not common on
clinical scanners, and most importantly useless in case of DW data, due to the
motion-induced phase shifts) or that 2) several measures of diffusion induced at-
tenuation are performed at each voxel (which is not realistic in clinical settings)
(see Sijbers et al. [3] and references therein). These techniques are thus not ap-
plicable at hand, but two remarks can be made. First, there are usually much
more DW images to be acquired than what is required to estimate a 6-parameter
tensor, or even higher-order representations of diffusion (multiple tensors, spher-
ical harmonics, etc.). Second, most voxels in the image are very likely to exhibit
the same diffusion properties as many others in the image (for instance, but
not exclusively, voxels in a spatial neighbourhood of the voxel under study). In
a word, there is always some (often hidden) redundancy of information in the
DW data that could/should be used to explicitly tackle the Rician noise in both
estimation and regularisation steps.

In fact, little has been proposed to do so. In DTI, most estimation schemes
are based on least squares (LS) regression and variants (linear, non-linear, ro-
bust, etc.) on the intensities (or their logarithm), which implicitly considers the
underlying noise as Gaussian [4, 5]. In parallel, techniques have been developed
to regularize such LS-estimated tensor images [6–11]. It is noteworthy that some
of these methods tried to couple estimation and regularisation, but still with an
implicit Gaussian assumption on the noise [6], until a recent paper showed how
to combine the two tasks with a Rician assumption [11]. Two other attempts
have been made to account for the Rician noise to estimate the DT image [12]
or to regularize the DW data [13]. The last work experimentally found the regu-
larisation to be more efficient on DWI before tensor estimation compared to the
opposite. This is the approach we follow in this paper.

3 Method

3.1 The non-local means filter

The NLMeans filter [1,14] relies on the redundancy of information contained in
the images to remove noise. The filter restores the intensity of the voxel xi by
computing a weighted average of all voxels intensities in the image I.



In the following, we make a few heuristic, intuitive remarks and show how
they underlie the original NLMeans algorithm. Then we show how to adapt the
NLMeans to Rician-corrupted data.

Gaussian NLMeans Let us suppose that we have an MR image corrupted
by i.i.d. Gaussian noise N (0, σ2). If we are given a homogeneous region with n

voxels v1, . . . , vn (or equivalently, n measures of the same voxel value), a proba-
bilistic interpretation is to see the voxel values x1, . . . , xn as the realisations of n

independent random variables Xi following the same Gaussian law N (µ, σ2). A
natural way to restore the value x of voxel v in this region is then to replace it by
the average x̂ =

∑

i
1

n
xi. This estimate is very satisfying as it is the maximum

likelihood (ML) estimate of x. It can then be noted that, given some weights wi,
E(
∑

i wiXi) = µ, even if wi 6= 1

n
, provided

∑

i wi = 1.
In practice, no such homogeneous region is available at hand, and several

measures of the same voxel value are rarely acquired. However, if one has a way
to evaluate the likelihood of each voxel value in the overall image (or in a search
volume V ) to have been drawn from the same distribution as the current voxel
v, and to reflect this likelihood in a weight wi, then the voxel value x can be
restored, using the abovementioned remark, as:

NLMG(x) =
∑

xi∈V

wixi. (1)

The idea of the NLMeans filter is to weigh each voxel value xi in V in the
restoration of x using the similarity (in terms of intensity) between their spatial
neighbourhoods N and Ni of size S as follows:

wi =
1

Z(i)
e−

√
1

S

PS
k=1

‖yk−zk‖2

h (2)

where Z(i) is a normalization constant with Z(i) =
∑

i wi, yk and zk are the
values of the k-th voxels in the neighbourhoods N and Ni, and h acts as a
filtering parameter (for more details see [1] and Fig. 1). The filtering parameter
h is related to the noise variance σ2 [15], and is estimated using the pseudo-
residual technique proposed by Gasser et al. [16].

Fig. 1. NLMeans principle: A two-

dimensional illustration The restored value
of voxel v with value x is a weighted average of
all intensities xi of voxels vi in the search volume
V . The weight wi is based on the similarity of
the intensities in cubic neighbourhoods N and Ni

around v and vi.



Rician NLMeans In case of Rician noise, there is no closed-form for the ML
estimate of the true signal µ given n such measures xi [3]. However, the even
order moments of the Rician law have very simple expressions. In particular,
the second-order moment is: E(X2

i ) = µ2 + 2σ2 where σ2 is the variance of the
Gaussian noise of complex MRI data. The measured value of x2

i (and that of
xi) is thus usually overestimated compared to its true, unknown value, which
is termed the Rician bias in the following. Using the same remark as in the
Gaussian case, that is E(

∑

i wiX
2

i ) = µ2 + 2σ2 it then seems natural to restore

x as
√

∑

i wix
2

i − 2σ2, the weights wi being carefully chosen and summing to 1.
The voxel value x can be restored as:

NLMR(x) =

√

√

√

√

(

∑

xi∈V

wix
2

i

)

− 2σ2, (3)

where σ2 is the noise variance. As noted by others in case of i.i.d. random
variables Xi and with wi = 1

n
, the term under the square root has a non-null

probability to be negative, which decreases when n is large [3]. In such cases the
restored value is set to zero. In practice, on real data, negative values are mainly
found in the background of the images.

Multiple techniques can be used to estimate the variance of the noise. Fil-
lard et al. [11] estimate the variance by the computation of the average of the
squared signal in the background, assuming the true signal to be null in that area
and reusing the second-order moment of the Rician p.d.f. According to Land-
man et al. [12] this approach is not correct due to zero padding in the Fourier
transform performed in the scanner. They propose another method requiring
multiple acquisitions, which is not desired in clinical settings. Thus we simply
estimated the noise variance using the pseudo-residual technique [16]. An on-
line version of both filters (NLMG and NLMR) is available for testing on our
website: http://www.irisa.fr/visages/benchmarks/.

4 Validation and results

In this section, we propose a validation of the NLMR filter in comparison with
the previously proposed NLMeans [1] called NLMG in the following. In a first
part we compare the quality of both filters in terms of PSNR, on synthetic data
corrupted by Rician noise. In a second part, a visual assessment of the filters
applied on real images is performed.

4.1 Generation of Rician noise

Given a noise-free image, we generated Rician-corrupted data as follows. For
each voxel x of the image, we computed s as:

s =

√

(

x√
2

+ nr

)2

+

(

x√
2

+ ni

)2

(4)

where nr and ni ∼ N (0, σ2). The value s is the realisation of a random variable
with a Rician p.d.f. with parameters x and σ.



4.2 Validation on synthetic data

A ground truth image was selected and corrupted with Rician noise of known
variance, and the PSNR between the reference and denoised image was com-
puted. In these experiments the filtering parameter h (Eq. 2) was set to the
noise variance, i.e. h = σ.

Synthetic MRI The comparison was performed on the total head area and
on specific brain tissues for both BrainWeb’s T1w and T2w MR images. Fig-
ure 2 displays the PSNR curves on the BrainWeb T1w (resp. T2w) MRI for the
different tissues classes. The graph on the left displays the PSNR of the com-
plete head and the graph on the right displays the graph of PSNR for the Gray
Matter (GM), White Matter (WM) and Cerebro-Spinal Fluid (CSF) versus the
standard deviation σ of the noise, for both filters.

These graphs clearly indicate that the NLMR filter outperforms the NLMG

filter in terms of PSNR values for both tested MR images. For low noise variance
the performance of the NLMR is very close to that of the NLMG which was
expected because for high SNR the Rician noise is almost Gaussian distributed.

Fig. 2. PSNR of synthetic T1w images at different Rician noise levels. Left: PSNR in
the head. Right: PSNR in WM, GM and CSF.

Fig. 3. PSNR of synthetic T2w images at different Rician noise levels. Left: PSNR in
the head. Right: PSNR in the WM, GM and CSF.

Synthetic Diffusion tensors The application of our filter can remove the need
for averaging in HARDI acquisitions and thus allows faster acquisition which will



make the HARDI acquisition clinically more feasible. A synthetic DT field was
created [6] using anisotropic tensor with different orientations. The DW images

were reconstructed using the Stejskal-Tanner [17] equation: Si = S0e
−bgT

i Dgi .
In order to simulate DW-MRI with low SNR values, Rician noise was added to

the synthetic DWI and a high b-value (3000 s.mm−2) was selected. The gradient
directions gi were taken from a real MR acquisition with 80 directions. In order
to compare the ground truth with the resulting denoised tensor fields at different
SNR, a Log-Euclidean RMS was used [18]. The NLMR is closer to the reference
tensor image than the NLMG for the different noise levels (Figure 4).

Fig. 4. Left: Diffusion tensor RMS comparison of the NLMG and NLMR on synthetic
data. Right: a) Synthetic tensor field, b) noisy tensor field, c) NLMG, d) NLMR.

4.3 Results on real data

In this section, we applied the NLMR filter on real data for both conventional
(T1w and T2w) and DW-MRI data.

T1w and T2w MRI In the experiments with real conventional MRI data,
the behaviour of both filters are quite similar due to the high SNR values of
the images acquired in a clinical context. Figure 5 displays a close-up of an
acquisition, and the NLMG and NLMR filtered version of a T2w MRI. A visual
inspection shows a difference between the original version and the two filtered
versions. However the two filtered images are visually quite similar.

Fig. 5. Close-up of a T2w MR image. Left: Acquired Data, Middle: NLMG, Right:
NLMR



Diffusion-Weighted MRI In this section, we focus on DW-MRI at high b-
value (3000 s.mm2) and with 200 different directions. The experiments on 10
subjects display a higher FA for NLMR in highly anisotropic regions of the
brain compared to the estimation of the tensors on both native data and NLMG

filtered data (Fig. 6).

Fig. 6. Color Map of diffusion tensor main orientation weighted by the fractional
anisotropy. Left: Acquired data, Middle: NLMG, Right: NLMR. The Fractional
anisotropy of the data is higher in the Rician NLMeans version. The orientations seem
in agreement with the known brain anatomy.

5 Discussion and Conclusion

For conventional MRI the Rician NLMeans filter outperforms the previous ver-
sion of the NLMeans filter. A comparison between the two approaches will be
performed in a near future. Previous work showed that this filter is the best
one for denoising MRI when compared with state-of-the-art filters [1, 2]. Both
NLMeans filters preserve the edges and small structures of the brain such as
vessels or multiple sclerosis lesions.Using other arguments, Manjón et al. [19]
have recently derived another formula to denoise Rician-corrupted data while
removing the bias. Essentially, they proposed to remove 2σ2 to the squared re-
stored value (using the Gaussian NLMeans) while we remove it from the restored
squared value (using the Gaussian NLMeans). These results on DW-MRI are
very important as there is increasing research interest for higher b-values since
they have clear advantages compared to lower b-values for angular discrimination
(QBalls, ODF) especially in clinical settings for strokes [20] or Alzheimer’s dis-
ease [21]. These clinical results could be even further improved with the restora-
tion of the data. The impact of the NLMR version for HARDI data is evaluated
in Descoteaux et al. [22].
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