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Appendix 2

Fig. 6A represents the simplified equivalent electrical circuit of the cardiac cell connected
to the voltage source (J;) through electrode resistance K, including the transverse-axial
tubular system (TATS). It is applicable for small (sub-threshold) voltage variations around
resting membrane voltage. C and C; are the capacitance, and Ry, and Ry the resistance, of the
surface and tubular membranes, respectively. Vs and Ve are membrane voltages. Ry stands

for luminal resistance in a single-compartment approximation.
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The circuit is described by a set of two differential equations
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For measurement of membrane capacitance from the current responses to a small voltage step,
membrane voltage J; is constant and solution of equations (1) is expressed as a sum of two

exponential functions and a constant
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The time constants 7; and 7, are obtained from the roots (A1, A2) of characteristic equation
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The constants V' and Vi depend only on the circuit resistances
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Assuming initial conditions Vs = 0, V= 0 and taking into account (2), (4) and (5), the
magnitudes of exponential components can be calculated as
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The solution of equation (1) allows us to express the response of membrane current (/) to an
imposed voltage step from resting voltage (regarded as zero voltage) to the level V.,

considering the relation /I, = (Vo -Vms)/Ral.
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If numeric values of passive electrical parameters adopted for our model cardiac cell are
inserted into (6) and (7), the second exponential terms of Vs, V4, and /,, related to the short
time constant (7 ~ 1 us) become negligible (in contrast to the situation in skeletal muscle
cells). The time constant 7; of the dominant component approaches the value corresponding to
the limit conditions (K¢ — 0, Rps— ©, K¢ — o) under which the cell would respond to small
voltage steps by processes following single exponential course with time constant

7= R (C+Cy).



