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Abstract
Background

Genome-wide screening of patients with mental retardation using Array Comparative Genomic Hybridization (array-CGH) has

identified several novel imbalances. With this genotype-first approach, the 2q22.3q23.3 deletion was recently described as a novel

microdeletion syndrome. We report two unrelated patients with a interstitial deletion mapping in this genomic region andde novo 

presenting similar pseudo-Angelman  phenotypes, including severe psychomotor retardation, speech impairment, epilepsy,“ ”
microcephaly, ataxia and behavioural disabilities.

Methods

The microdeletions were identified by array-CGH using oligonucleotide and BAC-arrays, and further confirmed by Fluorescence In

Hybridization (FISH) and semi-quantitative PCR.Situ 

Results

The boundaries and sizes of the deletions in the two patients were different but an overlapping region of about 250 kb was defined,

which mapped to 2q23.1 and included two genes: and . The gene associated with the Mowat Wilson syndrome wasMBD5 EPC2 SIP1 

not included in the deleted genomic region.

Discussion

Haploinsufficiency of one of the deleted genes ( or ) could be responsible for the common clinical features observed in theMBD5 EPC2 

2q23.1 microdeletion syndrome and this hypothesis needs further investigation.

MESH Keywords Abnormalities, Multiple ; genetics ; pathology ; Child ; Chromosome Deletion ; Chromosomes, Human, Pair 2 ; Comparative Genomic Hybridization ; 

DNA ; chemistry ; genetics ; Humans ; In Situ Hybridization, Fluorescence ; Male ; Phenotype ; Polymerase Chain Reaction

Author Keywords array-CGH ; microdeletion syndrome ; pseudo-Angelman phenotype ; 2q23.1 region ; geneMBD5 

INTRODUCTION

Associations between clinical description and submicroscopic chromosomal imbalances have already been established for

microdeletion syndromes, but phenotypic recognition usually precedes the identification of the recurrent cryptic chromosomal

rearrangement. Inversely, screening methods such as FISH based screening for subtelomeric chromosomal imbalances in patients with

mental retardation have revealed microrearrangements for which phenotypic features were secondarily grouped. Another screening method

is array-CGH which allows high resolution screening of the whole human genome for DNA copy number changes. This genome-wide

approach, applied to cohorts of patients with mental retardation and dysmorphic features, detected microdeletions and microduplications in

10 15  of the patients, most of them scattered across the genome ( ). However, a non-random involvement of several chromosomal– % 1 

regions has been observed ( ) and some recurrent rearrangements were recently described, concerning 1q41q42 ( ), 2p15p16.1 ( ),2 3 4 
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9q22.3 ( ), 16p11.2p12.2 ( ) and 17q21.31 ( ) regions. For some of these regions, both deletions and duplications were found and5 6 7 –9 

their occurrence is probably caused by the Non Allelic Homologous Recombination (NAHR) mechanism due to flanking Low Copy

Repeats (LCRs). Novel syndromes can then be described based on the clinical description of patients bearing the same subtle

rearrangement.

We report here clinical and molecular cytogenetic findings, observed in two unrelated patients presenting similar pseudo-Angelman“ ”
phenotypes and microdeletion at 2q22.3q23.1. This submicroscopic deletion should enable the description of such a novelde novo 

microdeletion syndrome and by comparing the probands with previous patients showing overlapping microdeletions, we expect to

establish a clinical characterisation of this syndrome, based on phenotypic similarities. Our aim is to improve identification of new patients

carrying this cryptic chromosomal rearrangement for more accurate genetic counselling and for improved medical care. Another important

point is the delineation of the critical region containing dosage-sensitive genes, presumably involved in the aetiology of the matched

phenotypic features, including mental retardation.

MATERIALS AND METHODS
Patients

Informed consent for genetic investigations on mental retardation was obtained from participating families. Detailed clinical history

was obtained and physical examination was carried out for the two patients reported.

Subjects 1 and 2 were selected by clinical geneticists according to criteria derived from the checklist of De Vries . ( ), which iset al 10 

linked with a higher likelihood of manifesting submicroscopic copy number changes, namely an intelligence quotient (IQ) less than 50

with at least one associated criterion (familial history of mental retardation, growth abnormalities, facial dysmorphic features, congenital

malformations, seizures and behavorial or sleeping disabilities). Subject 1 belonged to a cohort of 64 patients presenting with mild to

severe mental retardation and tested by oligonucleotide based array-CGH to identify novel microdeleted and microduplicated regions that

could include a gene involved in mental retardation. The 64 patients were recruited at genetics clinical centres in the West of France

(HUGO, H pitaux Universitaires du Grand Ouest) and subject 1 came from the clinical genetic department of Rennes University Hospital.ô
Subject 2 was recruited at the clinical genetic department of Robert Debr  University Hospital, Paris.é

Array-CGH

For subject 1, oligonucleotide array-CGH was performed using the Agilent Human Genome CGH microarray 4 44K (Agilent×
Technologies, Santa Clara, CA, USA). The experiments were performed according to version 4.0 (June 2006) of the protocol provided by

Agilent (Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis). For subject 2, BAC array was performed using the

IntegraChips BAC microarray (IntegraGen SA, Evry, France).

DNA extraction and labelling

For subject 1, 3.5 g of native test and reference sex-matched gDNAs were digested by AluI/RsaI (Promega Corporation, Madison,μ
WI, USA). Reference gDNA was from unique male or female individuals. Samples were labelled by random priming using the Agilent

Genomic DNA Labeling Kit PLUS to differentially label test and reference gDNAs with Cy5 -dUTP and Cy3 -dUTP respectively. A ™  ™

dye swap experiment was performed to minimise dye-related artifacts.

For subject 2, 500 ng of patient gDNA and reference gDNA (male DNA from Promega) were labelled with Cy3 -dUTP and Cy5 ™  ™

-dUTP respectively using a random primed labelling kit (Invitrogen , Carlsbad, CA, USA). ™

For both patients, test and reference samples were combined in an equimolar way based on DNA concentration measured with a

Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA).

Array hybridization

For subject 1, pooled gDNAs were mixed with Human Cot-1 DNA (Invitrogen , Carlsbad, CA, USA), Blocking Agent (Agilent ™

Technologies) and Hybridization Buffer (Agilent Technologies). After denaturation and pre-annealing at 37 C for 30 minutes, the°
hybridization mixture was deposited on the microarray slide and hybridized in a hybridization chamber for 24 hours in a 65 C rotating°
oven. Then washing steps and acetonitrile rinsing were performed. For subject 2, test and reference gDNAs were hybridized to the

IntegraChips BAC microarray (3172 clones spotted in quadruplicate with positions validated by end-sequencing) to enable a ratiometric ™

analysis. Arrays were blocked by incubation in a solution containing Bovine Serum Albumin and SDS at 37 C. The slide was°
pre-hybridized with formamide-based array hybridization buffer containing salmon sperm DNA at room temperature for 30 min.

Hybridization mix was deposited on the array, covered with a Hybrislip (Grace Biolabs, Bend, OR, USA) and the array was placed in a

Corning hybridization chamber in a water bath at 42 C for 3 days. Then the coverslip was removed and washing steps were performed. ® °
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Image and microarray data analysis

Microarrays were scanned using the Agilent scanner G2565BA.

For subject 1, images were analysed using Agilent Feature Extraction Software version 9.1 (CGH-v4_91 protocol) and data were

imported into Agilent CGH analytics software version 3.4.27 for a graphical overview obtention and analysis. Identification of probes with

a significant gain or loss was based on the log ratio plot deviation from 0 with cut-off values of 0.5 to 1 and 0.5 to 1 respectively.2 − −

For subject 2, fluorescent intensities were extracted by GenePix  Pro 6. The resulting files were analyzed with the program®
GenoCensus  (IntegraGen SA, Evry, France). Spots with fluorescent signals indicating partial saturation (>50,000) or signals less than 2™
times the mean of the local background were excluded. Cy5/Cy3 ratios of background corrected intensities were normalized by a block–
Loess procedure and median ratios were obtained from the spot replicates of each clone. Clones with less than three morphologically

acceptable replicates or with a coefficient of variation of the mean of the replicates that exceeded 0.2 were removed from the analysis.

Multiplex PCR/Liquid Chromatography (MP-LC)

Multiplex PCR/Liquid chromatography was performed for subject 1 to confirm array-CGH data and to test the parents for the

microdeletion identified. We designed a duplex PCR using primers for an endogenous control gene, , and for the gene exonHMBS EPC2 

7, showing a loss in patient 1. Primers were designed using Primer Premier software (Premier Biosoft International, Palo Alto, CA, USA)

with exon 7 forward primer: 5 -GGGAGCGAAACAGGTGGA-3 ; exon 7 reverse primer: 5EPC2 ′ ′ EPC2 ′
-CCAGGCAGAAATGGCAGTGTA-3 . Duplex PCR was performed in a 25 l reaction mixture, containing 10  DMSO, 0.2 mM each′ μ %
dNTP, 2 mM MgCl , 1.5 U DNA polymerase, 5 10 pmol of each primer and 100 ng genomic DNA, in a Master Cycler PCR System2 –

(Eppendorf, Hamburg, Germany). PCR cycling conditions were an initial step of denaturation at 94 C for 5 min, followed by 24 cycles of°
denaturation at 94 C for 10 sec, annealing at 50 C for 15 sec and extension at 72 C for 20 sec, and a final step of extension at 72 C for 5° ° ° °
min ( ). The same duplex PCR mix was applied to normal controls, patient and parental gDNAs. PCR products were then separated by11 

ion-pair reversed-phase high-performance liquid chromatography on a semi-automated 3500 Wave HS System (Transgenomic, Omaha,

NE, USA) and quantified by fluorescent detection using a post-column intercalation dye, as described by Dehainault . ( ).et al 12 

FISH

FISH was performed to confirm copy number changes identified by microarray analyses. Metaphase spreads were obtained from

phytohaemaglutinin-stimulated peripheral blood lymphocyte cultures.

Clones mapping to the unbalanced chromosome 2q were obtained for subject 1 from BACPAC Resource Center (Children s Hospital’
Oakland Research Institute, Oakland, CA, USA) ( ) (RP11-659J19) and for subject 2 from the RP11 libraryhttp://bacpac.chori.org 

(Ensembl Genome Browser) (RP11-95O9, RP11-107E5, RP11-548K13, RP11-515K12, RP11-341F20, RP11-72H23). Bacterial culture

was performed in LB medium supplemented with chloramphenicol (12.5 g/mL) and DNA from the clone was isolated using aμ

Nucleobond PC 20 kit (Macherey Nagel, D ren, Germany). DNA was labelled with SpectrumGreen -dUTP or SpectrumRed -dUTP ® ü  ™  ™

Vysis (Abbott Molecular Inc., Downers Grove, IL, USA) by random priming using the Bioprime Array CGH Genomic Labeling ®  ®

System (Invitrogen , Carlsbad, CA, USA) or by nick translation using the Nick Translation Kit Vysis (Abbott Molecular Inc., Downers ™  ®

Grove, IL, USA). Probes were hybridized to metaphase slides prepared from patients or parents lymphocytes. Slides were analysed with an

epifluorescent microscope Olympus BX61 and images were captured using Isis software (MetaSystems, Altlussheim, Germany). FISH ®

signals were examined both on metaphase chromosomes and interphase nuclei.

RESULTS
Characterisation of the 2q23.1 deletion

Subject 1

Array-CGH experiments were performed using an oligonucleotide array with an average spatial resolution of approximately 35 75 kb.–
The analysis identified a chromosome 2 interstitial deletion of ~250 kb ( ) at 2q23.1, confirmed by dye-swap. The proximalFig. 1A and 1B 

breakpoint mapped within the chromosome interval 148.836 Mb (last non-deleted probe) and 149.062 Mb (deletion start) from 2p

telomere and the distal one within the chromosome interval 149.319 Mb (deletion end) and 149.362 Mb (first non-deleted probe) from 2p

telomere. To confirm array data, multiplex PCR/Liquid Chromatography experiments were performed for the proband and the parents. The

result was also further confirmed by FISH analyses using a clone mapping to the 2q23.1 region (RP11-659J19), hybridized on metaphase

slides from the patient and the parents. For both validation experiments, the deletion was confirmed in the patient, while parents showed a

normal result ( and ) proving the occurrence of the deletion.Fig. 2 3 de novo 

Subject 2
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Array-CGH analysis was performed using BAC array 3172 clones, with an average resolution of 1 Mb. An interstitial deletion at

2q22.3-2q23.1 was revealed by decreased test/reference ratios for two adjacent clones: FE0BPADA13ZE01, FE0BPADA9ZH01

(RP11-72H23), indicating a deletion ranging from 2.4 to 5.4 Mb ( ). The deletion was confirmed by FISH analyses using clonesFig. 4 

mapping to the 2q22.3-2q23.1 region (RP11-548K13, RP11-515K12, RP11-341F20, RP11-72H23, RP11-659J19) hybridized on

metaphase slides from the patient ( ). The proximal breakpoint resided between clones RP11-379G6 (non-deleted) and RP11-548K13Fig. 5 

(deleted), and the distal breakpoint mapped between RP11-659J19 (deleted) and RP11-62P16 (non-deleted). The deletion was not present

in parental gDNA samples, and is thus a chromosomal aberration in the patients. Hybridizations with clones overlapping the de novo SIP1 

gene (RP11-107E5, RP11-95O9) were normal in subject 2.

Clinical features of the patients with the 2q23.1 deletion

is a 10-year-old boy, third child of young non-consanguineous French parents ( ). He was referred to the genetics clinicSubject 1 Fig. 6 

for epilepsy, psychomotor retardation, gradual microcephaly and ataxia. Pregnancy and birth at 40 weeks were uneventful and birth

parameters were normal: weight 3 815 g (50 percentile), height 50 cm (50 percentile), and head circumference 34 cm (50 percentile). Ath th th 

hip dysplasia was detected in neonatal period. Epileptic seizures were noted between the age of 3 and 9 months. Psychomotor retardation

became severe: the child could not stay seated before the age of two, he could walk with ataxia at the age of four and he remained unable

to speak. The secondary microcephaly became gradually more pronounced ( 3 SD at the age of one year and half). At age 10 when last−
examined, the child could communicate via pictures, but not via language and he could understand some sentences. Behavioral problems

included reduced capacity for attention and episodes of inappropriate laughter. Ataxia was still obvious but there were no longer any

epileptic seizures. A moderate dysmorphia was noted (hypertelorism, flat nose, long lashes, large mouth). Other features included

hypermetropia and astigmatism, scoliosis with hemivertebra of the eighth thoracic vertebra, valgus feet, severe constipation with occlusive

episodes and episodes of fecal incontinence, micropenis and recurrent ear infections. At this time, the height of the child was  2 SD, his−
weight 1.5 SD and his head circumference  3 SD.− −

EEG was non-specific and with no Angelman syndrome pattern. Brain MRI revealed a small cerebellar vermis, with a large posterior

fossa. Auditory Evoked Potentials (AEP) were normal. Standard and high resolution karyotyping, fragile X testing and analysis of ATRX,

genes were normal. A subtelomeric rearrangement was excluded by MLPA and FISH. Angelman syndrome (studyMECP2, STK9/CDK5 

of the 15q11q12 chromosomal locus by FISH and study of the methylation pattern, complete sequencing of ) and CDG syndromeUBE3A 

were ruled out. The search for a skew of X inactivation in the mother was negative.

is a 10 year-old boy, the only child of young non-consanguineous parents of French origin ( ). He was referred to theSubject 2 Fig. 7 

genetics clinic for mental retardation, autistic behaviour, ataxia and epilepsy. Pregnancy and birth at 39 weeks were unremarkable.

Neonatal measurements were macrosomic, with a weight at 4 300g (>97 percentile), height at 52.5 cm (95 percentile) and headth th 

circumference at 36 cm (90 percentile). The neonatal period was marked by feeding difficulties, with swallowing troubles andth 

gastro-esophageal reflux, and a baby being too calm, and who did not cry. Psychomotor retardation was progressively discovered,

including retarded sitting position, unaided walking at 34 months with ataxia and severe language impairment. Epilepsy began at 3 years

and was treated by valproate. Sleep patterns were perturbed, with multiple awakenings in the night. When last examined at the age of 10

years, he emitted some dissyllabic sounds but did not express any significant words. There were frequent smiles, unmotivated bursts of

laughter and autistic behaviour including eye avoidance, hand flapping, bruxism and elevated anxiety in new surroundings. A tendency of

stereotypies on the median line was present, amplified with stress. Auto and hetero-aggressivity were noted, with self-biting of hands and

forearms. Pain sensitivity seemed decreased, with no reaction to bites and injuries. He had poor balance and ataxia, and reflexes were

brisk. Facial dysmorphism included brachycephaly, low implantation of the hair on the neck, pronounced midface hypoplasia, short

columella, large mouth, prognathism, macroglossia and small spaced teeth. Other features included frequent dribbling, secondarily

hypodeveloped genitalia, short hands with thick striated skin and bilateral clinodactyly of the fifth, large and short thorax with

pseudarthosis of the clavicle, constipation. His height was at the median (M), his weight at 1 SD and his head circumference at the−
median (M).

EEG was normal, without a classical Angelman syndrome pattern. Brain MRI showed large pericerebral spaces, and a relative

microcephaly with hypoplasia of frontal lobes. Visual Evoked Potentials (VEP), AEP and electroretinogram were normal. Hypoconduction

was noted in the Sensitive Evoked Potential in the median, and normal on cubital and sural, performed in the wrists because of suspected

hyposensitivity to pain. X-rays showed a poorly mineralized skeleton and brachymesophalangy. Standard and high resolution karyotyping,

fragile X testing and gene mutations screening were normal. The presence of subtelomeric rearrangements was excluded by MLPA.ARX 

Angelman syndrome (study of the 15q11q12 chromosomal locus by FISH and study of the methylation pattern, complete sequencing of 

), CDG syndrome and Smith-Magenis syndrome were ruled out. The maternal X-methylation pattern was normal.UBE3A 

DISCUSSION
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We report here two unrelated patients sharing a strikingly similar association of clinical features (mental retardation, absent speech,

stereotypies, happy disposition, ataxia, microcephaly, seizures) first strongly suggesting Angelman syndrome, and with a de novo 

interstitial deletion including 2q23.1 identified by array-CGH ( ). This 2q23.1 deletion is encompassed by three microdeletionsFig. 8 

previously reported in this chromosomal region: a 2-Mb genomic interval on 2q22.3q23.3 ( , ), a 920-kb interval on 2q23.1q23.2 (13 14 15 

) and a 1.1-Mb interval on 2q22.3q23.1, corresponding to a reciprocal translocation breakpoint ( ). Array-CGH also underscored at least16 

three larger deletions (> 7-Mb) in 2q22.3q24.1, and so including the 2q23.1 region (17, patient DECIPHER 1079, patient DECIPHER

1818). These deletions never include the gene, associated with Mowat-Wilson syndrome. Despite the heterogeneity in the size of theSIP1 

imbalances, common clinical findings seem to emerge including severe mental retardation, behavioural disabilities, post natal growth

retardation, microcephaly and epilepsy ( ). The latter is present in nearly 100  of the reported cases. The overlap in clinicalTable 1 %
features between the five microdeleted patients may point to a novel microdeletion syndrome with a pseudo-Angelman  phenotype as“ ”
there are clinical features shared with Angelman syndrome, associated with frank dysmorphic features, unusual in Angelman syndrome,

mainly midface hypoplasia, short upturned philtrum, and carp-shaped mouth. Neurological features seem quite consistent although non

specific: severe mental retardation, delayed motor milestones, microcephaly (absolute or relative), speech impairment, behavioural

disorders (happy demeanour, oral-motor behaviours) and seizures. Moreover, it is important to emphasize that EEGs did not show classical

Angelman syndrome patterns. The 2q23.1 microdeletion can then be considered as a differential diagnosis of Angelman syndrome, with

epilepsy as the most common finding, associated with marked dysmorphic features, unusual in Angelman syndrome. Cytogenetically

visible deletions involving the 2q22q24 region have already been reported in patients sharing some of these clinical findings ( ).18 

Seizures are frequent but inconsistent in those circumstances, as opposed to seizures which are a characteristic finding in the

submicroscopic cases. The pattern of clinical features has sometimes been described quite close to our pseudo-Angelman  patients ( )“ ” 19 

but a more malformative VATER like phenotype has also been reported in a girl with a 2q22q24.2 deletion ( ). However, the boundaries20 

of the previously described 2q22q24 deletions were determined only by banding techniques and it is difficult to conclude if these deletions

correspond to the highly resolved boundaries determined by array-CGH. Our assumption that deletions in the 2q23.1 region are involved

in the onset of the clinical pattern described above is not supported by the existence of a copy number variant (CNV), overlapping the

2q23.1q23.2 region, reported in the Database of Genomic Variants ( ). This CNV consisted of copy numberhttp://projects.tcag.ca/variation/ 

gain and was reported once in a study of 506 healthy individuals from Northern Germany and 270 HapMap individuals. However, data

from this study have not been validated ( ). In addition, CNVs reported only in a single individual may correspond to a rare variant or to21 

a false positive ( ). In the course of array-CGH studies of patients with mental retardation, some chromosomal regions appeared22 

recurrently involved, including the 2q22.3q24.2 region ( , , , ) and a common deletion/duplication mechanism has been2 13 15 17 

suggested for the 2q22.3q23.2 region by Koolen . ( ). Analysis of this chromosomal region using the University of California Santaet al 14 

Cruz (UCSC) genome browser ( ) and the Human Genome Segmental Duplication Database (http://genome.ucsc.edu 

) identified no segmental duplications. As the microdeletions reported in 2q22.3q23.2 do not sharehttp://projects.tcag.ca/humandup/ 

common breakpoints ( ) and as segmental duplications are not present in the proximal and distal breakpoint intervals, we postulateTable 2 

that NAHR is not likely to be the responsible mechanism, as recurrent rearrangements are typically mediated by highly homologous

low-copy repeats (LCRs) flanking a chromosomal region, leading to deletion, duplication or inversion of the intervening sequence ( ).23 

The deletion may create haploinsufficiency of genes within the overlapping deletion region. Grosso . ( ) show a strongde novo et al 24 

association between chromosome 2 long arm aberrations and epilepsy, suggesting that many genes which are present in the 2q22.3-2q37

region have significant roles in epileptogenesis. The smallest region of overlap for the microdeletions in 2q22.3q23.3 is about 250 kb. It

includes two genes, and but does not involve two other genes, and , that were candidates in the firstMBD5 EPC2, KIF5C AVCR2A 

description of the microdeletion by Koolen . ( ). The gene encodes a neuronal kinesin; this protein is a member of theet al 14 KIF5C 

kinesin superfamily and is enriched in neurons, with a pan-neuronal distribution in mice. Disruption of in mouse leads to smallerKIF5C 

brain size and loss of peripheral neurons ( ). is expressed in human trophoblast cells, ovary and brain. Knockout mice develop25 ACVR2A 

skeletal and facial abnormalities, suppression of the follicle stimulating hormone and reproductive failure ( , ). Even if some clinical26 27 

features could have been explained by these candidates, our study limits the focus to and . EPC2 (Enhancer of PolycombEPC2 MBD5 

C-terminus homolog 2) is a member of the polycomb protein family, involved in heterochromatin formation ( ). These proteins were28 

reported to belong to an acetyltransferase complex and to have both transcription activating and repressing functions ( ). is28 MBD5 

particularly interesting as it is a member of the methyl CpG-binding-domain protein family (MBD), important in regulation of gene

expression and is expressed in the brain and also in many other adult tissues ( , ). The protein MBD5 was first identified because of29 30 

its MBD sequence, shared notably by MECP2, implicated in Rett syndrome and it also harbors a PWWP motif, involved in chromatin

modification. Recently, a 200 kb deletion affecting the first 7 10 exons of the gene was described in a patient with severe mental– MBD5 

retardation, slight retarded motor development, seizures and sandal gap, thus supporting the hypothesis that is a strong candidateMBD5 

gene involved in the phenotype associated with the 2q23.1 microdeletion. However, for the moment, sequence analysis of in 415MBD5 

children with mental retardation did not reveal neither deletions nor nonsense mutations ( ).31 

The next step to support the hypothesis that haploinsufficiency of the gene should be a novel cause of mental retardation willMBD5 

be a large-scale screening of individuals with mental retardation and a pseudo-Angelman  phenotype, to identify similar microdeletions“ ”
and point mutations. Identification of additional cases of microdeletion in the 2q23.1 region will allow more accurate genotype-phenotype
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correlations. Nevertheless, the non-specificity of the Angelman-like phenotype may involve abnormalities in other chromosomal regions

that should be tested by a targeted method like Multiplex Ligation-Dependant Probe Amplification ( ), orhttp://www.mrc-holland.com 

other genes like the recently described gene ( ).SLC9A6 32 
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Figure 1A-1B
Array-CGH data of patient 1

Genomic profile of chromosome 2. On the left, the chromosome 2 ideogram. On the right, the log ratio of chromosome 2 probes. Each(1A) 2 

dot represents a single probe spotted on the array. Dots with a value of zero represent equal fluorescence intensity ratio between sample and

reference gDNAs. Copy number losses shift the ratio to the left or to the right according to the fluorescent labelling. Dye reversal(1B) 

hybridization experiment shows a mirror image
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Figure 2
FISH analysis of patient 1
Fluorescent hybridisation with BAC clone RP11-659J19 (green) and N-Myc specific probe as a control (red) shows absence of green signal

on the derivative chromosome 2 in subject 1, indicated with an arrow (20 metaphases and 25 interphase nuclei examinated).

Figure 3
Multiplex PCR/Liquid chromatography validation experiment, patient 1
The electrophoregrams of the patient (in red) and of the parents (mother in green, father in blue) were superimposed to those of controls (in

black) and normalized on internal control peak (148 bp) intensity. The presence of a deletion was indicated by a twofold reduction inHMBS2 

the height of the exon 7 amplicon peak (112 bp).EPC2 
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Figure 4
Array-CGH data of patient 2
Genomic profile of chromosome 2 from 2q14.2 to 2q31.1. On the left, the chromosome 2 ideogram. On the right, the log ratio of2 

chromosome 2 clones, with the thresholds for copy-number gain on the right and for copy-number loss on the left, showing deletion for 2

adjacent clones in 2q22.3q23.1.

Figure 5
FISH analysis of patient 2

) Fluorescent hybridisation with BAC clones RP11-341F20 (green) and RP11-548K13 (red) associated to a 2qter specific probe as a(5A 

control (red) shows absence of signal on the derivative chromosome 2 in subject 2, indicated with an arrow (10 metaphases and 25 interphase

nuclei examinated). Fluorescent hybridisation with BAC clone RP11-659J19 (green) and 2qter specific probe as a control (red) shows(5B) 

absence of green signal on the derivative chromosome 2 in subject 2, indicated with an arrow (10 metaphases and 25 interphase nuclei

examinated).
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Figure 6
Dysmorphic features of the subject 1 (age 10)
Hypertelorism, flat nose, long lashes, large mouth.

Figure 7
Dysmorphic features of subject 2 (age 10)
Midface hypoplasia, large mouth, prognathism, small spaced teeth, everted lower lip and spontaneous attitude with midline stereotypias.

Figure 8
Map of 2q22.3-2q23.1 region
(Genome assembly, May 2004) indicating Megabase position (Mb) on chromosome 2q22.3q23.3 region, genes of interest, deleted region in

subject 1 (above) and in subject 2 (under) and location of used clones for validation experiments. The dotted line represent breakpoints

interval for subject 2. The deleted clones for subject 1 and/or 2 are shown in bold. CEN  centromere, TEL  telomere.= =
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Table 1
Clinical features of patients with microdeletion encompassing the 2q23.1 region

Reference Classical Angelman
Syndrome

Patient 1
This study

Patient 2
This study

Patient 3
Vissers , 2003et al. 

Koolen , 2004et al. 

Patient 4
De Vries , 2005et al. 

Patient 5
De Gregori et al 

., 2007

Sex M M F F M

Psychomotor
retardation

Severe Severe Severe Severe Severe +

L a n g u a g e
impairment

Less than 6 words Severe Severe Moderate NR +

Behavorial
disabilities

Inappropriate laughter, happy
disposition

Inappropriate
laughter

Inappropriate laughter, agressivity,
autistic comportment

NR Picking of the eyes, hyperpnea, putting of full
hands into the mouth

Bruxism

Sleeping difficulties + − + NR NR NR

Post natal growth
retardation

+ + + (weight) + (height) + NR

Microcephaly + + + (relative) + + NR

Seizures + + + + + +

Ataxia + + + NR NR NR

Feeding difficulties + − + + NR NR

Hypotonia + − − + NR NR

Facial dysmorphy Mild Coarse facies Mild
 ▪ Brachycephaly + − + − −
 ▪ Large mouth + + + − +
 ▪ Broad chin + − − + +
 ▪ Prognathism + − + − −
 ▪ Teeth anomalies + − + + −
 ▪ Macroglossia + − + − −
 ▪  Midface
hypoplasia

+ − + − −

 ▪ Other Hypertelorism Low implantation of the hair on the neck High forehead
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Flat nose
Long lashes

Short columella Up-slanting palpebral fissures,
hypotelorism

Small upturned nose
Malformed ears

Small-carp shaped mouth
Narrow flat palate

Full round face
Light blue irises

Small ears, large lobules
Short philtrum

Full lips

Hand/ foot
abnormalities

− + + + + NR

 ▪ Clinodactyly
fifth finger

− + + +

 ▪ Syndactyly
II-III

− − + −

 ▪ Sandal gap − − + −
 ▪ Valgus feet + − − −

Other congenital
features

Micropenis
Constipation

Scoliosis,
hemivertebra

Hypermetropia
Astigmatism

Hypogenitalism Constipation
Pseudoarthrosis of the clavicle

Hirsutism (lower extremities) NR

 + presence, : absence, NR: Not Reported−
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Table 2
Molecular features of patients with microdeletion encompassing the 2q23.1 region
Map positions refer to the Genome Assembly May 2004. Proximal breakpoints are localised in the region between the end of the last non-deleted BAC or probe before the deletion and the start of the

first deleted BAC (start clone) or probe. Distal breakpoints are localised in the region between the end of the last deleted BAC (end clone) or probe and the start of the first non-deleted BAC or probe

after the deletion. For BAC-arrays, the minimal size of copy number changes is calculated from the start of the first clone to the end of the last clone with decreased ratios.

Patient 1
This study

Patient 2
This study

Patient 3
Vissers , 2003et al. 

Koolen , 2004et al. 

Patient 4
De Vries , 2005et al. 

Patient 5
De Gregori ., 2007et al 

Deleted region 2q23.1 2q22.3-q23.1 2q22.3-q23.2 2q23.1-q23.2 2q22.3-q23.1

Array method Oligo-array, Agilent 4 44K× BAC-array, 3172 clones BAC array, 3569 clones BAC-array, 32 447 clones Oligo-array, Agilent 244 K

Breakpoints of imbalance
-region of proximal breakpoint RP11-379G6/RP11-548K13 RP11-67J2/RP11-89L3

148.836 149.062– 145.268 146.891– 145.410 146.734– (start clone)149.17 148.14 148.18–
-region of distal breakpoint RP11-659J19/RP11-62P16 RP11-72H23/RP11-79A11

149.319 149.362– 149.268 150.720– 148.694 151.147– (end clone)150.09 149.32 149.33–

Deletion minimal size (kb) ~250 ~2 400 ~2 000 ~920 ~1 100

Candidate genes ACVR2A ACVR2A ACVR2A
ORC4L ORC4L ORC4L

MBD5 MBD5 MBD5 MBD5 MBD5
EPC2 EPC2 EPC2 EPC2 EPC2

KIF5C KIF5C


