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Abstract 

Conventional approaches to modeling classification image data can be described in 

terms of a standard linear model (LM). We show how the problem can be characterized as a 

Generalized Linear Model (GLM) with a Bernoulli distribution. We demonstrate via simulation 

that this approach is more accurate in estimating the underlying template in the absence of 

internal noise. With increasing internal noise, however, the advantage of the GLM over the LM 

decreases and GLM is no more accurate than LM. We then introduce the Generalized Additive 

Model (GAM), an extension of GLM that can be used to estimate smooth classification images 

adaptively. We show that this approach is more robust to the presence of internal noise and, 

finally, we demonstrate that GAM is readily adapted to estimation of higher-order (nonlinear) 

classification images and to testing their significance. 

 

 

Keywords: classification images, signal detection theory, generalized linear models, GLM, 

generalized additive models, GAM 
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1 Introduction 

 Since its introduction to the vision community (Ahumada,1996), the classification image 

paradigm has proven useful in investigating sensory encoding and perceptual strategies in a 

wide range of visual problems (Abbey & Eckstein, 2002; Ahumada, 2002; Bouet & Knoblauch, 

2004; Neri et al, 1999; Neri & Heeger, 2002; Gold, Murray, Bennett & Sekuler, 2000; Hansen & 

Gegenfurtner, 2005; Kontsevich & Tyler, 2004; Levi & Klein, 2002; Mangini & Biederman, 2004; 

Thomas & Knoblauch, 2005). Among the reasons for its rapid adoption are its simplicity in 

execution and analysis and the ready interpretability of results. 

In a typical experiment, observers classify signals presented against a background of 

added noise. Over a large number of trials, the observer will make some erroneous 

classifications, and the noise present in trials that were classified correctly or incorrectly is 

analyzed to reveal the features of the stimulus on which the observer's perceptual decisions 

were based. The technique has been formally characterized in terms of reverse correlation 

(Ahumada, 2002). 

The model on which the paradigm is based is as follows. Let ( )s x  denote a signal 

along a physical continuum x . The physical continuum can be unidimensional (e.g. time) or 

multidimensional (e. g., locations in an image) and we sample the signal at locations 

, 1, ,jx j p= . The resulting samples ( ), 1, ,js x j p=  form a vector of length p  that we 

denote ( ), 1, ,j j p=s  for convenience.  

The stimulus presented to the observer is composed of the signal with added noise,  

 = +S s ε , (1) 

where ε  is a p -dimensional vector of identically-distributed random variables drawn from a 

distribution with mean 0 and a p p×  covariance matrix C . The noise values ε  are typically 
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drawn from a Gaussian or uniform distribution and are typically independent so that the 

covariance matrix 2σ=C I  is diagonal with diagonal entries equal to the variance 2σ  of the 

noise. 

We assume that detection is mediated through a linear mechanism with a weighting 

function (or template1) ( )xT  defined on the physical continuum x . The sampled values of the 

template ( ), 1, ,jx j p=T  form a vector denoted ( ), 1, ,j j p=T .The output, D , of the 

linear mechanism is determined by the inner product between the template vector and the 

stimulus vector, 

 =D T • S  (2) 

The observer bases his response on the value of the random variable D , the decision variable. 

In the simple case in which there are only two possible signals, a  and b , the observer's 

decision rule on a given trial might be to choose a  if  

 >D c  (3) 

for some fixed criterion c , and otherwise choose b . In effect, the inner product of the template 

with the stimulus reduces the decision problem to one dimension. If the noise is independent, 

identically-distributed Gaussian, the decision rule that results in the highest expected proportion 

of correct responses is of the form of Eq. 3 as shown in Duda, Hart & Stork (2000, Chap. 2).  

The possible outcomes in this simple binary case are often described using the 

terminology of Yes/No signal detection experiments. One of the responses "Yes" is put in 

correspondence with the signal a , the response "No", with the signal b  (Green and Swets, 

1966; Macmillan & Creelman, 2005). There are only four possible types of response referred to 

as Hit (H), when the signal is a  and the response is a , False Alarm (FA), when the signal is 

b  and the response is a , Miss (M), when the signal is a  and the response is b  and Correct 

Rejection (CR), when the signal is b  and the response is b . The decision rule in Equation 3 

leads to a method of estimating the classification image by averaging the trial-by-trial noise 
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profiles for each type of response , , ,H M FA CRI I I I  where the p-vector HI  is the average of the 

noise profiles, ε , presented on Hit trials, the p-vector FAI , the average for False Alarm trials, 

etc (Ahumada, 2002). We then combine these mean images to form two classification images 

for stimulus present ˆ H M
p = −I I I and for stimulus absent, ˆ FA CR

a = −I I I and then add these 

two images to get an estimated classification image based on all of the data,  

 ˆ ˆ ˆ
p a= +I I I  (4) 

If the linear model of the classification process presented above is valid then p̂I  and âI  should 

have the same expectation (that is, differences between them are due only to random variation). 

However, as we shall see below, it is useful to analyze the images ˆ ˆ,p aI I  separately before 

combining them (Ahumada, 2002; Solomon, 2002a, 2002b; Thomas & Knoblauch, 2005). 

The estimated classification image Î  is often smoothed to emphasize low frequency 

information at the expense of high frequency information, although typically no criterion for the 

amount and kind of smoothing employed is given (but see Chauvin, Worsley, Schyns, Arguin & 

Gosselin, 2005). The resulting p-vector Î  is interpreted as an estimate of the linear template 

responsible for the observed classification performance. 

The estimation method in Equation 4 is the least-squares solution of a linear model (LM) 

of the observer’s behavior on each trial of the classification image experiment. The stimulus S  

presented on each trial is a p-vector. If the experiment consists of n  trials, we obtain the terms 

of Equation 4 from the solution to the equation  

 =E Xβ  (5) 

where E  is a np  vector2 of concatenated noise vectors 1, , , 1, ,i i ip i nε ε ′⎡ ⎤= =⎣ ⎦ε . presented 

on successive trials, X  is an 4np p×  incidence matrix indicating which of four outcomes (H, 

FA, etc) occurred on the trial and β  is a 4p  vector that represents the elements of the 4 
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components of Equation 4. The matrix X  is a block matrix consisting of 4n ×  submatrices 

with one row of submatrices for each trial, each of which is either a p p×  zero matrix p p×0 or a 

p p×  identity matrix p p×I . An example of such a block matrix X is  

 

11 1

1

21 1

=

H
p p p p p p p p

p p p p p p p p
H

p p p p p p p p p p
FA

p p p p p p p p

CR
np p p p p p p p p p

ε β

ε β
ε β

ε β

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 0 I 0
0 I 0 0
0 0 I 0
I 0 0 0

0 0 I 0

 , (6) 

There is only one identity matrix in each block matrix row and it is placed so that its first column 

is either at column 1, 1p + , 2 1p +  or 3 1p +  of X depending on whether the trial is a Hit, 

False Alarm, Miss or Correct Rejection, respectively. In Equation 6, for example, the first trial 

resulted in a Miss and the identity matrix p p×I is the third submatrix beginning in column 2 1p +  

of X . The least-squares solution of Equation 5 is a 4p-vector β̂ . The solution can be divided 

into four vectors 1 , ,H H H
pβ β ′⎡ ⎤= ⎣ ⎦β , 1 , ,FA FA FA

pβ β ′⎡ ⎤= ⎣ ⎦β , 1 , ,M M M
pβ β ′⎡ ⎤= ⎣ ⎦β , 

1 , ,CR CR CR
pβ β ′⎡ ⎤= ⎣ ⎦β and the least-squares solutions of Equation 5 for these four vectors are the 

corresponding mean vectors HI , MI , FAI , CRI  in Equation 4. The classification image estimate 

Î  is therefore readily computed from the solution to Equation 5. 

Equation 6 can be solved with standard linear modeling methods. We used the function 

lm in the programming environment of R (R Development Core Team, 2008). See Appendix 

A.1.  

It is interesting to note that this formulation is ”inverted” with respect to the typical 

conception of the linear model. The responses are distributed across the model matrix X  on 

the right hand side of Equation 5 where one traditionally finds the explanatory variables 

(regressors), and the noise samples, a fixed part of the stimulus, are on the left hand side, 
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where one typically finds the response. The stochastic component is the random placement of 

submatrices in the matrix X according to observer’s responses. The Generalized Linear Model 

(GLM) and the Generalized Additive Model (GAM) presented later in this article are set up in a 

more traditional manner, with the response on the left and the stimulus, explanatory variables 

on the right. 

Alternative procedures have been proposed for estimating classification images (for a 

review, see Victor, 2005). Several studies have used noise composed of random amplitudes of 

fixed Fourier components (Ahumada & Lovell, 1971; Levi & Klein, 2002; Mangini & Biederman, 

2004). In other studies, observers rated the detectability of a signal on a multi-point scale (rather 

than just giving a binary response) with the classification image estimated by linear regression 

of ratings on the component energies (Levi & Klein, 2002) or by combining only the noise 

profiles from extreme classifications on the scale (Mangini & Biederman, 2004). 

Subspace methods.The articles, Levi & Klein (2002) and Mangini & Biederman (2004), 

provide examples of subspace methods in which the noise samples and the estimated 

classification image were constrained to be expressed as a weighted sum of basis p-vectors, 

 
1

m

i i
i
α

=

= ∑I B  (7) 

The basis vectors are selected by the experimenter and in the two articles just cited the 

experimenters chose Fourier components (sine and cosine basis functions) so that the resulting 

classification images are constrained to be “low-pass”. These methods potentially yield more 

accurate classification images with fewer trials. When Fourier components are chosen as a 

fixed basis, the resulting classification images are effectively “smoothed.”  

Using the subspace method to smooth data in this way is similar in spirit to appyling 

Generalized Additive Models (Hastie & Tibshirani, 1990; Wood, 2006) discussed in detail below. 

However, as we describe below, GAM is an adaptive method that can be used to adjust the 

degree of smoothing to improve the fit according to a model fitting criterion. 
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Solomon (2002a, 2002b) obtained classification images by setting up the problem as the 

maximization of a binomial likelihood. Using the inner product form from Equation 2, the 

likelihood can be written as  

 
1

=1
( , ) 1 ,

RR in i
i i

i

L σ
σ σ

−
⎛ ⎞• •⎛ ⎞ ⎛ ⎞= Φ − Φ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∏ T ε T εT  (8) 

where L  is the likelihood defined as a function of, T , the template coefficients, σ , a scale 

factor, iε  is the added noise profile on the thi  trial, Φ  the cumulative Gaussian function with 

mean 0 and variance 1 and iR  an indicator variable taking on the values 1 or 0 if the response 

on the thi  trial is that the signal is a  or b , respectively. The model is identifiable with p  

parameters if one constraint is placed on the vector T , such as that its length || ||=1T . The 

argument of Φ  is the decision variable from Equation 8 but scaled by σ  and with this 

parameterization is in the same units as the signal detection parameter d ′  (Green & Swets, 

1966; Macmillan & Creelman, 2005). 

The negative logarithm of likelihood (Equation 8) can be minimized with optimization 

procedures that are standard in modern computational programming environments. Solomon 

also substituted a smooth parametric function of many fewer parameters for T  and chose the 

parameters to optimize the likelihood. For example, his signals were spatial Gabor functions. 

Constraining T  to be of this form, the optimization procedure estimates the parameters of the 

best fitting Gabor function. The two models are nested and can be compared with a likelihood 

ratio test. While this approach leads to a more parsimonious description of the data, the choice 

of a parametric form could distort the structure of the estimated template. 

The first objective of this paper is to show how the model of Equation 7 can be 

implemented as a Generalized Linear Model (GLM) (McCullagh & Nelder, 1989; Venables & 

Ripley, 2002). Several classic signal detection models have been reformulated in terms of GLM 

(for example, DeCarlo, 1998; Macmillan & Creelman, 2005). The observer decision model for 
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difference scaling has also recently been implemented as a GLM (for example, Charrier 

Maloney, Cherifi & Knoblauch, 2007; Knoblauch & Maloney, 2008). Abbey & Eckstein (2002) 

mentioned GLM approach as an alternative for modeling classification images and also 

investigated GLM (Abbey & Eckstein, 2001; Abbey et al, 2002). Victor (2005) has also 

discussed some of the approaches and issues considered here as have Mineault & Pack 

(2008). 

One advantage of GLM is that it naturally relates the expected probabilities of response 

to the decision space through a link function in a way that is a simple generalization of a 

psychometric function.  

We will show that GLM yields classification image estimates that are closer to the 

template with fewer numbers of trials than required by the LM but that the addition of internal 

noise reduces and eventually eliminates the advantage of GLM over LM. We will then describe 

how an optimally smoothed model that is more robust to internal noise can be obtained using a 

Generalized Additive Model or GAM (Hastie & Tibshirani, 1990; Wood, 2006). Finally, we will 

show how to extend this framework to estimate and test higher-order (nonlinear) classification 

images (Neri and Heeger, 2002; Neri, 2004).  

 

2 Generalized Linear Model: Theory 

 The GLM is an extension of the LM in which a linear predictor is related to the expected 

value of the response through a link function, η   

 (E[ ]) =η βY X , (9) 

 where the distribution of the elements of Y  is a member of the exponential family (not to be 

confused with the exponential distribution) which consists of distributions whose probability 

density functions can be written in the form  

 ( ) ( ) ( ) ( )( ; ) = expf y a y b c d yθ θ θ⎡ ⎤+ +⎣ ⎦  , (10) 
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for some specific choice of functions a , b , c  and d  (McCullagh & Nelder, 1989).  

The exponential family contains many commonly used distributions such as the 

Gaussian, the Poisson, the gamma and the binomial and, as a consequence, GLM can 

potentially be applied to model experiments whose outcomes are random variables with these 

distributions and more.  

However, in this article, we focus on the case where the random variable Y  is a 

Bernoulli (or binary) random variable, a random variable with two possible outcomes 1, and 0, 

that takes on the value 1 with a fixed probability ( )0,1θ ∈  and is otherwise 0. The Bernoulli 

distribution for observing { }0,1y ∈  is,  

 1( , ) = (1 ) ,y yf y θ θ θ −−  (11) 

We can recast Equation 11 in the form of Equation 9 as  

 ( ; ) = exp log log(1 ) ,
1

f y y θθ θ
θ

⎡ ⎤⎛ ⎞ + −⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
 (12) 

where ( ) =a y y , ( ) = log( / (1 ))b θ θ θ− , ( ) = log(1 )c nθ θ− , ( ) = 0d y , demonstating that the 

Bernoulli is a member of the exponential family. Note that θ  is the expected value [ ]E Y  of the 

response variable, Y .  

To specify the GLM model we need to select a link function ( )η • . We can choose the 

function ( ) = log( / (1 ))b θ θ θ−  and the resulting GLM is then equivalent to logistic regression 

(McCullagh & Nelder, 1989). We can, however, select any alternative link function that maps the 

interval (0,1)  onto the range ( , )−∞ +∞ . One common choice of link function is the inverse of 

the cumulatve distribution function of the Gaussian function, denoted ( )1−Φ •  leading to the 

probit model (Finney, 1971).  

Using GLM permits the data to be appreciated on two levels. First, the individual 

responses of the observer are modeled directly in the fitting process. We can rewrite Equation 9 
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as  

 ( )1E[ ] = ,η β−Y X  (13) 

which in the Bernoulli case becomes, 

 [ ] ( )11 =P η β−=Y X  (14) 

and the GLM model is seen to be a natural generalization of the psychometric function to the 

case in which a single intensity variable is replaced by a weighted linear combination βX of 

intensity variables. The inverse of the link function is the psychometric function. 

Second, through the link function, the responses are related to a linear model. Within 

this formalism, the scale of the linear predictor corresponds to the decision space of the 

observer with =1σ . Thus, we can conceptualize Equation 14 as the linear predictor with the 

stimulus as the covariates and the template as the coefficients to estimate. The term βX  can 

be used to model experimental designs with multiple conditions that are structured as analysis 

of variance designs or multiple regression designs. We pursue this point in the example below.  

The GLM is readily adaptible to experiments where the observers response is not binary 

but is a numerical rating or a continuous adjustment (DeCarlo, 1998). The GLM with different 

choices of distributions allows considerable freedom in modeling the observer’s behavior. With 

different choices of linking functions the model is easily generalized to the multinomial logisitic 

model so that classification images can be computatable in experiments making use of multiple 

response categories. 

 

 

2.1 An example 

 To demonstrate how the notions advanced in the last section are exploited to estimate 

a classification image, we consider an example. Thomas & Knoblauch (2005) reported results 

from a Yes/No experiment in which the observers' task was to detect a temporal luminance 
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modulation perturbed by uniform random luminance noise. On each trial, the luminance of a 

circularly symmetric region following a two-dimensional Gaussian spatial profile ( sσ  = 2.5 deg) 

was modulated over a 640 ms interval on a calibrated monitor. The modulation consisted of 32 

sequential samples, each of 20 ms duration. On a given trial, the samples were either set to 

random luminance values chosen from a uniform distribution centered on the mean luminance 

of the screen or to random luminance values added to a temporal luminance modulation 

following a Gabor function. The temporal luminance modulation was described by  

 

2
1
2( ) = sin

ti
it

i
t

tLum t e
μ

σ π
σ

⎛ ⎞−
⎜ ⎟−
⎜ ⎟
⎝ ⎠  (15) 

where it  is the time of the thi  sample, =1,32i , = 320μ  ms and =160tσ  ms. Three 

different carrier frequencies were tested in the article, but here, we consider only data collected 

from one observer at the highest carrier frequency used, 3.125 Hz. 

The sampled signal is shown in Figure 1a and an example of the signal with uniform 

noise added in Figure 1b. The observer's task was to judge whether the signal was present on 

each trial. The signal strength and the amplitude of the noise modulation were chosen in pilot 

experiments so that the observer's performance approximated =1d ′ .  

 
 
 
 
 
 
 
 
Figure 1: a. The sampled temporal signal from the experiment of Thomas & Knoblauch (2005). b. An example of the 

sampled temporal signal with independent, identically-distributed uniform noise added. 
  

 
 

The observer performed 16 sessions of 224 trials each, yielding 3584 trials. The data set 

is organized as 114688 rows and 4 columns,  a sample of whose rows are 
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 resp time Time  N  
1 H 1 0.02 -0.196 Start trial 1  
2 H 2 0.04 -0.197  
  .    
  .    
  .    
32 H 32 0.64  -0.189 End Trial 1  
33 H 1 0.02   0.039 Start trial 2  
34 H 2 0.04   0.131  
  .    
  .    
      

 
  

where the lines are numbered, and we have rounded the numbers here to 3 significant digits for 

display. Each trial is distributed across a block of 32 rows. The meaning of the column names is  

resp a 4 level factor indicating the category of the response, H, FA, M, CR,  

time a 32 level factor indicating the time points of each sample of the stimulus,  

Time a numeric value indicating the time in seconds of the sample with respect to the 

beginning of the trial,  

N a numeric value indicating the relative luminance modulation of the noise component 

of the stimulus at the indicated time sample.  

 All calculations in this article were performed with the open source software R (R Core 

Development Team, 2008) and the code used appears in the Appendices. The data set is 

available in an Rdata file from the corresponding author. 

 
 
 
Figure 2: a. The circles indicate the estimated classification image obtained with LM as a function of the time in 

seconds. The red dashed curve is the signal and corresponds to the ideal template. b. The circles indicate 
the estimated classification image obtained with GLM plotted as a function of time in seconds. The red 

dashed curve is identical to that in Figure 1a. c. The two estimated classification images ˆ ˆ,p aI I  based on 

signal present trials and signal absent trials, respectively. p̂I  is plotted with unfilled circles, âI , with filled. 

The red dashed curve is identical to that in Figure 1a.  d. the overall classification image ˆ ˆ ˆ
p a= +I I I . The 

red dashed curve is identical to that in Figure 1a. 
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Using the linear model formulation, Equation 5 which gives exactly the same results as 

Equation 4 we obtain the classification image shown in Figure 2a plotted with circles connected 

by line segments. The results have been scaled by least squares to fit the actual signal 

Equation 14, shown as a red dashed curve. 

To estimate the classification image using the GLM, it is convenient to reorganize the 

data. First, the four-level factor resp is recoded as two factors that we name Stim, a two level 

factor with labels 0 and 1 indicating whether or not the signal was present and Resp, a two level 

factor with the same labels indicating whether or not the observer classified the trial as 

containing the signal. Second, we reshape the column N into 32 columns, each indicating a time 

sample. We show the first 8 columns of a sample of rows of the modified data set below with 

line numbers  

 Res Stim t1 t2 t3 t4 t5 t6    … 

1 1 1 -0.196 -0.197 -0.038 -0.114 -0.136 0.204 …  Trial 1 

2 1 1 0.039 0.131 0.233 -0.053 -0.133 0.295 …  Trial 2 

   .      

   .      

   .      

32 0 0 -0.249 0.219 -0.073 0.257 -0.142 -0.235 …  Trial 32

33 1 0 0.022 -0.109 0.076 -0.013 0.044 -0.249 …  Trial 33

34 1 1 0.254 -0.193 -0.197 0.162 0.285 -0.264 …  Trial 34

   .      

   .      

 
In this new format, each row corresponds to one trial of the experiment. The time points, 

t1, ..., t32,3 enter the model now as independent covariates, taking on the instantaneous 
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values of the noise on each trial.  

We fit these data set using GLM in two different ways. First, we combine all of the data 

from all trials to estimate a single classification image. The model can be represented as 

 [ ]( ) 1 2 32...E Yη β β β= + + + +1 2 32S t t t  (16) 

where S  denotes Stim,  a two level factor indicating the presence or absence of the signal, 

the 1 32, ...,t t  are the noise samples (vectors) at each time point acting in the model as 

covariates and the coefficients 1 32,...β β  provide the estimated classification image.  The R 

code is given in Appendix A.2 and the resulting classification image is shown in Figure 2b. 

Comparing the fits in Figs 2a and b reveals that the two methods, LM and GLM, yield very 

similar results. Both methods lead to an estimated classification image that reveals the same 

pattern of systematic differences from the signal. We note that the main effect of the term S  

(see Appendix A.2) provides an estimate of d ′  (DeCarlo, 1998). 

However, Thomas & Knoblauch (2005, p. 2260) have already demonstrated that the 

simple linear model of the decision process is violated for these data. As mentioned in the 

discussion leading to Equation 4, we can use LM to compute distinct classification images ˆ ˆ,p aI I  

separately for trials on which the signal is present, and trials on which it is absent, respectively. 

We can easily do this with GLM as well. In doing so, we test whether there is an interaction 

between the presence/absence of the signal and the estimated classification images ˆ ˆ,p aI I . If 

there is none, we can combine the two classification images ˆ ˆ,p aI I  according to Equation 4. The 

model can be represented as 

 [ ]( ) 1 2 32...s s sE Yη β β β⎡ ⎤= + × + + +⎣ ⎦1 2 32S S t t t  (17) 

where ×  denotes component-wise multiplication of vectors and the estimated value of the s
iβ  

now depend on whether the signal is present (s p= ) or absent (s a= ). The estimated values 
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ˆ , 1,...,32p
i iβ =  and ˆ , 1,...,32a

i iβ =  correspond to the two estimated classification images p̂I  

and âI , respectively. 

The R code for this fit is given in Appendix A.2 and the results indicate a significant effect of 

signal absent/present with the estimated classification image. A summary of the nested 

hypothesis test is shown as an “analysis of deviance table” in Table 1. Analysis of deviance is a 

convenient way to summarize multiple nested hpyothesis tests within the GLM framework and, 

as the name suggests, an analysis of deviance table can be interpreted much as an analysis of 

variance table but with difference of deviance (twice the negative log likelihood) replacing ratios 

of variances. 

 

 

 Residual df Residual deviance df deviance 2P χ⎡ ⎤>⎣ ⎦  

 

1 

 

3550 

 

4213.0 

   

2 3518 3977.2 32 235.8 <0.00001 

 

Table 1: Analysis of deviance table for the Thomas & Knoblauch (2005) data. The table 
summarizes a nested hypothesis test comparing a model in which a single classification image is 
estimated on signal present and absent trials (model 1) to a model in which separate images are 
estimated for each type of trial (model 2). The difference in deviance (twice the negative log likelihood) is 
large, allowing us to reject the hypothesis that the two estimated classification images are the same (p 
< .0001). 
 
In other words, we confirm the conclusion of Thomas & Knoblauch (2005): the two separate 

images  are plotted in Figure 2c with unfilled circles ( p̂I ) and filled circles ( âI ), respectively. For 

comparison, we plot ˆ ˆ ˆ= +p aI I I  in Figure 2d. It can be seen that it differs little from the fit that did 

not include an interaction (Figure 2b). 
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2.2 Comparison of LM and GLM: Simulated Observer 

2.2.1 Noiseless Observer 

 We simulated an observer performing an experiment similar to that described above 

except that the signal was a Gaussian modulation described by  
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with the parameters set to the same values as in Thomas & Knoblauch (2005), but with additive 

Gaussian noise instead of uniform. Gaussian noise was used in all simulations in this article for 

convenience. However, we have repeated this first simulation with uniform noise equated in 

variance to that of the Gaussian and reached the same conclusions.  

The simulated observer used the signal as the template. In the experiment, each trial 

consisted of a 32 element vector. On half of the trials, the signal was added to random values 

drawn from (0,1)N  and on the other half, no signal was added in. Simulations were run with 5 

different numbers of trials: 100, 500, 1000, 5000 and 10000, each simulation repeated 100 

times. For each trial, the inner product between the stimulus and the template was computed. If 

the result was greater than 0, the response to the trial was classified as ``Present'', if not 

``Absent''. The signal amplitude was set so that 1d ′ ≈ . For each simulation, the classification 

image was estimated using both LM and GLM. The estimated classification images were then 

scaled to the template and the residual variance was calculated as a measure of goodness of 

fit. 

 
 
 
 
 
 
Figure 3: The residual variance for the estimated classification images of the simulated observer is plotted as a 

function of the number of experimental trials. The black circles are the median of 100 repetitions of the 
experiment analyzed using LM, and the white, by GLM. The grey regions around each curve mark 95% 
confidence intervals of the values about the median. 
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The simulation results are summarized in Figure 3. Each point is the median variance 

obtained for the 100 replications. The black circles were obtained with LM and the white with 

GLM. The grey zones surrounding each set of results correspond to the 2.5% and 97.5% 

percentile points in the density estimates of the results. The residual variance between the 

template and signal decreases faster using GLM than LM. By 10000 trials, the difference is 

nearly 2 orders of magnitude in variance (corresponding to one order of magnitude in standard 

deviation). Put another way, the precision of the estimate analyzed by GLM using only 1000 

trials is about the same as that using LM with 10000 trials. 

 
 
 
 
 
 
 
 
Figure 4: a. Examples of estimates of the classification image (unnormalized) obtained with LM (first row), GLM 

(second row), and GAM (third row) as a function of number of trials, 100, 500, 1000, 5000, 1000. The results 
for the third row will be discussed later, after presentation of GAM, but are included here to facilitate 
comparison across all three models. b. The residuals from the template after normalization corresponding to 
each plot in Figure 4a. 

 
 

In Figure 4a, we present examples of single classification images estimated during the 

simulations. The first row illustrates how the estimated template converges as we increase the 

number of trials from 100 to 10000, fitting with the LM. The second row shows a series of 

estimates for different samples sizes, but fitting with the GLM. It is evident that the GLM 

converges more rapidly and this is what we expect given the results in Figure 3. Figure 4b 

shows the residuals of the fits in Figure 4a. The third row in each of Figs. 4a,b  shows 

comparable examples but for GAM. We discuss the results in these rows after we introduce 

GAM in a later section of the article.  We include these results now only to facilitate later 

comparison. 
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2.2.2 Noisy Observer 

 The results in the previous section suggest that classification image estimation using 

GLM is more efficient than LM for an observer with no internal sources of noise to perturb the 

classification judgments. However, in any experiment, the observer’s uncertainty in judgment is 

affected not only by the experimenter’s choice of noise perturbation added to the stimulus, but 

also by endogenous noise processes that we refer to collectively as internal noise. 

We simulated internal noise by adding random Gaussian values to each element of the 

template before it was multiplied by the stimulus to generate the decision variable. The level of 

internal noise was varied by adjusting the standard deviation of the Gaussian values. The 

experiments were simulated for 8 levels of internal noise: 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 

and 2. Other than the introduction of template noise on each trial, the simulation conditions were 

the same as in the previous section. We only ran tests for experiments of 500 and 5000 trials. 

We note that we did not force d ′ to equal 1 in these experiments and that with increasing 

internal noise, the observer’s d ′  decreased. 

 
 
 
 
 
 
 
 
 
Figure 5: Residual variance between estimated classification image and the template is plotted as a function of the 

standard deviation of the Gaussian noise added to the template. Each point is the median of 100 repetitions 
and the grey regions correspond to 95% confidence intervals. The black points correspond to fits with LM 
and the white, with GLM. a. Each run is 500 trials. b. Each run is 5000 trials.  

 
 

The results of the simulations are shown in Figs 5a and b in which the residual variance 

is plotted as a function of the standard deviation of the internal noise. Each point is the median 

value of the 100 replications of the experiment and the grey zones indicate the range within 

which 95% of the observations fell. The white points correspond to the analyses using GLM and 
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the black with LM. The results indicate that while the GLM analysis is superior for the noiseless 

observer, this advantage disappears as the level of internal additive noise increases. For both 

numbers of trials, the curves converge at similar internal noise levels, near = 0.05σ . While 

internal noise reduces the advantage of the maximum likelihood fit, the result is never worse 

than that obtained using LM. 

To summarize, we found that GLM fits are never worse than those for LM although with 

large magnitude of internal noise the two methods are comparable in performance. We would 

still recommend that researchers use GLM rather than LM for three reasons: (1) GLM 

corresponds to the typical underlying model that the experimenter has in mind and it is the 

maximum likelihood estimate for classification images with this model, (2) we find that GLM fits 

are never worse than corresponding LM fits, and (3) the computational costs of GLM fits using 

modern packages are not unreasonable. The second point is particularly important if the 

experimenter has not measured the magnitude of internal noise for a particular psychophysical 

task. 

 

 

3 Generalized Additive Model: Theory 

A criticism of both LM and GLM methods is that the elements of the stimulus, pixels, 

time samples, etc., are treated independently and discretely, as factor levels with LM and as 

covariates with GLM. The noise at one element is uncorrelated with that at nearby elements. 

Taken over all of the stimuli in the experiment, this is true within the limits of the random number 

generator used. This should not be the case, however, for the subset of noise samples that the 

observer classifies similarly. The LM and GLM approaches do not take into account the 

dependencies introduced into the noise profiles by the observer's choices. One method of 

dealing with this would be to allow the possibility of interactions between the covariates with the 

GLM, but doing so would introduce more parameters to fit and not lead to parsimonious models. 
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In practice, classification images are often smoothed by some form of low-pass filtering 

(Ahumada, 1996). Implicitly, this procedure recognizes dependencies in the data and explicitly 

introduces them. The sampling rate of the noise is often finer than the resolution of the judgment 

made by the observer, so the classification image will tend to be uncorrelated on a fine scale. 

The smoothing will bring out the large scale dependencies. Pooling nearby samples will also 

increase the sensitivity of statistical tests at detecting the modulation in the image. The major 

criticism of such ad hoc smoothing is that the degree of smoothing used is arbitrary. Methods to 

determine how much smoothing is appropriate or optimal have not typically been applied (but 

see Chauvin et al (2005), an exception). 

Generalized Additive Models (Hastie & Tibshirani, 1990; Wood, 2006) provide an 

appealing method for estimating a smooth classification image. They are extensions of the GLM, 

so the models developed above apply. The difference is that smooth terms that are functions of 

the stimulus dimensions can be included in the model. Thus, the linear predictor is a function of 

the continuous stimulus dimension(s). The specification of the GAM model to fit to our example 

data set would be as follows,  

 [ ]( ) ( ) ( )0 1E = ,P Af t f tη +Y X X  (19) 

where if  are smooth functions of the continuous covariate, t , which here is time, and PX  

and AX  are the instantaneous noise values, also taken as covariates, for Present and Absent 

trials, respectively, extracted from the main effects model matrix. The intercept term can be 

absorbed directly into the smooth terms. The smooth functions, f , are approximated by the 

sum of known basis functions  

 ( ) ( )
=1

q

i i
i

f t b tβ= ∑  (20) 

where ib  are basis functions evaluated at the covariate values for unknown values of the 

parameters, iβ . Thus, they can be added as columns to the model matrix and fitted as linear 
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covariates. In most circumstances spline curves are used as bases, but alternatives are 

possible, such as Fourier terms similar to those used by Levi & Klein (2002) and by Mangini & 

Biederman (2004). More basis terms are chosen than is generally necessary, and smoothness 

is controlled by adding a penalty for undersmoothing during the process of maximizing the 

likelihood. The penalty is usually implemented as a proportion, λ , of the integrated square of 

the second derivative of f . Larger contributions of this term result in less smooth models. 

Because the function is expressed as a linear combination of basis elements, the penalty term 

can be written as a quadratic form in β   

 ( ) 2
,Tf t dt β β′′ =∫ S  (21) 

where S  is a known matrix obtained from the basis functions, ( )ib t . The model is fit then by 

minimizing the expression  

 ( )
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i
β λ β βΔ + ∑ S  (22) 

with respect to β , where Δ  is the negative of twice the logarithm of the likelihood, termed the 

deviance, and m  is the number of smooth terms in the model. 

In the case of additive models in which the scale (variance) is unknown, the contribution 

of the penalty can be regulated by the technique of cross validation, in which λ  is chosen to 

minimize the prediction error to a subset of the data left out of the fit, taken across all or a large 

number of subsets of the data (Wood, 2006). In the case of the binomial family for which the 

scale parameter is known, the degree of smoothing is chosen to minimize a statistic called the 

Un-Biased Risk Estimator (UBRE, Wood, 2006, pp. 172-173) which is defined as  

 ( ) ( ) 2 21 2ˆ= tr( ) ,u n n
λ β σ σΔ − + AV  (23) 

where 2σ is the known binomial variance, A  is the influence or hat matrix and tr  is the trace 

function. The trace of the influence matrix corresponds to the effective number of parameters 
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estimated in the fit. The reduction of deviance obtained by increasing the number of parameters 

is offset by adding back in a function of the number of parameters, reminiscent of Akaike's 

Information Criterion (AIC; Akaike, 1973). In fact, this criterion is effectively a linear 

transformation of AIC (Wood, 2006, p. 178). Like AIC, this measure favors a model that 

maximizes the predictability of future rather than the actual data and, thus, serves to reduce the 

tendency to overfit the data with too many parameters. The literature on model selection is 

growing rapidly and AIC is only one choice of criterion of many. For a review see Burnham & 

Anderson (2003) and also Myung, Navarro & Pitt (2006) and other articles in the same special 

issue. 

 

3.1 An example, continued 

 To obtain a GAM estimate of the classification image for the Gabor detection 

experiment, the data set can be organized as it was initially for the LM fit, as described in 

Section 2.1. Instead of using the factor time, the real time in the variable Time is used as a 

covariate of the smooth terms. Each smooth term is multiplied by either the noise in the trial or 0 

depending on whether the signal was present or not. We used the gam function in the R 

package mgcv (Wood, 2006). The code fragment to fit the model is shown in Appendix A.3. The 

function allows several different possible choices of basis functions. We chose thin plate 

regression splines with shrinkage (Wood, 2006, Sections 4.1.5-4.1.6). The term  “shrinkage” 

implies that smooth terms which do not contribute significantly to the fit can be dropped from the 

model. An alternative fit using a cubic spline basis produces similar results to those reported 

here. Spline fits can show biases at the boundaries of the data. Such effects are possibly visible 

in Figure 5 but small.  A detailed discussion of considerations that serve to guide the choice of 

basis functions can be found in Wood (2006, Section 4.1).  
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Figure 6: The solid black line indicates the classification image as a function of time, estimated using a GAM. The red 

dashed curve is the ideal template as in Figure 2a,b. The white circles correspond to the GLM classification 
image replotted from Figure 2d. 

 
 

The estimated classification image is shown in Fig 6 as the solid curve. Since the 

estimate is a continuous function of time, we could define it at as many points as we like, 

although here we have simply connected the 32 estimates at the sampled time points by linear 

segments. The white disks are the GLM classification estimates from Figure 2b and the red 

dashed curve indicates the ideal template. In fact, the fitted curve from the GAM is based on 

only about 11 parameters, one-third less than the number required to specify the LM and GLM 

models. Interestingly, the GAM estimate is closer to the ideal template than the GLM one over 

most of the trial duration and follows it more closely. These observations suggest that the GLM 

and LM are“overfitting” the data and that a model with many fewer parameters could be 

adequate. This question and others are addressed by repeating the simulations above using a 

GAM to fit the simulated data. 

 

3.2 Comparison of GAM with LM and GLM: Simulated observer 

3.2.1 Noiseless observer 

 We used the same simulated, noiseless observer performing the detection of a 

Gaussian signal, described above. Experiments of 100, 500, 1000, 5000 and 10000 trials were 

each repeated 100 times. For each experiment, a classification image was estimated using a 

GAM. As before, we recorded the residual variance between the estimated classification image 

and the ideal template. The median values are shown in Figure 7 as  blue circles connected by  

blue line segments. The 95% range of values around the medians is shown as the grey 
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envelope. The previous results obtained by LM and GLM are replotted as black and white 

circles, respectively. 

 
 
 
 
 
 
 
 
 
Figure 7: The residual variance between the classification image and the template is plotted as a function of the 

number of trials. The  blue points and line segments correspond to the median values of 100 experiments 
from the GAM fits and the grey regions are the 95% confidence interval. The black and white points 
correspond to the LM and GLM models, respectively, and are replotted from Figure 3 

 
 

The residual variance of the GAM fits decreases in parallel to the LM fits in the 

double-logarithmic coordinate system. For the smallest experiment, the GAM estimate is less 

variable than the other two. As the number of trials is increased the GLM fit equals and then 

surpasses the GAM estimate in closeness to the template.  

This outcome is likely the result of a bias in GAM introduced by our choice of the ideal 

template. While the GAM basis we chose can provide very close approximations to the ideal 

template, these approximations are not perfect. With enough data, GLM will eventually 

converge to the ideal template but GAM in this case cannot. The difference between the ideal 

template and the approximation through GAM is very slight and the apparent advantage of GLM 

with large numbers of trials is also very slight, as can be seen in Figure 4a (third row) where we 

present estimated classification images for different numbers of trials and in Figure 4b (third 

row) where we present the residuals from the fits. While the residuals for GAM with 10000 trials 

are larger than those for GLM (second row) with 10000 trials, both are negligible.  Overall, the 

GAM fit remains on average about 4 times less variable than that provided by LM.  

 

3.2.2 Noisy observer 

 We evaluated the influence of 8 levels of noise added to the template on each trial on 
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the GAM fits for experiments of 500 and 5000 trials. Each experiment was, again, repeated 100 

times. The median residual variances ( blue points and line segments) are plotted in Figs. 8a 

and b with the 95% envelopes (grey regions). For comparison, the LM and GLM values from 

Figs. 5a and b are replotted, as black and white circles, respectively. At 500 trials, where the 

noiseless observer estimates are similar using either GLM or GAM, the two methods yield 

similar results for the low noise conditions. The average GAM fit, however, yields a slightly lower 

average squared residual systematically for all but the highest noise condition. 

For a 5000 trial experiment, the GLM performs better at the lowest noise level, but the 

GAM results do not increase as fast as those obtained using the GLM. Thus, for intermediate 

noise levels the GAM fit is more robust and yields an estimate closer to the ideal template. This 

outcome is consistent with the results of Figure 6, a 3584 trial experiment, in which the GAM 

estimate is more similar to the signal than the GLM estimate. 

 
 
 
 
 
 
 
 
 
Figure 8: Residual variance between estimated classification image and the template is plotted as a function of the 

standard deviation of the Gaussian noise added to the template. Each point is the median of 100 repetitions 
and the grey regions correspond to the 95% envelope. The  blue points and curves indicate the results 
obtained with the GAM model. The black points indicate fitting with LM and the white with GLM replotted 
from Figure 5a. a. Each run is 500 trials. b. Each run is 5000 trials. 

 
 

3.2.3 Higher order classification images 

As mentioned above, Thomas & Knoblauch (2005) found that these data violated the 

linear template model implicit in Equation 4 in that the classification images for stimulus present 

and absent trials differed significantly. Their results could be explained by assuming that the 

observer based his judgments on frequency information independently of the phase of the 

stimulus. Thomas & Knoblauch (2005) verified this explanation by computing the classification 
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images in the Fourier rather than the temporal domain. 

An alternative method of investigating nonlinearities in the decision processes of the 

observer was proposed by Neri and Heeger (2002; See also Neri, 2004). They calculated 

second order classification images by squaring the noise before fitting. Higher order 

classification images could be calculated in this way by using higher powers. 

Higher order classification images can be easily incorporated into the GLM and GAM 

approaches by including powers of the noise distribution in the linear predictor and estimating 

their coefficients. For example, the specification of a GAM model with a quadratic component of 

the classification image would include additional smooth components to weight the square of 

the noise.  

 [ ]( ) ( ) ( ) ( ) ( )2 2
0 1 2 3= P A P AE f t f t f t f tη + + +Y X X X X  . (24) 

where the exponents denote squaring the elements of the appropriate column of the model 

matrix. Successive higher order components would require adding successively higher order 

powers of the noise to the linear predictor. We note that we are only looking at the diagonal of 

the second-order kernel, and therefore the lower plots in the results to be presented below 

(Figure 9) are one-dimensional rather than two-dimensional. See Neri (2004) for discussion of 

the full second-order kernel. 

We fit quadratic and cubic classification images to the Gabor data set with a GAM. The 

successive models are nested so that we can compare them with a likelihood ratio test. The 

results are displayed in Table 2 which indicates that the addition of a squared term led to a 

significantly better fit than a linear model ( = 0.02p ). However, an additional cubic component 

did not improve the fit significantly ( = 0.09p ). Similarly, of the three models, the UBRE score is 

lowest for the quadratic model. 

 



 28

  Residual Df  Resid. Dev  Df  Deviance   2>P χ⎡ ⎤⎣ ⎦   

      

1  114677  158295        

2  114675  158287  2.07   8   0.02 

3  114671  158279  3.96   8   0.09 

  

 Table 2: Analysis of deviance table for the Thomas & Knoblauch (2005) data. We compare fits 
of GAM models with 1) only first order contributions, 2) additional quadratic contributions and 3) 
additional cubic contributions. 

 

The four estimated component classification images are displayed in Figure 9. The top two 

images correspond to the linear first-order classification images and reproduce what Thomas & 

Knoblauch (2005) reported.  

The stimulus absent component (left) is not significantly modulated while the component 

for stimulus present (right) follows closely the signal as in Figure 6. The bottom two images 

show the second-order classification images for stimulus absent (left) and present (right). Here, 

the pattern is reversed, so that the stimulus present image is unmodulated while the stimulus 

absent image displays a peak near the center of the trial. This suggests that the observer 

exploited primarily the middle of the stimulus in classifying a trial and, perhaps, judged the 

signal present if he detected either a dark-light or a light-dark transition, i.e., independent of 

temporal order. This is a different interpretation than that put forward by Thomas & Knoblauch 

(2005), who suggested that the observer extracted frequency information independent of phase. 
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Figure 9: The smooth functions estimated for each of the terms of Eq (24) fit to the Gabor data set. The top two 
graphs are the terms for the linear component and the bottom two for the quadratic component. The left two 
graphs are fit to the stimulus absent data and the right two to stimulus present. The grey envelopes 
correspond to ± 2 standard errors for each curve. 

 
 

The 2nd order stimulus present image is flat suggesting that this component can be 

explained by the linear model. However, the observer could not know whether the signal was 

present or not on a trial, and it is improbable that he could thusly modify his strategy. The 

explanation of the authors is likely, that when ``the signal is present, any noise component 

similar in temporal frequency and phase will increase the effective contrast of the signal..." and 

thereby bias the observer toward responding ``present''. Thus, the linearity implied by this 

behavior is only apparent.  

We could in principle estimate higher order classification images with GLM just as we did 

with GAM. The resulting model is straightforward and we include code specifying it in the 

Appendix.  The results are similar (not shown) but, without the extra smoothing provided by 

GAM, harder to interpret. 

 

 

 

4 Discussion 

The Generalized Linear Model with a Bernoulli family provides a natural framework for 

obtaining maximum likelihood estimates of classification images. The model incorporates a 

relation between the expected probability of the observer's response and a decision variable 

through a link function, here implemented as an inverse cumulative Gaussian. The decision 

variable is obtained from a weighted linear combination of the stimuli, the noise samples in a 

trial in the current application. The weighting coefficients correspond to the estimated 

classification image. The inverse link function plays the role of the psychometric function relating 

the decision variable to probabilities of response and, thereby placing the model within the 
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framework of signal detection theory. 

In the absence of observer noise, we have shown that GLM estimates are more efficient 

than estimates obtained using LM in that the estimated template is closer to the true template 

for a given number of trials. In the range of trials used in typical classification image experiments, 

the residual variance between the GLM estimated template and the true template can be more 

than an order of magnitude less than that obtained using LM. Solomon (2002a) previously has 

reported that maximum likelihood estimation is more efficient at estimating classification images 

than the linear model in Equation 4. Since the GLM is fit by maximizing likelihood, our results 

replicate his. However, we found that this advantage is quickly lost when appeciable internal 

noise is present and the GLM does no better than the LM. The evident conclusion is, however, 

that the GLM does no worse than the LM when appreciable internal noise is present and may 

do better if internal noise is low. On balance, the experimenter is better off using the GLM.  

Generalized Additive Models offer several advantages over LM and GLM approaches. 

First, they provide a principled metthod for estimating the template that typically requires fewer 

parameters to describe the template than pixel-based LM and GLM methods. Parametric 

models also provide fits requiring only a few parameters, but such models may not always be 

capable of revealing some details of a template as can be done with the nonparametric smooth 

terms of the GAM. For example, the fixed shape of a Gabor function used as a model of the 

observer's template in Figure 6 would overestimate the weight given to the beginning and 

especially at the end of the trial compared to the GAM and GLM fits. 

An alternative smoothing criterion is obtained from Gaussian Random Field Theory to 

determine the cluster size of correlated pixels in an image (Chauvin et a, 2005). This is a 

statistical test applied after the image has been estimated, for example by a linear or 

generalized linear model. GAMs incorporate the smoothing step directly in the fitting procedure 

with the degree of smoothing determined by a model fitting criterion. 

The simulations reveal that the GAM outperforms both the LM and GLM models for 
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small numbers of trials in the case of an observer with a noiseless template. With a noisy 

template, GAMs are more robust, in that they generate closer estimates to the template than LM 

and GLM methods for a considerable range of noise levels for a small number of trials. For a 

large number of trials, their performance falls off more slowly than the GLM method, so that they 

outperform it over an intermediate range of noise levels. 

These results help to explain why techniques using noise composed of random Fourier 

components also perform well with modest numbers of trials (Levi & Klein, 2002; Mangini & 

Biederman, 2004). The Fourier components form a basis for a smooth subspace. To the extent 

that the underlying classification image is, in fact, smooth, then some combination of these 

components, if enough are included, will form a good estimate of the classification image. It is 

only a question of getting the relative contributions of the components correct and not of 

averaging out uncorrelated variation at the level of the noise samples (for example, pixels in an 

image). For example, suppose that we want to estimate the distribution of a sample. However, 

instead of looking directly at its histogram, we estimate it by the best fit Gaussian. If the 

underlying distribution is, in fact, Gaussian, then our smooth estimate may well be closer to the 

true distribution then the actual histogram of the sample. 

GAMs also permit estimating a model in a low dimensional (i.e., smooth) subspace, but 

they do not exclude the possibility of fitting a more complex structure, if the data require it. The 

search for a model takes place in a large subspace but components with high variation are 

penalized by a proportion of the square of the second derivative if they increase prediction error. 

Thus, we do not need to decide in advance what information the observer is likely to use in 

performing the task. We estimate it using GAM. In the fit displayed in Figure 6, 25 parameters 

were allocated to each smooth term, i.e., a 50-dimensional parameter subspace (see Appendix 

A3), but only a total of 11 were retained in the final result. 

Machine learning methods (Ripley, 1996; Bishop, 2007) can also be used to estimate 

classification images. GAM is an example of such a method and the machine learning field is 
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rapidly developing newer methods. Wichmann et al (2005), for example, evaluated a method 

with an intial linear stage followed by a non-linearity, analogous to GLM. Kienzle, Wichmann, 

Schölkopf & Franz (2007) propose a non-linear extension of the method. A fundamental 

problem in statistical estimation is to make use of known constraints on a solution without 

biasing (or dictating) the resulting estimates. Machine learning methods provide principled ways 

to do just that and thereby enhance what we can learn from a fixed amount of experimental  

data. 

In summary, we have shown that Generalized Linear and Additive Models provide useful 

approaches to modeling classification image data. In the presence of low internal noise, the 

GLM procedure is the most efficient and yields the most accurate estimate. The GAM approach, 

however, is more robust in the presence of internal noise and, in addition, generates an 

optimally smoothed estimate of the classification image. To our knowledge, we are the first to 

point out the benefits of using GAM to smooth images in a principled way and the first to 

evaluate the use of GAM for classification image estimation. 

 

A separate issue that we do not address is testing the validity of the template estimated 

by any of these methods. One interesting and recent approach is that of Wichmann et al (2005) 

who compared predicted versus actual data obtained in a second experiment using a novel 

experimental paradigm. 

Finally, the generalized linear and additive models allow the estimation of higher order 

classification images by incorporating additional terms into the linear predictor, and these higher 

order terms can be evaluated with respect to the significance of their contribution to the decision 

strategy of the observer while performing the task. 
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APPENDIX 

All of the computations in this article were performed using the open source software R 

(R Development Core Team, 2008). We also generated all of the graphs with R. In this 

appendix, we provide the code fragments that we used to fit the models described in the main 

article. 

The data set used in the code fragments below is contained in an object named Gabor 

that was described in the article. In each code fragment, the ``>'' is the R prompt and the ``+'' 

indicates a continuation from the previous line. 

 

A.1 Fitting with LM 

 Linear models in R are fit with the function lm whose first argument is a formula object 

and whose second object is a data frame. The data frame is in basic terms a matrix whose rows 

correspond to trials and whose columns correspond to variables coding the response and the 

stimuli including the external noise. We have seen data frames printed out as matrices in the 

main text. A data frame in R can also store information about the vairables including the names 

we wish to be used in plotting results and in referring to them in code. 

A formula object contains two terms separated by a tilde ~ that can be read as ``is 

modeled by''. The left hand side corresponds to the response to be modeled which here is the 

instantaneous noise values in the column named N in the data frame. The right hand side of the 

formula gives the explanatory variables, time and resp. The first is a 32 level factor indicating 

the time samples of the stimulus; the second is a 4 level factor indicating the response 

classifications of the observer. The slash indicates that a separate linear model will be 

estimated for each time sample and the -1 signifies that the global intercept should be removed 

from the model. Thus, a mean for each of the 4 response classifications at each of the 32 time 
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samples will be estimated. As all explanatory variables are factors in this model, it corresponds 

to an analysis of variance. 

We also include the data frame as the second argument. The terms in the formula will 

then be interpreted as the named columns of the data frame. 

The results are stored in the model object Gabor.lm.  

> Gabor.lm <- lm(N ~ time/resp - 1, Gabor)  
> ClsLM <- crossprod(matrix(coef(Gabor.lm),  
+    nrow = 4, byrow = TRUE), c(0, 1, -1, -1))  

 
To extract the classification image, we have composed several operations into a single line. 

Starting from the inside, we extract the 128 coefficients from the model object with the function 

coef. This vector is then coerced into a 4 row matrix. Finally, this matrix is multiplied by a 4 

element vector that weights and combines the coefficients to yield the 32 element classification 

image plotted in Figure 2a as white circles. 

 

A.2  Fitting with GLM 

 Prior to fitting the GLM model the data frame is reorganized so as to facilitate the 

modified specification of the model and stored in a new data frame named Gabor.wide. 

> Resp <- factor(unclass(Gabor$resp) < 3, 
+    labels = 0:1)[seq(1, nrow(Gabor), 32)] 
> Stim <- factor(unclass(Gabor$resp) %% 2, 
+    labels = 0:1)[seq(1, nrow(Gabor), 32)] 
> Gabor.wide <- data.frame(matrix(Gabor$N, ncol = 32,  
+    byrow = TRUE)) 
> names(Gabor.wide) <- paste("t", 1:32, sep = "") 
> Gabor.wide <- cbind(Resp, Stim, Gabor.wide)     

Initially, the column resp is recoded as 2 two-level factors, Resp and Stim. The first codes the 

responses of the observer as 0 and 1 for absent and present, respectively; the second codes 

the absence and presence of the signal, similarly. Then, the 32 instantaneous noise values for 

each trial are distributed across 32 columns of a data frame, so that each may be treated as an 

independent covariate in the formula object. For later identification, these are given names t1, 
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t2, ..., t32. Finally, the vectors Resp and Stim are attached as the first two columns of the 

data frame. 

Fitting the GLM model works in a similar fashion to the LM model except that we use the 

function glm and family and link functions must be specified: 

> Gabor.glm <- glm(Resp ~ . - 1, 
+    family = binomial(link = "probit"), 
+    data = Gabor.wide) 
> ClsImGLM <- coef(Gabor.glm)[-(1:2)] 
 

The column Resp is the response. The dot is a convenient shorthand for a model in which each 

column of the data frame except for Resp enters as a covariate additively as in Equation 16, 

which saves writing out the 33 terms.  Finally, the global intercept is excluded.  The model 

yields 34 coefficients in all.  The first two correspond to main effects of the two levels of Stim 

that we ignore here.  The next 32 specify the coefficients for each time sample.  The negative 

indices indicate a sequence in which these coefficients are excluded from the vector. 

 To specify a model in which the coefficients depend on the level of the factor Stim, the 

form of the model from the LM example is used. 

 > Gabor2.glm <- glm(Resp ~ Stim/. - 1, 
 +    family = binomial(link = "probit"), 

+    data = Gabor.wide) 
 

Again, the dot is a convenience to indicate all columns but the Resp. Terms of the form 

Stim/Stim are silently removed. As before, the global intercept is excluded. As with the LM 

model, the slash indicates that a coefficient is estimated for each level of Stim. The model 

yields 66 coefficients in all. The first two correspond to main effects of the two levels of Stim 

ignored here. The next 64 specify the coefficients for each time sample, alternating between the 

estimates for the two levels of Stim. The set of coefficients for each level of Stim correspond to 

the component images on the right hand side of Equation 4, here for stimulus absent and 

present, respectively.  

 The two models are nested and can be compared using a likelihood ratio test with the 

function anova.   
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 > anova(Gabor.glm, Gabor2.glm, test = “Chisq”) 

which generated the results of Table 1. 

 To estimate higher order classification images using GLM, the easiest strategy is to add 

additional columns to the data frame corresponding to powers of the noise samples.  The 

following code fragment demonstrates how to accomplish this for a second order image. 

 > sqt <- Gabor.wide[, -(1:2)]^2 
 > colnames(sqt) <- paste("tt", 1:32, sep = "") 
 > Gabor.wide <- cbind(Gabor.wide, sqt) 
 
The first line squares all of the noise values except those in the first two columns, Resp and 

Stim.  The second line assigns names to distinguish these columns from those used for the 

first order components.  The third line joins these columns to the data frame.  With this 

organization of the data frame the call to glm is the same as for the previous model. 

 > Gabor3.glm <- glm(Resp ~ Stim/. - 1, 
 +    family = binomial(link = "probit"), 

+    data = Gabor.wide) 
 

This model yields 130 coefficients.  The first 66 are organized the same as those for the 

previous model.   The next 64 correspond to those of the second order images.  The process 

of adding columns with higher powers of the noise can be continued to estimate higher order 

classification images. 

 

A.3 Fitting with GAM 

To fit the GAM model, the original organization of the data frame is appropriate except that the 

column resp must be decoded into responses and signal status as in fitting the GLM. 

Additionally, to obtain separate estimates for signal present and absent conditions, the noise 

profiles for each trial must be separated into separate columns as a function of signal status. 

This is performed with the model.matrix function, that takes a one-sided formula and a data 

frame and outputs a model matrix specified by the formula. Here the formula specifies a 

two-column matrix indicating the interaction of the signal status with the noise profile with the 
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column corresponding to the intercept removed. For convenience, we store each column of this 

matrix in a separate variable in the data frame. 

> Gabor$Stim <- factor(with(Gabor, unclass(resp) %% 2)) 
> Gabor$Resp <- factor(with(Gabor, unclass(resp) < 3), 
+    labels = c("0", "1")) 
> Imat <- model.matrix(~Stim:N - 1, data = Gabor) 
> Gabor$by0 <- Imat[, 1] 
> Gabor$by1 <- Imat[, 2] 
> Gabor.gam <- gam(Resp ~ 
+    s(Time, bs = "ts", by = by0, k = 25) + 
+    s(Time, bs = "ts", by = by1, k = 25), 
+    family = binomial("probit"), data = Gabor) 

 
The functions s in the GAM model specify the smooth terms and the argument bs the type of 

spline basis, here thin plate regression splines with shrinkage. The by argument is used to 

specify a term by which to multiply the smooth term, generating a “variable coefficient model” 

(Hastie & Tibshirani, 1990; Wood, 2006). Multiplying the smooth term by the noise profile on 

each trial corresponds to the inner product rule of (2). The arguments k specify the maximum 

number of parameters to allocate to each smooth term in fitting the model. Generally, specifying 

more than would be necessary helps in finding the model requiring fewer parameters, giving the 

best fit to the data. We could specify k up to 32 per smooth term, in this example, the length of 

the covariate Time, but the results were unchanged and the smaller value resulted in a faster 

execution time of the code. To extend this model to include the nonlinear terms discussed in the 

text, we simply add additional smooth terms to the model formula that contain powers of the by 

argument. For example, to include the second order terms, we fit the model 

> Gabor.gam2 <- gam(Resp ~ 
+    s(Time, bs = "ts", by = by0, k = 25) + 
+    s(Time, bs = "ts", by = by1, k = 25) + 
+    s(Time, bs = "ts", by = by0^2, k = 25) + 
+    s(Time, bs = "ts", by = by1^2, k = 25), 
+    family = binomial("probit"), data = Gabor) 
 

Additional higher order terms are fit by including successive powers of the by argument, but at 

the cost of significant increases in processing time and memory requirements for fitting the 

model. The likelihood ratio test between a set of nested models is obtained using the anova 
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function, that outputs a table in the typical form of an analysis of variance, although in the case 

of the binomial models here, it is deviance that is evaluated. For example, 

> anova(Gabor.gam, Gabor.gam2, Gabor.gam3, test = "Chisq") 

which outputs the table in the text, including the fit with 3rd order terms. The 2χ  test is 

appropriate here because the dispersion in a binomial model is not estimated. Extracting the 

predicted smooth curve is accomplished with the aid of the predict method for objects of class 

gam as illustrated in the following code fragment. 

> nd <- data.frame(Time = unique(Gabor$Time), 
+    N = rep(1, 32), 
+    by0 = rep(0, 32), 
+    by1 = rep(1, 32) ) 
> s1 <- predict(Gabor.gam, newdata = nd) 

 
A new data frame, nd, is required that has all the same variables used in the fit with gam, but 

only containing values for which predictions are desired. By default, the predictions are on the 

scale of the linear predictor, but a type argument can be used to specify that the predictions be 

on the response scale that, in this case, corresponds to the probability of responding “Present". 
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FOOTNOTES 

 

1. Other terms are used to refer to the weighting function or template (e.g., “perceptive field”, 

Neri & Levi, 2006). 

 

2. We remind the reader than an m m×  image can be represented by a vector of length 2m  

and vice versa. We will work primarily with vectors for notational convenience. 

 

3. In this section and the Appendix we will use math notation and typical printed version of that 

same notation used in naming variables in programming languages. E.g. the vector 1t  will be 

also referred to as t1. 
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