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Abstract 

Substantial clinical variability is observed in many Mendelian diseases, so that patients with the 

same mutation may develop a very severe form of disease, a mild form or show no symptoms at 

all. Among the factors that may explain these differences in disease expression are modifier 

genes. In this paper, we review the different strategies that can be used to identify modifier genes 

and explain their advantages and limitations. We focus mainly on the statistical aspects but 

illustrate our points with a variety of examples from the literature. 
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Introduction 

Genetic factors can play extremely diverse roles in the etiology of human diseases. A single rare 

mutation can fully account for a monogenic Mendelian disease, while a set of numerous genetic 

and environmental factors must be present to cause a multifactorial disease. Huge clinical 

variability can be observed even for simply determined diseases, and this variability may itself 

involve genetic factors, the so-called modifier genes.  

The modifier gene concept is not new, having been introduced in 1941 by Haldane (Haldane 

1941). It may be useful to review its definition, which varies from one study to another. Here are 

some definitions found in literature: 

1. “A gene that is recognized by its alteration of the phenotypic expression of genes at one 

or more other loci” (Futuyma 1998) 

2. “A gene that alters the expression of a gene at another locus” (Hall and Horton 1997) 

3. “A gene that affects the phenotypic expression of another gene” (Suzuki et al. 2004) 

4. “A gene capable of modifying the manifestation of a mutant gene without having an 

obvious effect on the normal condition” (Grüneberg 1963).  

The variety of interpretations to which these definitions lend themselves highlights the vagueness 

of the concept. Some studies also refer to these situations as digenic or oligogenic inheritance 

models, depending on the number of genes involved (Nadeau 2001; Slavotinek and Biesecker 

2003). In our view, the difference between modifier genes and oligogenicity lies in the definition 

of the phenotype. A good example is coat color in mice (for a review see (Silvers 1979)): color is 

controlled by gene B but its intensity (full or diluted) depends on gene D. If the phenotype is 

defined in three classes, as white, gray, and black, it can be explained by a digenic inheritance 
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model. If instead we consider that the primary phenotype is white or black (unaffected/affected), 

we find differences in intensity among the mice with the black phenotype (full black or gray) and 

gene D, which controls intensity, is a modifier gene.  

Searching for modifier genes is different from searching for the gene(s) responsible for the 

disease. The differences are in the phenotype to be explained and in the study population. When 

genes involved in the disease are sought, the phenotype of individuals is usually defined as 

affected or unaffected whereas for modifier genes, the phenotype of interest must be a measure of 

the clinical variability in the population of affected individuals (the disease phenotype versus a 

clinical phenotype). The difference may appear subtle, especially if the goal is to find the genes 

that explain the lack of penetrance of a given mutation, for then disease and clinical phenotypes 

may be the same. Even in this case, however, the population under study differs, for it is 

restricted to the population of individuals who carry mutations known to be involved in the 

disease.  

Many arguments support the concept of modifier genes and numerous studies have identified 

such genes in mice. A traditional example is multiple intestinal neoplasia. In mice, this is due to a 

dominant mutation of the Apc gene, but the number of intestinal tumors depends on the Mom-1 

(Modifier of Min-1) gene (Dietrich et al. 1993). In humans, modifier genes are often suggested to 

explain clinical variability in monogenic diseases (Feingold 2000; Nadeau 2001; Wolf 1997), but 

very few modifier genes have been identified so far and the mechanisms underlying clinical 

variability remain poorly understood, probably because of the involvement of complex 

mechanisms and multiple factors.  

Identifying these genetic modifiers may be of great interest from the viewpoints of both treatment 

and genetic counselling (Lyonnet et al. 2003), but it remains very challenging, despite the 
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powerful genetic tools available today. In this paper, we describe possible strategies to identify 

modifier genes, strategies that appear very similar to those used to study multifactorial diseases, 

but with additional specificities and problems. 

 

Choice of clinical phenotypes and study populations 

The first and probably the most important steps in the study of modifier genes are to define the 

clinical phenotype for which one seeks modifier genes and to choose the study population.  

The clinical phenotype may be qualitative. Examples include the presence or absence of 

meconial ileus in cystic fibrosis, the presence or absence of Hirschsprung's disease in Ondine's 

curse, the presence or absence of scoliosis in neurofibromatosis, and the four severity classes of 

spinal muscular atrophy. Alternatively it may be quantitative, such as age at onset in Friedreich's 

ataxia or Huntington's disease, survival time in hypertrophic cardiomyopathy, or forced 

expiratory volume value in one second (FEV1) in cystic fibrosis. Choosing a relevant clinical 

phenotype may be difficult, and adjustment for appropriate covariables (such as age and sex) 

is often necessary. For example, in studying hypertrophic cardiomyopathy, one may be interested 

in maximal wall thickness (MWT), interventricular septum thickness (IVS) or, as proposed by 

Spirito and Marron (Spirito and Marron 1990), a score combining several measurements of left 

ventricular hypertrophy (LVH score). All these variables must be adjusted for appropriate 

covariates, such as age, sex and body surface area (Forissier et al. 2005). Success in finding 

genetic factors may depend on the choice of variable and on the inclusion of appropriate 

covariates in the model. The study by Milet et al. (Milet et al. 2007) of serum ferritin levels in 

hereditary hemochromatosis illustrates this point: the effect of one SNP in the bone 

morphogenetic protein 2 (BMP-2) gene was significant after adjustment for age and sex (nominal 
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p<0.0001 and p<0.0075 after correction for 75 tests) and was only borderline without any such 

adjustment (nominal p=0.0007 and p=0.053 after correction for 75 tests)(J. Milet, personal 

communication). Beaumont et al. (1976) (Beaumont et al. 1976) studied the incidence of 

ischemic disease in familial hypercholesterolemia and xanthomatosis and found that the 

difference observed between men and women disappeared after adjustment for smoking habits. 

The choice of phenotype is also difficult when looking for modifier genes that may be involved 

in lung disease severity in cystic fibrosis patients. Most studies use empirical Bayes estimates of 

FEV1 (% predicted) at age 20, rather than crude FEV1, because this age has been shown to be 

best for distinguishing between patients with mild and severe disease (Schluchter et al. 2006).  

The population of individuals to be studied must also be defined. Depending on the disease, 

one might focus on individuals with a given mutation known to be involved in the monogenic 

disease. For example, the study of the modifier genes involved in different phenotypes associated 

with cystic fibrosis is usually performed in the subpopulation of individuals homozygous for the 

DeltaF508 mutation of the CFTR gene. This restriction on a given mutation is possible however 

only for monogenic disease where one major mutation accounts for a large proportion of the 

cases. In many instances, this condition cannot be met and investigators must consider the 

population of patients with any of the mutations known to be involved in the disease. As 

discussed below, it is then necessary to determine the proportion of variability in the trait that is 

explained by any difference in these primary mutations.  

  

Different explanations of variability in disease expression  

Several factors other than modifier genes might explain disease expression variability, and it is 

important to verify that these other factors do not explain all the variability in disease expression. 

In particular, environmental factors might be involved but in this review, we will focus on the 
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genetic causes of disease expression variability. 

Genetic heterogeneity of the primary factor involved in the disease  

Genetic heterogeneity may either be at the gene level, with different genes involved in the 

different sub-entities of the disease, or at the mutation level, with different mutations of the same 

gene leading to different phenotypic expression of the disease. One major example of genetic 

heterogeneity is hypertrophic cardiomyopathy, an autosomal dominant disease that can be due to 

more than 300 different mutations, most of them (~65%) located in two genes encoding the 

sarcomeric proteins MyBPC3 and Myh7. Survival time is longer for patients with an MyBPC3 

mutation than for those with an Myh7 mutation (Charron et al. 2002; Richard et al. 2003). 

However, heterogeneity at the mutation level might also influence survival time, as shown by 

Watkins et al. (Watkins et al. 1992) for mutations in Myh7.  

Breast and ovarian cancers furnish another example. Breast cancer can caused by mutations in the 

BRCA1 or the BRCA2 genes. BRCA2 mutation carriers are at greater risk of developing ovarian 

cancer, but this risk also depends on the position of the mutation in these genes: in the BRCA1 

gene, the risk is smaller when the mutation is in exons 13 to 24 (Shattuck-Eidens et al. 1995) and 

in the BRCA2 gene, the risk is greater when the mutation is at the 3’end of the gene, compared 

with the 5’region (Gayther et al. 1997). Another example is cystic fibrosis, where pancreatic 

insufficiency is usually observed in patients homozygous for severe mutations of the CFTR gene 

(class I, II or III mutations).  

The age of onset in Huntington’s disease (HD) is also an interesting example. This disease is 

caused by an autosomal dominant expanded triplet (CAG) repeat, located in the huntingtin gene 

on chromosome 4p16.3. Alleles with more than 40 CAG repeats are considered fully penetrant, 

but some significant differences in the age of onset of motor symptoms depend on the specific 

CAG count: a higher number of repeats is associated with earlier onset. 
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Verifying that genetic heterogeneity does not explain all the phenotype variability of interest is an 

important step, because this issue may have implications for which patients should be studied and 

specifically, whether the study should be limited to patients who do or do not carry a given 

mutation. It can also help guide the choice of the clinical phenotype to be studied. To study a 

quantitative phenotype, for example, the age of onset of motor symptoms in HD, clinical 

phenotype might be defined by determining the proportion of the total variance in the trait that is 

explained by the mutation type (bearing in mind that variance is a measure of statistical 

dispersion, averaging the squared distance of its possible values from the expected value). Using 

data on 443 HD patients with CAG repeats ranging from 40 to 86, Wexler et al. (Wexler et al. 

2004) found that the length of the repeat accounted for 72% of the variance in age of onset. 

Accordingly the residual age of onset after accounting for the contribution of the CAG repeat 

lengths is an appropriate phenotype to study. 

 

Effect of another variant in the gene in cis or trans position 

Phenotypic variability might also be due to the effect of another variant in the gene, in either the 

trans or cis position to the primary mutation. In some dominant diseases, clinical expression may 

depend on the normal allele (trans effect). Good examples are erythropoietic protoporphyria, 

where a low expressed allelic variant of the ferrochelatase gene located in trans from the mutation 

explains the variability in disease expression (Gouya et al. 1996; Gouya et al. 2006; Gouya et al. 

1999) and hereditary elliptocytosis, where the αLELY allele increases mutation expression when it 

is located in trans position to the mutation (Delaunay et al. 1995). Alternatively, cis effects might 

be suspected when the haplotype carrying the disease mutation varies with the clinical phenotype. 

A striking example is that of Creutzfeldt-Jakob and familial fatal insomnia: carriers of a single 
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mutation in codon 128 of the prion protein gene located on chromosome 20 develop one or the 

other disease depending on a polymorphism at codon 129 of the same gene that codes for two 

different amino acids ⎯ valine or methionine (Goldfarb et al. 1992).  

 

Modifier genes of disease expression  

Disease expression variability might also be explained by the effect of genes other than the 

primary one involved in the disease, and it is these that are usually referred to as modifier genes. 

Their effect on disease expression may vary from strong effects under a “monogenic-like” model 

to much milder effects under a “multifactorial-like” model. 

Under the monogenic-like model, a single modifier gene exhibits rare fully or almost fully 

penetrant mutations that explain all or a very important part of the variability in disease 

expression. Examples of this type of modifier genes can be found among the genes involved in 

the splicing machinery (see the recent review of Wang and Cooper (Wang and Cooper 2007)). 

Under the multifactorial-like model, disease expression depends on the effects of several genetic 

variants located in different modifier genes that, by themselves, only explain a small proportion 

of the variability but interact both with one another and with environmental factors. This is 

probably the most common situation and is the one on which we have chosen to focus. These 

genetic modifiers are in fact very similar to the genetic risk factors involved in complex diseases, 

and the same strategies are used to help uncover these genetic modifying factors. The main 

difference is that population sizes are much more limited. 

 

Evidence for the role of genetic factors in the variability of disease expression  
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Before planning the search for genetic factors involved in any monogenic variability in disease 

expression, the role of familial factors must be shown by comparing the correlation of the 

phenotype of interest in related and unrelated patients. If genetic factors play a role, inter-family 

variability should be greater than intra-family variability. This is often difficult to study 

especially for rare monogenic diseases. Even for more common diseases such as cystic fibrosis 

(CF), the task is not necessarily easy since genetic counselling and prenatal diagnosis have 

considerably reduced the number of families with multiple affected individuals. A recently 

published article by Vanscoy et al. (Vanscoy et al. 2007) collected data about the severity of lung 

disease in 231 sibling pairs affected by CF. This was possible only through a huge project, the 

"CF Twin and Sibling Study," which involves 71 CF care centers throughout the United States.  

If possible, collection of data on twins can be especially useful in showing that genetic factors 

are included among these familial factors and in obtaining estimates of the heritability associated 

with different phenotypes of lung disease severity. The study by Vanscoy et al. (Vanscoy et al. 

2007) studied both monozygotic and dizygotic CF twins and concluded that modifier genes are 

likely to be involved in the variability of CF lung disease.  

Another way of demonstrating the role of genetic factors in disease expression variability is to 

take advantage of particular population contexts, as in the study of the age of onset of HD in 

Venezuelan kindreds (Wexler et al. 2004), the largest and best characterized HD population in 

the world (Okun and Thommi 2004). Most affected individuals are descendents of one woman 

who lived in the early nineteenth century in a stilt village on Lake Maracaibo, died from HD and 

passed her abnormal allele through ten generations. Using data about 443 heterozygous members 

of the Venezuelan kindreds with CAG repeat lengths varying from 40 to 86 and applying a 

variance component approach to the residual age of onset phenotype (after accounting for the 

repeat length contribution), Wexler et al. showed that this phenotype has a 38% heritability and 
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therefore that genetic factors besides the CAG repeat lengths are probably involved in the 

determination of age of HD onset (Wexler et al. 2004). 

Twin and sibling studies might also provide clues to the genetic model underlying disease 

expression variability. We would expect to see a complete or almost complete phenotypic 

correlation within families if this variability were explained by the existence of different 

mutations and, similarly, if cis-acting genetic variants were involved. If rare trans-acting genetic 

variants play a causal role, phenotype concordance would be expected in about half the siblings 

and complete concordance in monozygotic twins. For modifier genes in a monogenic-like model, 

a similar pattern of concordance would be expected with complete or almost complete 

concordance in monozygotic twins, while concordance rates for modifier genes in a 

multifactorial-like model would be much smaller.  

 

Strategies to show the role of genetic modifiers 

Strategies used to show the role of genetic factors in phenotypic expression are often classified 

into two categories depending on the type of data available: linkage studies and association 

studies. Another distinction often made is based on the approach, which can be either a 

systematic approach where the whole genome is scanned or a more focussed approach, where 

candidate genes or candidate pathways are selected.  

 

Linkage analysis of family data  

If data are available about affected siblings, one useful analysis may be a linkage screen, which 

compares the number of alleles shared identical by descent by affected sibs between 

phenotypically-concordant and discordant sibpairs. Three types of affected sibpairs can in fact be 

distinguished for qualitative (binary) phenotypes: sibpairs concordant for the phenotype of 
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interest, sibpairs concordant but without the phenotype and sibpairs discordant for the phenotype. 

Note that concordant sibpairs without the phenotype of interest are often included in linkage 

studies to search for modifier genes. Depending on the genetic model and in particular on the 

prevalence of the phenotype of interest in the patient population and on its recurrence among 

siblings (Houlston and Tomlinson 1998), these concordant sibpairs without the phenotype might 

not be helpful in detecting linkage with this phenotype, but they can help to show genetic factors 

that protect against it. Such a linkage strategy was used to search for genetic factors involved in 

meconium ileus in CF patients. Zielenski et al. (Zielenski et al. 1999) studied a sample of 152 CF 

affected DeltaF508 homozygous carrier sibpairs. The distribution of affected sibpairs sharing 2, 1 

and 0 alleles identical by descent observed in the 19q13 region differed according to whether 

both sibs had meconium ileus. A strong departure from the expected proportions of ¼, ½ and ¼ 

was observed, especially in the sibpairs discordant for meconium ileus (see Table 1). On average 

they shared fewer alleles identical by descent than expected. Because most of the evidence for 

linkage came from this category of patients, discordant sibpairs might in fact have been used to 

search for modifier genes. Computing power under various genetic models, Houlston and 

Tomlinson (Houlston and Tomlinson 1998) showed that the power to detect linkage could be 

considerably increased by using phenotypically discordant sibpairs, compared with concordant 

pairs. The range of models investigated was limited, however, because they considered only the 

effect of a dominant or a recessive gene with high penetrance. Under scenarios with smaller 

penetrances, the required sample sizes would be very large and impossible to collect. Discussions 

of the relative interest of the different types of affected sibpairs can also be found in the literature 

on using linkage analysis to search for genetic risk factors involved in multifactorial disease (see 

for example (Rogus and Krolewski 1996)). A more recent genome-wide linkage study aimed at 

identifying genetic factors involved in the occurrence of meconium ileus in CF did not confirm 
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the linkage with the 19q13 region but found regions of suggestive linkage on chromosomes 4q35, 

8p23 and 11q25 (Blackman et al. 2006).  

Linkage analyses for quantitative phenotypes can also be performed with several different 

methods, including variance components. One example is the study of the age of onset of motor 

symptoms in HD by the HD-MAPS group (Li et al. 2003). A genome-wide scan of 629 affected 

sibpairs from 295 families used a variance component approach to age at onset, adjusted for the 

number of CAG repeats. It found evidence suggestive of linkage (LOD ≥ 2.19) with two regions 

of chromosome 6 (6p21-23 and 6q24-26). A more recent study by the same group of 102 

additional sibpairs confirmed the linkage with the 6q region (Li et al. 2006) with a LOD of 4.94 

on the combined sample of more than 700 sibpairs. Methods other than variance component that 

can also be used to search for linkage with quantitative phenotypes include Haseman-Elston 

regression and Bayesian methods (for a review, see (Feingold 2001)).  

It is also possible to dichotomize the quantitative phenotype rather than analyzing it, and then use 

the same methods as for qualitative traits. The choice of the optimal cutoff point for 

dichotomization is not necessarily easy, however, methods to optimize this point should be 

considered. The ordered subset analysis (OSA) method proposed by Hauser et al. (Hauser et al. 

2004) might be of particular interest in the search for genetic modifier. The idea of the method is 

to use the information on a quantitative covariate to rank affected sibpairs in subsets of increasing 

size where linkage is tested with the disease. It was presented as a method to test for linkage in 

the presence of genetic heterogeneity but it can also be useful for determining the role of modifier 

genes in Mendelian diseases.  

Although linkage analyses can successfully identify modifier genes, they also have limitations, 

which are summarized in Table 2. In particular, they lack power to detect the effect of frequent 
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alleles. Because such alleles are likely to enter genealogies more than once, tracking them can be 

difficult. 

 

Association studies of case-control data  

An alternative strategy to linkage consists in testing for associations in case samples. This is the 

most widely used strategy in the search for modifier genes involved in CF-associated lung 

disease, probably because it requires sampling patients only, rather than collecting family data, as 

in linkage studies. For qualitative phenotypes, the distribution of marker genotypes is compared 

in patients with and without the phenotype of interest to detect markers that show differences. 

These may be involved in phenotype expression or associated (in linkage disequilibrium) with 

loci involved in phenotype expression. For quantitative phenotypes, the average value of the 

phenotype for the different genotypes can be compared with ANOVA or t-tests. Depending on 

the phenotype and the model underlying the effect of the modifier gene on the trait, power may 

be increased with the first approach after dichotomization of the trait (Fardo et al. 2007). As in 

linkage studies, however, the choice of the appropriate cutoff point might not be easy, and 

methods that rank cases based on their quantitative traits, with measures similar to the OSA 

method, should be considered (Macgregor et al. 2006).   

The major limitation of population-based association tests is that once an association is detected, 

it is often difficult to determine if it is due to the direct effect of the polymorphism of interest on 

the trait, to the effect of another variant in linkage disequilibrium with the markers being studied, 

or to another unknown confounding factor that might not even be genetic. To illustrate the latter 

possibility, consider a multicenter study of CF-associated lung disease where care practices differ 

substantially between centers. Suppose that, in center A, patients show a milder form of the 

disease because of a better care practice and that moreover in the region where center A is 
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located, there are also important allele frequency differences at one marker M, compared with the 

population in other regions. An association between marker M and lung disease severity might 

then be found, not because marker M is indeed involved but because the subgroup of patients 

with the mild forms will have an excess number of individuals from center A where allele 

frequencies at marker M are different. This is the well-known issue of population admixture, 

encountered in population-based association studies. The problem is probably even more acute in 

the search for modifier genes, which require multicenter studies to collect large enough patient 

populations and which may consider phenotypes more subtle than affected versus unaffected. 

Several methods to help prevent false conclusions due to population admixture have been 

proposed, ranging from careful matching to the use of random markers to help detect hidden sub-

populations (Cardon and Palmer 2003). These strategies appear to be used relatively rarely in the 

search for genetic modifiers, and population stratification is often neglected. The recent 

availability of large samples of individuals genotyped for hundreds of thousands of markers has 

demonstrated that allele frequency differences between populations are a concern even within 

populations previously considered relatively homogeneous (Choudhry et al. 2006; Steffens et al. 

2006).  

New methods are currently being developed to account and correct for population stratification in 

association studies (Epstein et al. 2007; Li and Yu 2008; Luca et al. 2008; Price et al. 2006). 

Another strategy consists in using family-based association tests with case-parent trio designs and 

the transmission disequilibrium test (TDT) (Spielman et al. 1993). The advantage of this 

approach is that it tests for both linkage and association and thus ensures that any significant 

results are not due to population admixture. The basic idea of these tests is to compare the alleles 

that parents do and do not transmit to their affected children. Thus, the search for modifier genes 

must examine whether or not there is a difference in parental transmissions according to the 
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phenotypic categories of the affected children. The sampling of case-parent trios might not be 

difficult when studying diseases such as CF, which occur early in life, but this strategy has never 

been used to identify genetic modifiers.  

When the phenotype of interest is quantitative, different methods have been proposed to test for 

associations with case-parent trio data. One is the quantitative TDT (QTDT) method, which relies 

on a variance component approach (Abecasis et al. 2000). Alternatively, one might consider 

ordered TDT (OTDT), which, like the OSA method for linkage analysis, is based on the ordering 

of patients as a function of their quantitative phenotypic measures (Perdry H et al. 2007). The 

method's aim is to find a critical value of the phenotypic measure that separates the trios into two 

groups with significantly different transmission rates. No assumption about the distribution of the 

phenotype in the population is made, contrary to the QTDT method, which requires normal 

distributions. Perdy et al. found the OTDT to be more powerful than the QTDT in a large variety 

of models(Perdry et al. 2007).   

 

Blind search: Systematic genome-wide screens  

The systematic screen, which consists in searching for the genetic factors involved in the 

phenotype of interest over the whole genome, was initially only possible for linkage testing. 

Maps of ~400 microsatellite markers spaced an average of 10 centimorgans (cM) apart over the 

whole genome were available and could be used to perform linkage tests. This intermarker 

distance was enough to ensure good coverage of the genome when information about the co-

segregation of phenotype and markers in families was used. A much denser map is needed, 

however, to test for associations. Only very recently have such maps become available, through 

international projects such as HapMap (www.HapMap.org). Maps of single nucleotide 

polymorphisms (SNPs) are now available that provide good coverage of all common variations 
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(those with a minor allele frequency of more than 5%) of the human genome. These maps include 

more than several hundred thousand markers that are available in chips (the new Affymetrix 

genome-wide SNP-array 6.0 includes 1.8 million genetic markers randomly chosen to cover the 

genome, and its competitor, the Illumina Human1M BeadChip, allows genotyping of 1 072 820 

markers, an important proportion of them located in genes). In recent years, these chips have 

been used to perform genome-wide association (GWA) studies to search for the genetic risk 

factors involved in complex diseases such as Type-2 diabetes, obesity, age-related macular 

degeneration, Crohn disease, etc.  

In age-related macular degeneration, an association was detected after a genome-wide screen 

with the early 100K chips on 96 cases and 50 controls with an intronic SNP located in the 

complement factor H gene. After re-sequencing the region, a nonsynonymous Y402H 

polymorphism (due to a T to C base change at SNP rs1061170) in linkage disequilibrium with the 

primary associated SNP was suggested to be polymorphism involved in disease susceptibility 

(Klein et al. 2005). Subsequent studies have confirmed this association, and a meta-analysis 

estimates that the risk is increased by 6 and 2.5 for, respectively, the homozygous and 

heterozygous carriers of the C allele at rs1061170 (Thakkinstian et al. 2006). This study on age-

related macular degeneration is often used as a proof-of-principle that GWA studies might work 

even with small samples; however, this is only one example among many others where genetic 

factors are found to be associated but confer very small risks (odds ratio of less than 1.5). A good 

example is the GWA studies performed on type-2 diabetes. Six GWA studies published in 2007 

provided evidence for 6 new gene regions. Added to the five genes already known to be 

associated with type-2 diabetes, this makes a total of 11 gene regions associated with this disease 

with risk allele frequencies ranging from 0.31 to 0.87 and allelic odds ratio from 1.10 to 1.37 

(Frayling 2007). To obtain the statistical evidence needed to detect such factors, very large 
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samples of several thousand cases and controls are needed. Indeed, the large number of markers 

tested makes it necessary to correct for multiple testing and thus to use very stringent criteria to 

conclude in a significant association (see BOX 1 for the multiple testing issue). Investigators will 

find this still more difficult when searching for modifier genes, because they will need to 

consider patient sub-samples and will rarely have available sufficient large samples. Figure 1 

reports the required sample sizes to detect the association with a 80% power, on the assumption 

of a genetic risk factor with an effect similar to that reported by Drumm et al. (Drumm et al. 

2005) for the C509T polymorphism of the TGFβ1 gene in CF-associated lung disease. Sample 

sizes are reported for both population-based and case-parent trio samples, and a Bonferroni 

correction for multiple testing is performed to ensure that the global type-one error rate is less 

than 5%. If 500,000 markers are tested to cover the whole genome, 1905 individuals with the 

phenotype of interest and 1905 without it will be required to ensure 80% power to detect the 

association. For modifier genes, this means 3810 patients with mutations involved in the 

Mendelian disease, a number completely unrealistic even for the most frequent Mendelian 

disorders. A case-parent trio design would require 1914 patients and their parents. Although this 

sample size is also impossible to collect, it offers a non-negligible economy in terms of number 

of patients and shows that the trio design deserves more attention in modifier gene studies. Also 

note that when new associations are described, replication studies of independent samples are 

essential. Guidelines for replicating genotype-phenotype associations have been proposed 

(Chanock et al. 2007), but they are difficult to follow when looking for genetic modifiers since 

independent samples of sufficient sizes with the same phenotypic information as the initial 

sample may simply not exist.  
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Biology-driven approach: Candidate gene tests 

Instead of blind searches for modifier genes over the whole genome, it may be wiser to focus on a 

more limited number of carefully chosen genes, the so-called candidate genes. The difficulty here 

is choosing these candidates. Different approaches can be used to select them. One might look 

first at the genes involved in the same pathway as the primary mutation in the disease. For 

example, for familial hypercholesterolemia due to a mutation in the LDL receptor gene, genes of 

the lipoprotein pathway are good candidates. Alternatively, one might decide to focus on genes 

located in another pathway and involved in somewhat more indirect disease consequences. In CF, 

for example, candidate gene studies have considered genes involved in the inflammatory process. 

In hereditary hemochromatosis, a recent study showed that genes in the BMP pathway and 

involved in the expression of hepcidin, a peptide hormone produced by the liver that controls 

plasma iron concentration, might be promising candidates to explain the penetrance variability of 

the HFE p.C282Y mutation in homozygote carriers (Milet et al. 2007). Interestingly, the authors 

focused on an indirect measure of disease penetrance, the serum ferritin levels of C281Y 

homozygotes. This is the first association detected between common variants in genes of the 

BMP pathway and iron burden. Further studies will need to determine if this is specific to 

p.C282Y carriers, by testing for the effect of these variants on serum ferritin levels in the general 

population. Another example involves dilated cardiomyopathy, where candidate genes in 

different pathways are being studied, in particular the beta-adrenergic pathway and the renin-

angiotensin-aldosterone system. New approaches have also been used based on animal models, 

which allow a better control of the environment (Komajda and Charron 2004). 
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Discussion 

When the clinical expression of a monogenic disease varies considerably between patients, it is 

tempting to try to explain it by the effect of some other genetic factors that modify the expression 

of the primary mutation, i.e., modifier genes. However, before launching expensive and time-

consuming genetic studies to identify these genetic modifiers, it is important to make sure that 

they really exist and that environmental factors or other mechanisms, such as genetic 

heterogeneity, do not suffice to explain this clinical variability. Investigators should also keep in 

mind that the effect of modifier genes might be very complex, as it is for the genetic risk factors 

involved in common diseases. Several genetic variants might be involved and may interact to 

modulate the effect of the primary mutation. It is even possible that phenotypic variability may be 

explained not by the patients' modifier genotypes but by their mothers' genotypes, as recently 

reported for the maternal Apo E genotype in Smith-Lemli-Opitz syndrome (Witsch-Baumgartner 

et al. 2007).  

Structural genomic variations, such as copy number variants (CNVs), might also be involved in 

the variability of penetrance and phenotypic expression in Mendelian diseases (for a review see 

(Beckmann et al. 2007)). Some but not all of these CNVs can be detected because of their linkage 

disequilibrium with common SNPs, and alternative strategies will need to be developed to test for 

associations with both CNVs and SNPs. Recent reports concerning the functional structure of the 

human genome show that other mechanisms, such as differences in transcription, may also 

explain disease expression variability and that the transcription domain of genes might extend 

very far beyond the usual regulatory sequences. These findings open up new perspectives for the 

search of cis-acting alleles (Encode-Project-Consortium 2007). 

An important issue in the search for modifier genes is the choice of study phenotype. It is often 

possible to use different variables to characterize disease expression, and studies of the 
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heritability associated with them might help to choose the appropriate phenotype. The studies on 

CF and Huntington's disease illustrate this well. Nonetheless, it may be an impossible task for 

many Mendelian disorders because of the rarity of cases. The candidate genes may also dictate 

the choice of phenotype to look at, as in the example of hereditary hemochromatosis and the 

BMP pathway.  

It is very tempting to follow the trend from restricted candidate gene studies to extensive 

genome-wide scans, as in the genetic studies of common diseases. There is not, however, a single 

best strategy that will work in all scenarios. The strategy depends, rather, on the model 

underlying the genotype-phenotype relation and since this model is not known, it is impossible to 

predict what will be found. Recent genome-wide association studies show that this strategy could 

work but it might also be disappointing, especially in modifier gene studies where only limited 

samples are available and replication on independent samples difficult. With the decreasing cost 

of genome-wide SNP arrays, it might be worthwhile to do whole genome chips and analyse only 

the candidate gene regions rather than to design special assays to study the candidate genes. This 

is true for candidate genes that are well covered in HapMap. However, recent studies show that a 

relatively high proportion of the common polymorphisms (minor allele frequency above 5%) 

detected in 500 genes through re-sequencing are not tagged by SNPs from HapMap, ranging 

from 50% to 20% depending on the population (Xu et al. 2007). The same study estimates that 

only approximately 30% of the nonsynonymous SNPs are in high LD with any HapMap SNP. 

This evaluation shows that candidate gene studies with re-sequencing of the selected genes in a 

subset of individuals remains a strategy to consider. It is also important to keep in mind that 

linkage information may be useful in understanding the role of a genetic variant in the phenotypic 

variation. Association and linkage provide complementary information and efforts to collect 

family data need to be continued (Bourgain et al. 2007; Clerget-Darpoux and Elston 2007). This 
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is particularly true when studying modifier genes for which familial information might be more 

easily available. 

The search for modifier genes is difficult but worth being pursued ⎯ not only for the direct 

possibilities it might offer patients affected by the disease but also for the better knowledge of 

biological pathways that will flow indirectly from this quest. Although interest has shifted 

gradually from monogenic to more common multifactorial diseases, it is important to keep in 

mind that monogenic diseases represent a simpler model of diseases that teach us many things 

about the genetic basis of more complex diseases (Antonarakis and Beckmann 2006). The study 

of Mendelian disorders may also lead to the discovery of novel drug targets (Brinkman et al. 

2006). 
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Figures and Tables 

 

Table 1:  Occurrence of meconium ileus (MI) in cystic fibrosis: linkage analysis with the 19q13 

region (Zielenski et al. 1999) 

 

Sibpairsa IBD=0 IBD=1 IBD=2 Total Conformity test  

chi2 (p-value)b

both MI 0 (0%) 3 (42.8%) 4 (57.2%) 7 4.7 (0.09) 

neither MI 22 (19.6%) 59 (52.7%) 31 (27.7%) 112 4.8 (0.41) 

discordant 20 (60.6%) 11 (33.3%) 2 (6.1%) 33 23.3 (8.7 10-6) 

Total 42 (27.6%) 73 (48.1%) 37 (24.3%) 152 0.6 (0.75) 

a 152 sibpairs homozygous for the DeltaF508 mutation of the CFTR gene were sampled and 

grouped together depending on whether both sibs had a MI, none had a MI or were discordant for 

MI. The number of sibpairs sharing 0, 1 or 2 alleles identical by descent (IBD=0, 1 or 2) are 

reported with the respective proportions in parentheses. 

b Results of the test of conformity of the observed IBD distribution with the expected proportions 

under the null hypothesis of no linkage (1/4, 1/2, 1/4) 
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Table 2:  Advantages and limitations of the linkage strategy in searching for modifier genes 

 
Advantages Limitations 

+ Robustness 

- to allelic heterogeneity 

- to population stratification 

+ Coverage of the genome with a limited 

number of markers 

- 400 microsatellite markers 

- 6,000 to 10,000 SNPs 

+ Heritability estimates 

+ Power decreases with increasing risk allele 

frequency: limited power for allele frequency 

greater than 0.3 

+ Candidate regions identified through linkage 

studies are very large, spanning several 

megabases, and include several genes 

 

+ Difficulty to obtain large samples of related 

patients with the phenotype of interest 
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Box 1  Multiple testing issues in association studies 

When the number of markers tested increases, it is necessary to take into account the fact that 

multiple tests are performed. That is, if one defines as significant any tests with a p-value below 

5%, and only one test is performed, the probability of incorrectly rejecting the null hypothesis 

and concluding in an association is 5%. If N tests are performed, this probability is increased 

proportionally: when N=100 there will be on average 5 false-positive results and if N=100,000 

this number will be 5000. To limit the proportion of false positives, corrections can be made for 

multiple testing. One of the most commonly is the Bonferroni correction. To ensure a global 

type-one error of 5% for N tests, it considers significant only tests with a p-value of less than 

0.05/N. This correction is conservative when tests are not independent. Other less conservative 

corrections have been proposed, which take into account the correlation that may exist between 

markers through linkage disequilibrium (Li and Ji 2005; Nyholt 2004). Even after accounting for 

linkage disequilibrium, the significance level for ensuring a genome-wide type 1 error of 5% 

remains on the order of 10-7. 
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Figure Legends 

Figure 1  Sample sizes required to reach 80% power to detect an association when different 

number of markers are tested.  

The total number of patients (white bars) or case-parent trios (black bars) required to reach a 

power of 80% are shown. A genetic factor is assumed, with an effect similar to that of the C509T 

polymorphism of the TGFβ1 gene in CF-associated lung disease: a 0.34 allele frequency acting 

recessively with an odds ratio of 2 (Drumm et al. 2005). For the patient samples, it is assumed 

that the phenotype of interest is present in 50% of the individuals and absent in the remaining 

50%. For the trio samples, all patients are assumed to have the phenotype. The program Genetic 

Power Calculator (Purcell et al. 2003) was used with a Bonferroni correction for multiple testing. 
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