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Abstract 

 

Cell-matrix adhesions are essential for cell migration, tissue organization, and 

differentiation, therefore playing central roles in embryonic development, remodeling and 

homeostasis of tissue and organs. Matrix adhesion dependent signals cooperate with other 

pathways to regulate biological functions such as cell survival, cell proliferation, wound 

healing and tumorigenesis. Cell migration and invasion are integrated processes requiring the 

continuous, coordinated assembly and disassembly of integrin-mediated adhesions. An 

understanding of how integrins regulate cell migration and invasiveness through the dynamic 

regulation of adhesions is fundamental to both physiological and pathological situations. A 

variety of cell-matrix adhesions has been identified, namely, focal complexes, focal 

adhesions, fibrillar adhesions, podosomes and invadopodia (podosome type adhesions). These 

adhesion sites contain integrin clusters able to develop specialized structures which are 

different in their architecture and dynamics although they share almost the same proteins. 

Here we compare recent advances and developments in the organization and dynamics of 

focal adhesions and podosome type adhesions, in order to understand how such subcellular 

sites so close in their composition can be structurally and functionally so different. The 

underlying question is how their respective physiological or pathological roles are related to 

their distinct organization.  
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Introduction 

Many distinct types of adhesions between cells and the extracellular matrix have been 

described: focal complexes, focal adhesions, fibrillar adhesions, podosomes and invadopodia 

(Fig.1). These cell-extracellular matrix interactions are all mediated through different 

specialized subcellular sites that all contain specific adhesion receptors named integrins, 

cytoskeletal elements, and a wide variety of interconnecting adaptor proteins and signaling 

proteins. Some of those proteins can be specifically expressed at differentiation states such as 

RhoU/ Wrch1 which is induced during the differentiation of macrophages into osteoclasts 

(Brazier et al., 2006). Although adhesive structures share almost the same proteins (Table 1), 

major structural differences are observed: podosomes contain a ring of adhesive molecules 

centered on an actin column and their general orientation is perpendicular to the substrate and 

the plasma membrane. This contrasts with the elongated structure of focal adhesions with a 

tangential orientation with respect to extracellular matrix (Fig. 1). Dynamics and tension 

associated to both structures are also different: podosome type adhesions (PTA) associated 

with podosomes and invadopodia being more dynamic and instable as compared to focal 

adhesions. In all cases, alteration of their dynamics results in modifications of cell 

differentiation and migration (Vicente-Manzanares et al., 2005; Bouvard et al., 2007). These 

distinct properties suggest specific functions: the most commonly admitted idea is that 

podosomes and invadopodia could be involved in matrix degradation and invasion, whereas 

focal adhesions are rather associated with matrix remodeling such as fibronectin 

fibrillogenesis (Larsen et al., 2006; Linder, 2007). 

Due to their involvement in physiological and pathological situations, cell-matrix adhesions 

are now receiving widespread attention. Indeed, podosomes and invadopodia could be 

involved in physiological events such as monocyte extravasation and tissue transmigration 

(Carman et al., 2007) or in pathological conditions such as atheroma (Moreau et al., 2003), 

osteoporosis or osteopetrosis. Cancer cells are also able to exploit cell-matrix adhesions such 

as focal adhesions and invadopodia (Paszek et al., 2005; Marx, 2006). In the past few years, 

mutations on proteins located in focal adhesions and/or podosomes allowed to characterize 

some pathologies: for instance, WASP is associated with Wiskott-Aldrich syndrome causing a 

severe immunodeficiency, Kindlin is associated with Kindler syndrome (Siegel et al., 2003) 

causing skin blistering, skin atrophy, photosensitivity, carcinogenesis, and palladin is causing 

familial pancreatic cancer (Pogue-Geile et al., 2006). Nevertheless, the precise relationship 

between these pathologies and adhesion is still unclear. 
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Here, we will focus on the architecture, dynamics and tension of focal adhesions and 

podosome type adhesions (podosomes and invadopodia).  The aim of this review is to point 

out the most convergent and divergent characteristics of these specific cell-matrix structures.  
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Architecture and signaling pathways of cell matrix contacts 

 

Tangential cell matrix contacts: focal adhesion related structures 

 

  Focal adhesions are the best characterized type of such structures. They were initially 

described about 30 years ago by interference-reflection microscopy and electron microscopy 

(Abercrombie et al., 1971). Although many investigators have thought that focal adhesions 

were artifactual structures only found in cells cultured on rigid surfaces, such structures have 

been described in vivo at cell-matrix junctions (Fuchs et al., 1997; Cukierman et al., 2001). In 

cell culture, a family of focal adhesion related structures has been identified and named focal 

complexes, focal adhesions and fibrillar adhesions, respectively (Zamir and Geiger, 2001). 

Focal complexes are 0.5-1 µm dot-like contacts localized along the lamellipodia. These 

structures are not connected to stress fibers although they have been shown to be linked to the 

actin network. Moreover, they do not contain Zyxin suggesting that they are subjected to 

moderate mechanical tensions (see next section). Focal complexes mature into focal 

adhesions (Fig. 1A), the elongated 3-10 μm structures associated with stress fibers. Those 

structures give rise to fibrillar adhesions enriched in tensin and involved in fibronectin 

fibrillogenesis (Fig. 1A) (Katz et al., 2000). Up to 90 components have been reported to 

physically reside within these adhesions while 66 temporary players interact with the resident 

adhesion constituents and affect their activity and fate (Fig. 1B) (Zaidel-Bar et al., 2007). 

Focal adhesions are mostly composed of β1 and β3 integrins. Moreover, some structural 

proteins found in focal adhesions and devoid of any catalytic activity are however involved in 

dynamics of the structure: for instance, talin controls integrin activation, vinculin is 

selectively activated by changes in head-tail interactions regulated by binding to talin (Izard et 

al., 2004; Chen et al., 2005; Humphries et al., 2007), α-actinin forms a signaling complex 

with the Abl/Arg kinase adapter ArgBP2 (Ronty et al., 2005) and paxillin integrates diverse 

signals from tyrosine kinases and Rho family GTPases (Brown and Turner, 2004). Another 

complex composed of integrin-linked kinase (ILK), PINCH and parvin also functions as a 

signaling platform for integrins (Legate et al., 2006; Boulter et al., 2006). Additionally, focal 

adhesions contain a rich diversity of enzymatically active proteins. Indeed, tyrosine 

phosphorylation is one of the key signaling events occurring at focal adhesions (Kirchner et 

al., 2003). Two of the major protein tyrosine kinases found in focal adhesion are Src and focal 

adhesion kinase (FAK). The latter undergoes autophosphorylation that generates a docking 
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site for Src allowing further tyrosine phosphorylations on FAK and recruitment sites for 

potential substrates such as p130Cas or paxillin (Schaller et al., 1994; Frame et al., 2002). 

Other tyrosine kinases such as Abl, Csk and Pyk2 and ser/thr kinases such as ILK, PAK, and 

PKC are also found in focal adhesions.  

It is note worthy that most of data are issued from studies done on cells plated on 2D matrices 

and cell signalling seems to be different when comparing cells in 3D microenvironment to 2D 

matrices. In particular, adhesion in 3D microenvironment has to be found to be dependent 

solely on the α5β1 integrin whereas the attachment of fibroblasts to 2D fibronectin is 

dependent on both α5β1 and αvβ3 integrins (Cukierman et al., 2001; Green and Yamada, 

2007).  

 

Perpendicular cell matrix contacts: podosome type adhesions 

 

Migratory and invasive cells exhibit another type of integrin-mediated adhesion 

complexes called PTA, namely podosome type adhesions (Linder, 2007). Depending on their 

life time and structure, they have been referred to as podosomes or invadopodia. Podosomes 

have been observed in cells of the monocytic lineage such as osteoclasts, macrophages and 

dendritic cells whereas invadopodia have been identified in Src-transformed fibroblasts and 

carcinoma cells (Linder and Aepfelbacher, 2003). Podosomes and invadopodia architecture is 

defined by an actin-rich core (Marchisio et al., 1984; Pfaff and Jurdic, 2001; Baldassarre et 

al., 2006), where proteins involved in actin nucleation such as WASP (Linder et al., 1999; 

Mizutani et al., 2002), Arp2/3 and cortactin (Bowden et al., 1999; Linder et al., 2000; Pfaff 

and Jurdic, 2001; Artym et al., 2006; Bowden et al., 2006; Luxenburg et al., 2006; Tehrani et 

al., 2006; Webb et al., 2007) have been identified (Fig. 1C, D). Podosome core is surrounded 

by a ring structure composed of integrin receptors including  mostly β2 and β3 while β1 

integrins are generally excluded (Gaidano et al., 1990). Integrin-associated protein also found 

in focal adhesions such as talin and paxillin (Bowden et al., 1999; Pfaff and Jurdic, 2001; 

Buccione et al., 2004) are also found around the actin core. This organization is not so well 

defined for invadopodia where the adhesive molecules may be mixed within the actin core.  

Invadopodia of Src-transformed cells were shown to self organize into podosomes ring named 

rosettes similarly to what was observed for podosomes in osteoclasts (Destaing et al., 2003) 

and endothelial cells (Moreau et al., 2003).  Although FAK is expressed in many cells able to 

develop podosomes or invadopodia, Pyk2 appears to be the predominant mediator of integrin 
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αvβ3 signaling events in the hematopoietic lineage that influence podosome assembly in 

osteoclast (Wang et al., 2003) or macrophage behavior (Okigaki et al., 2003). However Pyk2 

has also been observed in focal adhesion (Du et al., 2001). Strikingly, Pyk2 is activated 

following increases in cytosolic free Ca2+, (Lev et al., 1995; Rucci et al., 2005) due to voltage 

dependent channels (Miyauchi et al., 1990). Pyk2 autophosphorylates on Tyr 402, creating a 

Src-homology-2 (SH2) binding site that recruits Src family kinases (SFK), which 

phosphorylate other tyrosine residues of Pyk2 and associated proteins (Dikic et al., 1996; Park 

et al., 2004). Interactions between the activated Pyk2-Src module and proteins such as the 

Grb2-Sos complex, p130Cas, paxillin and Graf regulate multiple intracellular signaling 

pathways reviewed in (Avraham et al., 2000). Binding of αvβ3 integrin induces the formation 

of a Pyk2/Src/Cbl complex in which Cbl, an E3 ubiquitin ligase, is a key regulator of Src 

kinase activity, and of cell adhesion and osteoclast migration (Sanjay et al., 2001). 

 

Interplay between focal adhesions, podosome type adhesions and cell contractility. 

 

During cell migration, adhesions at the front of the cell must be strong enough to withstand 

contractile forces generated by the cell front while adhesions at the rear must be weak enough 

to allow the cell to detach from its substrate. This means that asymmetry in the strength of 

adhesions at the cell front and rear is likely important for efficient cell migration. Several 

parameters may contribute to the strength of adhesion between a cell and its environment 

including ligand surface density, number of adhesion receptors, affinity of integrins towards 

their respective ligands, strength of receptor linkages, and organization of receptors on the cell 

surface (Huttenlocher et al., 1996; Palecek et al., 1998; Gallant et al., 2005; Gupton and 

Waterman-Storer, 2006).  

During cell attachment and spreading, initial adhesions evolve into small focal complexes that 

mature into focal adhesions connected to stress fibers. During this initial process, auto-

assembly requires the application of a force on integrin receptors up to 2 pN. Formation of 

focal complexes results in a reinforcement of this mechanical link to 5 nN (Galbraith et al., 

2002; Giannone et al., 2003; Buruinsma, 2005). This stage is under the control of the small 

GTPase Rac1 (Rottner et al., 1999). Mature focal adhesions are adhesive structures of larger 

size and relative immobility with respect to the substrate. Their assembly is stimulated by the 

small GTPase RhoA (Ridley and Hall, 1992), and is mediated primarily via two of its 

immediate downstream effectors, RhoKinase and mDia (Kimura et al., 1996; Watanabe et al., 

1999). RhoKinase stimulates myosin II-dependent contractility in smooth muscle and non-
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muscle cells by inactivating myosin light chain phosphatase (Katoh et al., 2001), whereas 

mDia is implicated in the regulation of actin polymerisation and the initiation of parallel 

arrays of actin filaments, probably through the recruitment of newly formed actin filaments to 

stress fibers (Burridge and Chrzanowska-Wodnicka, 1996; Rottner et al., 1999). Myosin II 

exerts on focal adhesion a force of 5.2 nN/µm2 (Schwarz et al., 2002). Maturation of focal 

adhesions is a slow process that can take up to 60 min (Zamir et al., 1999) corresponding to a 

7 fold force reinforcement (Gallant et al., 2005). This reinforcement is strictly dependent on 

talin and corresponds to the recruitment of vinculin and paxillin (Giannone et al., 2003). 

Approximately, focal adhesion areas are proportional to the applied forces (Schwarz et al., 

2002; Gallant et al., 2005). Internal tensions that promote focal adhesion assembly can be 

replaced by external forces application. Conversely, reduction of contractile forces is a 

prerequisite for remodeling of the actin cytoskeleton including focal adhesion disassembly 

(Riveline et al., 2001). Tension will activate the tyrosine phosphatase RPTPα that in turn will 

activate SFK allowing its interaction with focal adhesion kinase (FAK). Phospho FAK will 

recruit paxillin that in turn will allow a negative feedback implying the activation of Rac1 and 

the simultaneous inactivation of RhoA (Schober et al., 2007). 

Conversely to what is observed with focal adhesions, podosome type adhesions seem to be 

promoted by decrease in local cellular contractility (Lener et al., 2006; Linder, 2007). For 

instance A7r5 smooth muscle cells simultaneously display contractile activity in the cell 

center and motile activity in the cell periphery with reduced tension. This allows peripheral 

remodeling of actin cytoskeleton resulting of the dispersal of focal adhesions and the 

formation of dynamic podosomes at the same sites (Hai et al., 2002; Kaverina et al., 2003; 

Burgstaller and Gimona, 2004). This process is correlated with the local dispersion of 

contractile proteins including myosin, tropomyosin, and h1calponin, and the recruitment of 

p190RhoGAP to podosome sites (Lener et al., 2006). The specific subcellular localization of 

p190RhoGAP, together with its tyrosine phosphorylation, is an important determinant for its 

activation (Brouns et al., 2001; Haskell et al., 2001) and the inhibition of RhoA which result 

in the subsequent decrease in contractility (Peacock, 2007). Consistent with the observation in 

smooth muscle cells, in neuroblastoma the activation of TRPM7, an α kinase coupled with a 

calcium channel, results in the phosphorylation of the heavy chain of myosin II and the 

transformation of focal adhesions into podosomes similarly to what is observed by 

pharmacodynamically inhibiting myosin II (Clark et al., 2006). Although intracellular 

tensions seem not to be required for podosome assembly, their lifespan and mean minimum 

distance between them depend on the substrate flexibility as well as the speed of the 
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podosome ring expansion in GFP-actin transfected NIH 3T3 cells, suggesting that 

intracellular constraints may play a role in the collective dynamic of these structures (Collin et 

al., 2006). Indeed, high-resolution scanning electron microscopy combined with fluorescence 

microscopy has allowed to resolve the molecular architecture of podosome arrays and to show 

that these adhesive structures communicate through a network of actin filaments parallel to 

the substrate suggesting the existence of tangential forces between podosome actin cores 

(Luxenburg et al., 2007). Focal adhesion dynamics also appear to be tightly linked to matrix 

assembly and affected by the physical properties of the substrate. Indeed, formation of 

fibrillar adhesions and development of fibronectin fibrils occur when cells are plated on native 

fibronectin, whereas cells plated on covalently immobilized fibronectin do not form fibrillar 

adhesions (Katz et al., 2000). Moreover, increase in substrate density accelerates focal 

adhesion assembly, a process that is dependent on ICAP-1. This allows the matrix surface 

density sensing by the cell permitting its adaptive response to changes in the properties of the 

ECM (Millon-Fremillon et al., 2008).   

 

Adhesion sites dynamics and cell migration 

 

Individual versus collective dynamics 

Because of their involvement in cell motility and matrix remodeling or matrix 

degradation, adhesion sites are necessarily dynamic structures able to assemble and 

disassemble (Fig. 2). To migrate, cells that develop focal adhesions initially extend a directed 

protrusion at the leading edge through the localized polymerization of actin and subsequent 

integrin-mediated stabilization of adhesions. After stabilization of the protrusion or 

lamellipodium, cells generate tensions and the contractile force is required for cell movement. 

The final step in the migratory cycle involves release of adhesions at the rear of the cell to 

allow forward progression. These classical steps are representative of the 2D migratory cycle 

of many adherent cells such as fibroblasts. In contrast, migrating leucocytes and more 

generally cells able to develop podosomes tend to display a more gliding movement. 

Disregarding the adhesion type assembled, the migration speed seems to be inversely 

proportional to the internal tension developed, i.e., 200 nN for a fibroblast speed of 0.5 

µm/sec versus 20 nN for a keratinocyte migrating at 170 µm/sec (Isabey, D. personal 

communication). Focal adhesion lifetime is about 30-90 min (Fig. 2A). 

Assembly/disassembly of podosomes are much more dynamic than those of focal adhesions, 

with lifespan on the order of 2-12 minutes (Destaing et al., 2003). Invadopodia found in 
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carcinoma are distinguishable from podosomes by a remarkable persistence going up to 1 

hour or more (Yamaguchi et al., 2005), and the induction of a more focused and deeper 

degradation of extracellular matrix (Table 1). Nevertheless invadopodia lifespan can be 

shortened by orthovanadate treatment up to the characteristic podosome lifetime (Fig. 2B). So 

far, studies addressing the dynamics of adhesions during migration have shed some light on 

the different adhesions processes. With a growing number of transgenic mice available, the 

role of individual adhesion molecule in the organization and dynamics of adhesive structure 

can be addressed ex vivo, and correlated with physiological functions in vivo. Such studies 

underline a spatiotemporal coordination of the adhesion structures between the front and the 

rear of migrating cells, and also between the external and internal rim of the rosettes. These 

observations emphasize two control levels: dynamics of individual focal adhesions or isolated 

podosomes, and collective dynamics of these adhesion structures (Table 1). For instance, 

collective dynamics can be imaged by the actin stress fibers mediated connection of “towing 

adhesions” in the front of the cell fibers with sliding trailing adhesions at the rear of the cell. 

Trailing adhesions actively generated at the rear of the cell are necessary for persistent 

forward movement of fibroblasts (Rid et al., 2005). Collective dynamics allow also the 

organization of podosome clusters into rosettes or the coordination between focal adhesions at 

the front and those at the rear of migrating cells. It is noteworthy that increase in tyrosine 

phosphorylation most likely by Src kinase, results in both enhancement of podosome 

assembly and disassembly resulting in the acceleration of PTA rosette expansion while 

keeping the rosette width constant (Badowski et al., 2008). These coordinated processes are 

required for efficient extracellular matrix degradation and transmigration through a cell 

monolayer (Saltel et al., 2006; Badowski et al., 2008). Actin dynamics is likely to play a 

major role in this organization and coordination as suggested by the actin cables able to 

maintain individual podosomes (Luxenburg et al., 2007) or stress fibers that connect focal 

adhesions. Dynamics of adhesion structures is the common denominator that allows a fast 

adaptive response to external or internal stimuli, and supports cell shape and/or cell migration. 

Such response is regulated by several switches controlling signaling pathways such as 

GTPases, lipid, proteolytic and phosphorylation switches. Depending on the type of 

adhesions, the external stimuli transmitted by extracellular matrix is perceived differently and 

will induce a completely distinct cell response: matrix reorganization and fibronectin 

fibrillogenesis in case of fibrillar adhesions, or matrix degradation with podosome type 

adhesions.   
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Actin polymerization 

Two distinct actin networks drive the protrusion of migrating cells (Ponti et al., 2004). 

Extension of the leading edge is characterized by a cyclic process: the protrusion of 

lamellipodium associated with a dense network of branching actin filaments is followed by 

the formation of focal adhesions at the rear of the lamellipodium with the assembly of stress 

fibers in the lamellum area (Giannone et al., 2007). Actin network undergoes a fast retrograde 

flow in the lamellipodium allowing actin polymerization and depolymerisation whereas a 

slower centripetal flow is observed in the actomyosin contraction associated lamellum. The 

transition between these two types of actin network is unknown but focal complexes are 

localized in the lamellipodium  whereas newly formed focal adhesions are localized at the 

interface between the lamellipodia and lamella F-actin networks (Hu et al., 2007) .  

At this boundary, myosin II pulls the rear of the lamellipodial actin network, causing upward 

bending, edge retraction, and initiation of new adhesion sites (Giannone et al., 2007). On the 

other hand, integrin occupancy in filopodia favors actin nucleation and dendritic 

polymerization through Rac signaling (Galbraith et al., 2007; Guillou et al., 2008). 

Additionally,  a number of components of focal adhesions seem to promote actin nucleation 

such as paxillin, which couples the SH2/SH3 adaptor protein CrkII to N-WASp to allow its 

activation by the small GTPase cdc42 (Tang et al., 2003; Tang and Gunst, 2004; Zhang et al., 

2005), FAK that associates with the Arp2/3 complex and colocalizes at transient structures 

formed early after adhesion in nascent lamellipodia (Serrels et al., 2007), or vinculin that can 

bind and seems to regulate Arp2/3 nucleation activity (DeMali and Burridge, 2003). In spite 

of Arp2/3 interaction with proteins localized in focal adhesion, neither Arp2/3 nor WASP has 

been localized in focal adhesions structures (Table I). Interestingly, mature focal adhesions 

themselves seem not to be actual nucleation sites, and conversely to podosome type 

adhesions, they seem not to be so dependent on actin polymerization. Finally, specific actin-

binding proteins within focal adhesions may link F-actin in the lamella to transmembrane 

integrins (Critchley et al., 1999) that bind the extracellular matrix, stabilizing leading edge 

protrusions in the second step of migration.  

 

During osteoclast polarization, podosomes undergo reorganization from a scattered 

distribution, through the formation of clusters and ring super-structures, to the assembly of a 

sealing zone at the cell periphery. The enhanced dynamic reorganization of podosomes during 

osteoclast polarization is inversely related to the local levels of tyrosine phosphorylation of 

the Src substrate, cortactin (Luxenburg et al., 2006). Podosome belts are composed of two F-
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actin-containing domains, namely, a diffuse actin cloud surrounding actin dots referred to as 

podosome cores. Comparisons between WT and WIP-/- osteoclast phenotypes allowed to 

separate these two F-actin domains and to show for the first time that they fulfill different 

roles (Chabadel et al., 2007). The actin cloud linked to vinculin, paxillin, signaling 

phosphoproteins, together with the αvβ3 integrin interacts with extracellular matrix and 

regulates osteoclast contractility in part through myosin II. In contrast, podosome cores made 

of a dense F-actin network associated with cortactin, Arp2/3, WASp, and the transmembrane 

receptor CD44, which could establish an initial adhesion via CD44/hyaluronate. In parallel, in 

the absence of Src(s) activities in osteoclasts, podosomes cores are formed but are devoid of 

actin cloud. Thus, it appears that the main molecular regulator of the actin cloud is the 

tyrosine kinase activity of Src (Destaing et al., 2008).  

 

Assembly of cell matrix adhesions 

 

Focal adhesions assembly starts with integrin occupancy and clustering to finally 

connect to actin stress fibers while at least assembly of podosome type adhesion of RSV 

transformed BHK cells is initiated by the nucleation of an actin column perpendicular to the 

plasma membrane that undergoes continuous cycles of polymerization and depolymerization 

(Badowski et al., 2008) and constitutes the PTA core. Overexpression of cortactin, mutated at 

its major Src phosphorylation sites, enhanced actin turnover, suggesting that podosome 

dynamics in osteoclasts can be down regulated by Src dependent cortactin phosphorylation 

(Luxenburg et al., 2006). On the other hand, it was recently shown that cortactin 

phosphorylation by Src enhances actin assembly and thereby could favor the appearance of 

new podosomes (Tehrani et al., 2007). Conversely, it is also well known that cortactin does 

not accumulate in focal adhesions but in lamellipodia where the polymerized F-actin 

meshwork pushes the membrane of migrating cells (Bryce et al., 2005). Therefore cortactin 

emerged as a key protein involved in the coordination of membrane dynamics with the actin 

cytoskeleton remodeling. Although the exact mechanisms underlying its fundamental roles 

remain to be defined, cortactin is likely to act via the Arp2/3 complex. Indeed, Arp2/3 knock 

down in osteoclast leads to an impairment in podosome formation (Hurst et al., 2004). 

CD44 was recently identified in podosome core of osteoclasts (Chabadel et al., 2007) 

and seems to strengthen adhesion to the substrate through its affinity for hyaluronan, a 

glycosaminoglycan constituent of extracellular matrix, but also potentially through its affinity 

for other ligands such as osteopontin, collagens and matrix metalloproteases (Cichy and Pure, 
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2003). Since the actin core seems to appear before formation of the integrin rich surrounding 

ring in Src-transformed BHK cells, CD44 could play the role of an initial adhesion. Similarly, 

in addition to integrins, proteoglycan, glycosaminoglycan receptors were recently reported to 

localize at focal adhesions and induce an initial adhesion mediated by hyaluronate before the 

formation of adhesion structures driven by integrins (Cohen et al., 2006). Another hyaluronan 

receptor named Layilin that interacts with talin and other ERM protein may play in the case of 

focal adhesions, a similar role than CD44 in podosomes (Borowsky and Hynes, 1998; Bono et 

al., 2001; Bono et al., 2005). 

Genetic and biophysical analyses have also established important roles for talin in 

focal adhesion initiation, reinforcement and stabilization (Albiges-Rizo et al., 1995; Priddle et 

al., 1998; Giannone et al., 2003; Jiang et al., 2003), as well as in integrin activation and local 

phosphatidyl-4,5 bis-phosphate generation (Martel et al., 2001; Yan et al., 2001; Calderwood 

et al., 2002; Tadokoro et al., 2003). Indeed, integrin clustering requires the formation of the 

complex made of activated integrins, immobilized ligands, talin and PIP2 (Cluzel et al., 2005). 

Recent data suggest that the binding of a complex including talin, RIAM, Rap1 and VASP to 

the integrin cytoplasmic tail is a common final step in integrin activation (Han et al., 2006). 

Recently, it has also been proposed a new model where vinculin has a key role in focal 

adhesion formation and turnover: vinculin head regulates integrin dynamics and clustering 

whereas the tail regulates the link to the mechantransduction force machinery (Humphries et 

al., 2007). On the other hand, a low affinity switch of β1 integrins is controlled by ICAP-1, a 

cytoplasmic partner, (likely by competing with talin). ICAP-1 delays focal adhesion assembly 

and, consequently, hampers cell spreading and migration (Bouvard et al., 2003; Millon-

Fremillon et al., 2008). Integrin occupancy resulting in the recruitment of talin, vinculin, and 

paxillin is also observed in PTA as soon as the actin column has pushed the membrane in 

close contact with extracellular matrix (Badowski et al., 2008). 

The subsequent molecular mechanisms that lead to PTA and focal adhesions assembly 

have been partly characterized. They require Rho family GTPases, coordinated interaction 

between integrins and structural/signaling molecules, as well as actin-binding proteins 

(Chellaiah et al., 2000; Moreau et al., 2003; Raftopoulou and Hall, 2004; Destaing et al., 

2005; Yamaguchi et al., 2005; Gimona and Buccione, 2006). The importance of these 

molecules as regulators is underscored by studies of knockout mice phenotypes showing 

abnormalities in cell migration and spreading.  

In focal adhesions, PAK and PIX play a pivotal role in the maintenance of paxillin-

containing focal adhesions (Stofega et al., 2004) and their turnover (for review see 
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(Rosenberger and Kutsche, 2006). Further insight into the PIX-dependent molecular 

mechanisms required for actin reorganization and focal adhesion formation came from the 

identification of a novel protein family consisting of G protein-coupled receptor kinase-

interacting target (GIT), paxillin kinase linker (p95PKL), ADP-ribosylation factor (Arf)-GAP-

putative PIX-interacting, paxillin-interacting protein (p95-APP), and Cool-associated, 

tyrosine phosphorylated protein (CAT) (Bagrodia and Cerione, 1999; Turner et al., 1999; Di 

Cesare et al., 2000; Premont et al., 2000; Paris et al., 2003). Furthermore, complexes of GIT-

PIX-PAK have been shown to cycle between at least three distinct subcellular compartments, 

including focal adhesions, a cytoplasmic (vesicular) compartment, and the leading edge (Di 

Cesare et al., 2000; Matafora et al., 2001; Manabe et al., 2002).  

Comparably, the RhoGTPase effector PAK4, a member of the p21 associated kinase 

family, and its regulator αPIX (PAK-interacting exchange factor), are important for 

podosome formation in primary human macrophages. Knockdown experiments, as well as 

expression of PAK4 truncation mutants, resulted in reduced numbers of podosomes per cell. 

Moreover, expression of kinase active or inactive PAK4 mutants enhanced or reduced the size 

of individual podosomes in macrophages, respectively, indicating an influence of PAK4 

kinase activity on podosome size (Gringel et al., 2006). Expression of active constructs of 

PAK1 is also able to induce the formation of dynamic, podosome-like F-actin columns in the 

A7r5 vascular smooth muscle cell line (Webb et al., 2005).  

 Protein kinases and phosphatases regulate migration by modulating phosphorylation 

and dephosphorylation of key regulatory molecules. Podosome/invadopodia (PTA) dynamics 

and functions were reported to be regulated by Src-induced tyrosine phosphorylations 

(Marchisio et al., 1984; Tarone et al., 1985; Mueller et al., 1992; Linder and Aepfelbacher, 

2003; Bowden et al., 2006). A key function of Src in osteoclasts is to promote the rapid 

assembly and disassembly of podosomes (Horne et al., 2005). After integrin engagement, 

Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is 

critical for cell migration, and deletion of any molecule in this complex disrupts podosome 

ring formation and/or decreases osteoclast migration. The Cbl proteins in turn recruit and 

activate additional signaling effectors, including phosphatidylinositol 3-kinase (Fukazawa et 

al., 1995; Soltoff and Cantley, 1996) and dynamin (Bruzzaniti et al., 2005), which play key 

roles in the development of cell polarity and the regulation of cell attachment and motility. 
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Disassembly of cell-matrix adhesions  

 

Fibroblasts deficient in FAK, Src family kinases (Src, Yes, Fyn), (PTP)-PEST, or 

SHP2 expression exhibit a decrease in the rate of migration and spreading and an increase in 

the number and size of peripherally localized focal adhesions (Ilic et al., 1995; Yu et al., 

1998; Angers-Loustau et al., 1999; Klinghoffer et al., 1999). In addition, live cell imaging 

studies underline the crucial role of some kinases and adaptor molecules, such as FAK, Src, 

p130Cas, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase 

(MLCK) in adhesion turnover at the cell front, a central process of cell migration (Webb et 

al., 2004). In osteoclasts, the absence of a number of proteins components including Src, Cbl, 

Pyk2, β3 integrin, RhoA and gelsolin reduces osteoclast bone-resorbing activity to various 

degrees and the ability to form podosomes rosettes and sealing zone (Soriano et al., 1991; 

Chellaiah et al., 2000; Chiusaroli et al., 2003). In Src -/- osteoclasts, the peripheral podosome 

belt is absent and replaced by irregular podosome patches at the cell center, likely due to a 

decrease in podosome number and/or altered dynamics exemplified by the four fold increase 

in the average podosome life span (Destaing et al., 2008). Indeed, Src is also a main regulator 

of the disassembly of focal adhesions and podosomes (Webb et al., 2004; Luxenburg et al., 

2006; Destaing et al., 2008). A similar pattern has been observed in case of knock-down of 

many components of podosome ring such as paxillin (Badowski et al., 2008), meaning that 

the incapacity to form ring or belt is the signature of a defect in podosome type adhesion 

dynamics. Similarly to podosome distribution during osteoclast differentiation, in RSV-

transformed BHK cells, invadopodia can also self-organize into rosettes and belts, under the 

control of tyrosine phosphorylation whereas in carcinoma cells invadopodia remain as 

individual structures. In the BHK-RSV model, it has been clearly established that the 

composition of individual invadopodia is spatiotemporally regulated and depends on 

invadopodia localization along the rosette section: the actin core assembly precedes the 

recruitment of surrounding integrins and integrin-linked proteins while the loss of the actin 

core was a prerequisite to invadopodia disassembly. Invadopodia rosette expansion is 

controlled by paxillin phosphorylations on tyrosine 31 and 118 by the FAK/Src complex 

which allows invadopodia disassembly. The lack of paxillin phosphorylation, or calpain or 

Erk inhibition result in similar phenotype, suggesting that these proteins belong to the same 

regulatory pathways (Badowski et al., 2008). Surprisingly, this mechanism seems to be quite 

similar in focal adhesions where paxillin also plays a major role in their disassembly (Zaidel-

Bar et al., 2007). Indeed, recent studies have demonstrated that the calpain family has a 
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regulatory function in cell motility, partly through the capacity to down regulate integrin-

mediated adhesion complexes (Glading et al., 2000; Dourdin et al., 2001; Bhatt et al., 2002; 

Glading et al., 2002). In that context, talin seems to be one of major target of calpain leading 

to a rate-limiting step critical for FA disassembly (Franco et al., 2004). It has also been shown 

that the expression of a calpain-resistent cortactin impaired cell migration and increased 

transient membrane protrusion (Perrin et al., 2006). Since cortactin is a major component of 

PTA, its degradation by calpain may play a key role in their disassembly. In addition, PTA 

turnover depends on degradation of WASP by calpain (Calle et al., 2006) and on its 

stabilization by WIP (Chou et al., 2006) . Lifetime and maturation of invadopodia are 

influenced by cofilin. Loss of cofilin leads to short-lived invadopodia and decreased matrix 

degradation in carcinoma cells (Yamaguchi et al., 2005), suggesting cofilin as a key protein 

for transition between podosomes and invadopodia.  

Microtubules have also been shown to stimulate focal adhesions disassembly 

(Kaverina et al., 1999). More recently Ezratty et al (Ezratty et al., 2005) have demonstrated 

that microtubule-induced focal adhesion disruption may occur independently of Rho A and 

Rac 1, but is dependent on FAK and dynamin, which might drive disassembly through 

integrin endocytosis. Microtubules also affect turnover of podosomes. The formation of the 

peripheral podosome belt in osteoclasts depends on an intact microtubule system involving 

Rho, the formin mDia2 and histone deacetylase (HDAC6), through regulation of the 

acetylation level of microtubules (Destaing et al., 2005). Similarly to the targeting of focal 

adhesions by microtubules for their dissolution (Kaverina et al., 1999; Krylyshkina et al., 

2003), macrophage podosomes are also targeted by microtubules plus ends influencing not 

only their breakdown but also podosome generation by a dissolution/fission process (Kopp et 

al., 2006). However, other data although indicating a clear relationship between microtubules 

and podosomes suggest that podosomes fission/fusion may be influenced by nocodazole (a 

microtubules depolymerizing agent) or paclitaxel (a microtubules stabilizing agent) without 

any effect in dissolution of individual podosomes (Evans et al., 2003). Microtubules probably 

deliver materials not yet identified in the case of focal adhesions. For podosomes, KIF1C may 

allow the delivery of lysosomal material (Poincloux et al., 2006) or trafficking of MMPs 

(Schnaeker et al., 2004). Moreover, KIF1C provides an interface together with Myosin IIA 

between microfilaments and microtubules (Gringel et al., 2006).  

Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton 

remodeling and is localized to podosomes where it plays a role in actin turnover. Dynamin 

colocalizes with Cbl in the actin-rich podosome belt of osteoclasts (Bruzzaniti et al., 2005). 
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Phosphorylated Cbl is also able to recruit Crk adapter proteins (Horne et al., 2005) and the 

guanine nucleotide exchange factor vav (Marengere et al., 1997), and possibly Src and other 

Src family kinases (Feshchenko et al., 1998). In focal adhesions, it has also been suggested 

that Cbl-mediated ubiquitination plays an essential role in α5 integrin proteasome degradation 

induced by FGFR2 activation (Kaabeche et al., 2005). In addition, ArgBP2 interacts with Cbl 

and colocalizes with actin on stress fibers and at cell-adhesion sites. The ArgBP2 partners 

include dynamin, synaptojanin and WAVE isoforms, as well as WAVE regulatory proteins. 

ArgBP2/nArgBP2 knockdown in astrocytes produces a redistribution of focal adhesion 

proteins and an increase in peripheral actin ruffles, whereas nArgBP2 overexpression 

produces a collapse of the actin cytoskeleton. Thus, ArgBP2 is a scaffold protein that controls 

the balance between adhesion and motility by coordinating the function of multiple signaling 

pathways converging on the actin cytoskeleton (Cestra et al., 2005). 

 

Conclusions 

 

Although extensively studied, focal adhesions and podosomes have rarely been compared. 

While they exhibit very distinct structures, recent data in the literature suggest surprisingly 

convergent regulatory mechanisms of their dynamics. However, the study of different matrix 

adhesions with distinct morphologies, compositions and dynamics may shed light on their 

capacity to activate or respond to distinct signaling pathways and their specific functions. 

Nevertheless, interplay between both structures has been evidenced. Future challenges will 

include the determination of how dynamic processes are involved in the formation and 

transformation or conversion of matrix adhesions highlighting the plasticity of cell matrix 

contacts in a variety of biological responses in different tissue, under physiological and 

pathological situations. One will have to address how regulatory molecules or external 

constraints in cell-matrix adhesion may contribute to promote or impair distinct adhesive 

structures. Finally, it will be important to understand how focal adhesions, podosomes and 

invadopodia function cooperatively during tumor invasion. 
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Figures legend : 
 
 
Figure 1 : Architecture and composition of adhesive structures. 

A. Tangential adhesive structures. MEF cells spread on a fibronectin matrix were stained to 

visualize either β1 integrin containing focal adhesion (Fa) and focal complex (Fx) or 

fibronectin to localize fibrillar adhesion (Fb). B. Schema representing Fa organization. IAP: 

Integrin Associated Protein (CD47) C. Perpendicular adhesive structures. RSV-transformed 

BHK cells were transfected with cortactin-DsRed and stained for vinculin and paxillin 

phosphorylated on Y118 (P-Paxillin). Confocal analysis displays a rosette of PTA 

(Podosome-type adhesion). One structural unit (PTA) is presented on zoom pictures and is 

made by one core surrounded by adhesion proteins. D. Schema representing the architecture 

of PTA. 

 

 

Figure 2: Dynamics of adhesion structures. 

A. Turnover of Fa. VASP-GFP expressing MEF cells spread on a fibronectin matrix were 

monitored over a 6 hours period. At the birth of a nascent Fa (white arrow), the clustering of 

integrins and the recruitment of focal adhesion proteins induce an increase of GFP-VASP 

fluorescence until it reaches a brief plateau denoting the mature adhesion which is 

immediately follows by the decrease of GFP fluorescence and the dissociation of proteins 

leading to the disassembly of adhesion site. B. Turnover of PTA. Cortactin-GFP transfected 

BHK-RSV cells were treated with sodium orthovanadate 5mM to allow rosette expansion and 

observed over a 130 min period. Ring expansion is allowed by new PTA formation at the 

rosette periphery (white circle) and disassembly of PTA at the rosette center.  

 

Table 1: Comparison of PTA and Fa associated proteins. 

Non exhaustive listing of proteins directly linked to Fa and PTA, signalling proteins and 

actin-binding regulators, all associated with these adhesive structures. Focal complexes (Fx) 

and PTA structures present both branched actin organization and extracellular matrix is 

necessary for both focal adhesion structures and podosome-type adhesion structures 

formation. However, their dynamics and functions are quite distinct. 
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 Adhesion structures 
Podosome type Adhesion (PTA) Composition Focal adhesion 

(Fa, Fx, Fb) Podosome Invadopodia 
Talin 
Vinculin 
Paxillin 
α-actinin 
Zyxin 
Tensin 
Integrins 
CD44 
Kindlin 
 
Src 
FAK/Pyk2 
PI3K 
PAK 
PIX 
Cdc42 
Rac1 
P130cas 
P120RasGAP 
P190RhoGAP 
Cbl 
 
Actin organisation 
WASP/N-WASP 
WIP 
Arp2/3 complex 
Cortactin 
Dynamin-2 
VASP 
Fimbrin 
Cofilin 
Gelsolin 
Filamin 
Plectin 
AFAP 110 
Myosin 2 

+ (Fa, Fx) 
+ (Fa, Fx) 
+ (Fa, Fx) 

+ (Fa) 
+ (Fa) 
+ (Fb) 

+ 
? 
+ 
 

+ 
+ 
+ 
+ 
+ 
- 
- 
+ 
+ 
+ 
+ 
 

bundle (Fa, Fb) + branched (Fx) 
- 
- 
- 
- 
? 
+ 
+ 
+ 
+ 
- 
+ 
+ 
+ 

 

+ 
+ 
+ 
+ 
? 
- 
+ 
+ 
+ 
 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
 

bundle (cloud) + branched (core) 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
? 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
? 
- 
+ 
+ 
? 
 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
 
? 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
? 
+ 
+ 
+ 

ECM-dependent formation + + + 
Dynamics    

Individual 
Collective 

++ 
migration 

+++ 
Rosette formation/expansion 

+ 
Rosette formation/expansion 

(Src-BHK cells) 
Functions    

Adhesion 
Migration 
ECM remodeling (FN fibrillogenesis) 
ECM degradation 

+++ 
+++ 

+++ (Fb) 
+/- 

++ 
? 
? 

++ 

? 
? 
? 

+++ 
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