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The CT uroscan contains three to four timespaced acquisitions of the same patient. Registration of these acquisitions forms a vectorial volume, which contains a more complete anatomical information. In order to outline the anatomical structures, multi-dimensional classification is necessary for analyzing this vectorial volume. Because of the partial volume effect (PVE), probability distributions are assigned to the different material types within this vectorial volume instead of a definite material distribution. Gaussian mixture model is often used in probability classification problems to model such distributions, but it relies only on the intensity distributions, which will lead a misclassification on the boundaries and inhomogeneous regions with noises. In order to solve this problem, a neighborhood weighted Gaussian mixture model is proposed in this paper. Expectation Maximization algorithm is used as optimization method. The experiments demonstrate that the proposed method can get a better classification result and less affected by the noise.

Introduction

The CT uroscan is the classical preoperative examination for renal surgery. It consists of three to four time-spaced 3D acquisitions at several contrast medium diffusion stages, which give complementary information about the kidney anatomy. Since information from these acquisitions is of a complementary nature, it is useful for the surgeon to integrate this information within a unique spatial volume. The first step in this integration process is to bring the different acquisitions into spatial alignment which has been done through a local mutual information maximization registration technique .

[1]

After this registration process, we get a volume, in which each voxel contains a vector of elements corresponding to the information of n the CT uroscan acquisitions ( is equal to the number of acquisitions, three to four in our case). For analyzing this volume, a multidimensional n classification should be performed.

Due to partial volume effect (PVE), the object boundary voxels values are usually the combination of two materials. Getting the material ' probabilities instead of assigning a definite material to the boundary voxels will be more conformable to the reality. that the boundary between and is classified to . In addition, the lack of information during classification will lead to sensitiveness to the A C B noises in inhomogeneous regions.

In order to solve the misclassification problem caused by intensity-only statistical classification methods, we proposed a neighborhood weighted solution. For analyzing a dataset, the information of neighborhood is also very important and the classification of the current voxel should take the neighborhood information into account. Based on this idea, a neighborhood weighted Gaussian mixture model is proposed in this paper.

The rest of this paper is organized as follows. Section II reviews some relevant previous works. The proposed model is presented in detail in Section III. Experimental results are illustrated and discussed in Section IV. Finally, the conclusions are given in Section V.

Related previous works

Within the class of intensity-based classification methods, Gaussian mixture model was widely applied on MR image segmentation .

[ [2][3][4] But all these methods were applied to a single image (or volume) where each element to be classified is a scalar. These Gaussian mixture based methods can be easily expanded to a multi-dimensional situation by applying a multi-dimensional Gaussian distribution instead of a scalar one.

And the solutions are just a simple expanding solvent, as implemented in this paper.

However, these intensity distribution based methods cannot solve the problem caused by PVE at the boundaries. S.A. Lakare proposed a

[5]

partial volume compensated classification method to solve this problem. When detecting a partial volume boundary, the author takes a compensated value instead of the sampled value. This method takes the PVE into classification process, but the classification result is still a definite decision at the partial volume boundary.

In order to get the correct material distributions at the partial volume boundaries, we proposed to take the neighborhood information, which is an important content of a volume, into the classification process.

Lunstrom proposed the Partial Range Histogram (PRH) concept, which is a way to describe the amount of a tissue within a local et al. [6] region. This gives us the hint to use this concept as a neighborhood descriptor. Inspired by this neighborhood description form, we propose a neighborhood weighted Gaussian mixture classification method with the purpose of getting a more accurate classification result.

PROPOSED CLASSIFICATION METHOD

In this section, the proposed method is presented. First, the general multi-dimensional Gaussian mixture model is described and solved by Expectation-Maximization (EM) algorithm. Then, the proposed neighborhood weighted method is described in detail. Based on this proposed model, the implemented algorithm is finally given. where denotes the mixture coefficients. The parameter set of this distribution is ( , , , , , ) with the constraint that

Multi-dimensional Gaussian mixture model

α k Θ = α 1 … α K Θ 1 … Θ K .
Typically, ( | ) is modeled by a Gaussian distribution with mean and covariance matrix . That is

p k x Θ k μ k Σ k
Maximum likelihood (ML) estimation is a common used method to find the probability distribution parameters. The log-likelihood expression for this density from the data is given by: X

Finding the ML solution directly from is difficult because it contains the log of the sum. The EM algorithm is a good way to solve Eq. ( 3) this problem . The iterative solution for finding the parameters at the ( 1)th iteration step is as follows:

[7]
t+ Taking the mixing parameters as prior probabilities, the probability of each class can be computed using Bayes rule:

α k '

Modified model with neighborhood information

Usually the material is continuous, so that it is natural to have the idea that for each voxel, the probability of the th class should be k affected by the neighbors th class probabilities. According to this belief, should be modified. ' k Eq. ( 7)

Due to the deducing process of EM algorithm and the neighborhood idea, this probability should obey these rules: , Current voxel s th class probability magnifies if the neighbors th class probabilities tend to 1; current voxel s th class probability ' k ' k ' k decreases if the neighbors th class probabilities tend to 0.

' k

Based on these two rules, we designed the neighborhood weighted probability for the current voxel:

where is a set of neighborhood of the th voxel. | | denotes the number of voxels in the set . denotes the th neighbor s intensity of the

N i i N i N i • x ni n ' i th voxel.

Description of the algorithm

Based on the discussions above, the estimation process we implemented is summarized as follows: Input: The vectorial volume ( 1,2, x i i = , ), the number of classes . … N K

Step 1: Initialization of and ( | , ). Any classification method could be used, in our case we choose -means.

Θ 0 p k x i Θ 0 K
Step 2: Using to calculate the neighborhood weight for each voxel. Eq. ( 9)

Step 3: Calculate the prior probability by . Eq. ( 8)

Step 4: Compute the new parameter data according to , and . Eqs. (4) (5) (6)

Step 5: Repeat steps 2 4 until reaching the end condition.

-For each element vector of the input volume, the aim is to find its class distributions. From the iteration process, we can see that this algorithm is not limited in applying on vectorial volume. According to the spatial dimension of the input series ( 1,2, , ) with elements, x i i= … N N denoted by , the shape of the vectorial image to be classified can be a line ( 1), an image ( 2) or a volume ( 3). The difference is that D D= D= D= the shape of in should match the dimension of the input series. Here, we only take the nearest neighbor into account with: 1, N i Eq. ( 9)

D= N i = 2; 2, 8; 3, 26. D= N i = D= N i =

EXPERIMENTS AND DISCUSSIONS

Experiments were performed on both synthetic and real data.

Evaluation on synthetic data

In order to illustrate the effect of classification, we use images to test our algorithm instead of volumes. We create an image where each pixel is a three elements vector ( 3). Each channel of the vector forms an independent image. The three images can be seen in . Each n= Fig. 2 channel image is composed by two homogeneous regions on which we add some Gaussian noise. The combination of these three channels leads to a vectorial image with six classes. According to the proposed algorithm described in Section 3.3, the input number of classes 6. K=

The classification on synthetic data is performed and the result is shown in . Each pixel of the result image is formed by this formula: Fig. 3 where ( ) is the color assigned to the th pixel and is the color we assigned to the th class.

C x i i C k k
is the classification result with the original Gaussian mixture model. We can notice that the final regions are not homogeneous as Fig. 3(a) expected because of the noise. The reason is that the method relies only on the intensity distribution (histogram). The classification progress is a direct mapping from intensity to classes so that the noise cannot be removed.

is the result with our method. It is obvious to see that Fig. 3(b) the regions are more homogeneous and the classification process is less affected by the noise.

Application on real data

We performed the methods on real data obtained after the registration of three CT acquisitions.

shows one slice of the vectorial Fig. 4 volume, which is composed by three channels: (a), acquisition before contrast medium injection; (b), immediately after injection; (c), ten minutes after injection. With 4, the classification result formed by is shown in . It effectively demonstrates our conjecture. While taking the K= Eq. ( 10) Fig. 5 neighborhood information into account ( ), the anatomical structures are better delineated into homogeneous regions: fat (red), renal Fig. 5(b) cortex (green), renal medulla (blue) and collecting system (white).

Discussions

From the above results, we can see that the Gaussian mixture model based method has the ability to classify vectorial image with the aim of outline the anatomical structures. Because of the in-homogeneity of the acquisitions and the partial volume effects, the result of the intensity-only method has some misclassification area, especially the renal cortex and the renal medulla because of their close intensity range as seen in . In order to illustrate clearer this phenomenon, the first order derivate of the result probabilities along one cut line is shown in Fig. 5(a) . We can clearly see that the probabilities within the regions are not homogeneous. Fig. 6(a) When take the neighborhood information into the iteration process, the results are promoted significantly, as shown in . The Fig. 5(b) proposed method considers the intensity and the position of one pixel simultaneously so that it can give a more reasonable classification decision. While comparing , we can see that besides avoiding PVE, it also has the effect of less sensitive to inhomogeneous Fig. 6(a) and (b) region, while giving a more correct classification decision.

CONCLUSIONS

A neighborhood weighted Gaussian mixture classification method is proposed and experimented in this paper. The model is that the voxels' intensity vectors follow the Gaussian mixture distribution and the classes distribution on each voxel is affected by its neighbors class ' probability distributions so that a weight is used to describe this property. The mixture parameters are found by EM algorithm. Experiments on both synthetic and real data show that this Gaussian mixture model improvement is less affected by noise and gives better classification results.
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