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Abstract  

We recently showed that subretinal CX3CR1-dependent microglial cell (MC) accumulation 

may lead to age-related macular degeneration. The fate of MC after engulfing retinal debris is 

poorly understood. Severe photoreceptor degeneration was observed 40 days after exposure to 

bright light in CX3CR1-deficient but not control mice, and more MCs accumulated in the 

subretinal space of the former than the latter. To study the fate of subretiinal MCs in CX3CR1 

competent animals we used a dystrophic rat model, in which abundant subretinal MC 

accumulation is observed secondary to primary retinal degeneration. In dystrophic rats, MCs 

containing rhodopsin or rod outer segment (ROS) debris were found outside the outer retina at 

sites suggesting choroidal and ciliary egress. In conclusion, our data indicate that MC 

accumulation at injury sites is independent of CX3CR1 and precedes photoreceptor 

degeneration. The ectopic presence of rhodopsin-positive MCs suggest that CX3CR1 

participates in MC egress from the outer retina.  

1. Introduction 

Age-related macular degeneration (AMD) is the leading cause
 
of vision loss in the elderly 

throughout the industrialized world (Friedman et al., 2004). Its most prominent pathologic 

features are lesions involving the retinal pigment
 
epithelium (RPE) and Bruch’s membrane 

(BM), the degeneration of photoreceptors (Sarks, 1976) and, in the most aggressive cases, 

choroidal neovascularization. The causes of AMD
 
are not well understood, but 

epidemiological studies and murine models have identified key factors in its pathogenesis. 

The main predisposing factors for its onset are age (Friedman et al., 2004) and family history 

(Bird et al., 1995). Increasing evidence suggests that retinal microglial cells (MCs) and 

alterations in chemokine pathways play a major role in its development (Ambati et al., 2003; 

Combadière et al., 2007; Pham et al., 2005). 



Chemokines are well-described proinflammatory cytokines that coordinate the deployment 

and activation of leukocytes at injury sites by signaling through a family of G protein-coupled 

receptors (Luster, 1998). There is growing evidence that they are not restricted to leukocyte 

trafficking from the blood to tissues but rather are multifunctional mediators acting on various 

cell types, including resident cells such as epithelial, endothelial, and smooth muscle cells as 

well as neurons. Cell functions associated with chemokines are no longer limited to basic cell 

recruitment and now extend to angiogenesis, cell survival, cell proliferation and 

neurotransmission (Ransohoff et al., 2007). Drugs targeting them are among the most 

promising new anti-inflammatory treatments because they may be more selective than current 

anti-inflammatory drugs and less harmful than immunosuppressants. 

Recently, we showed that the chemokine receptor CX3CR1 is expressed on all retinal 

MCs and that a defect in its function is associated with the risk of AMD (Combadière et al., 

2007). CX3CR1-deficient mice developed cardinal features of AMD with resident MCs 

accumulating into the subretinal space. Photoreceptor cell degeneration occurred secondarily 

to the MC accumulation in the subretinal space, regardless of the retinal insult (aging and 

laser photocoagulation). The fate of MCs after they engulf retinal debris is poorly understood. 

We postulated that MCs in the subretinal space phagocytize degenerating rod outer segments 

(ROS) and may be then redistributed in the retina to clear debris into the vasculature. Here we 

used a model of bright light exposure to corroborate our previous findings in CX3CR1-

deficient mice and then tracked the fate of subretinal MCs further in a well-known rodent 

model: the dystrophic Royal College of Surgeons rats (RCS). 



2. Materials and methods 

2.1. Animals 

CX3CR1
-/-
 and CX3CR1

GFP/GFP
 mouse strains on C57BL/6 background and their CX3CR1

+/+ 

controls were generated as described before (Combadiere et al., 2003; Jung et al., 2000). The 

mice were maintained at the “Centre d’Exploration Fonctionnelle” animal facility (Pitié-

Salpétrière, Paris) under pathogen-free conditions. Control C57BL/6 wild type mice (here 

referred as CX3CR1+/+) were obtained from the Center d'Elevage Janvier (Le Genest St Isle, 

France). Royal College of Surgeon (RCS) rats were from our colony and were kept in specific 

pathogen-free conditions at the animal facility of University Paris V Descartes (Paris). All 

animals were housed in a 12/12 hour light/dark (100-500 lux) cycle with food and water 

available ad libitum. Animal experiments were approved by the Institutional Animal Care and 

Use Committee of the Faculté de Médecine Pitié-Salpétrière (Paris).  

2.2. Bright light exposure        

Mice were anesthetized by intraperitoneal injection of ketamine (50 mg/kg) and xylazine (10 

mg/kg) from Bayer (Puteaux, France). Pupils were fully dilated with 1% tropicamide or 1% 

Atropin (Novartis, Rueil Malmaison, France). The mice were then exposed to bright light 

(100 Klux/eye) from a KL2500 LCD Schott lamp (Schott, Clichy, France), with the light-

conducting glass fibers close to the dilated eyes for 10 min. 

2.3. Immunohistochemistry 

Frozen sections were stained according to standard immunohistochemical procedures, as 

previously described (Checchin et al., 2006). The primary antibodies used were mouse anti-

rhodopsin (Rho4D2, a gift from Dr. R.S. Molday, University of British Colombia, Canada), 

mouse anti-CD68 (ED1, Serotec, Cergy Saint Christophe, France) and mouse anti-GFP 

(Torrey Pines Biolabs, Houston, TX, USA). The lectins used were TRITC-conjugated BSA-1 



(Sigma–Aldrich, Saint Quentin Fallavier, France) and rhodamine phalloidin (Molecular 

Probes, Leiden, Netherlands). FKN antibodies Primary antibodies were revealed with the 

corresponding Alexa or phosphatase alkaline-coupled secondary antibodies (Molecular 

Probes) (followed by fast-red retrieval), and sections were counterstained with 4-6-diamino-2-

phenylindole (DAPI). Sections were viewed with a fluorescence microscope (BX51; 

Olympus, Rungis, France) or a confocal microscope (Zeiss LSM 510 laser scanning 

microscope, Le Pecq, France). Each immunostaining was repeated at least 3 times and 

staining omitting the primary antibody served as the negative control. 

2.4. Choroidal flatmounts and MC quantification 

Eyes were enucleated, fixed in 4% PFA for 15 minutes at room temperature, and sectioned
 
at 

the limbus; the cornea and lens were discarded. The retinas were carefully peeled from
 
the 

RPE/choroid/sclera. Retinas and choroids were fixed for additional 15 minutes in methanol at 

–20°C and incubated with the indicated primary and secondary antibodies. The choroids and 

retinas were radially incised, flatmounted and viewed with a fluorescence microscope (BX51; 

Olympus). MCs were counted on whole RPE/choroidal flatmounts up to the ciliary body and 

on the outer segment side of the retina. The surface of the RPE was measured and MC density 

calculated.  

2.5. Histology and electron microscopy 

Eyes were fixed in 2.5% glutaraldehyde of cacodylate buffer (0.1 M, pH 7.4). After 1 hour, 

eye balls were dissected, fixed for another 3 hours, post-fixed in 1% osmium tetroxide in 

cacodylate buffer and dehydrated in graduated ethanol solution. The samples were included in 

epoxy resin and oriented. Semithin sections (1 µm), obtained with an ultramicrotome Reichert 

Ultracut E (Leica, Rueil Malmaison, France), were stained with toluidine blue and examined 

with a light
 
microscope to measure photoreceptor layer thickness 300 – 800 µm from the optic 

nerve . Ultrathin sections (80 nm) were contrasted with uranyl acetate and lead citrate and 



observed in a JEOL 100 CX II electron microscope (JEOL, Tokyo, Japan) with 80 kV. 

2.6. Microglial cell migration assay  

Brain glial cell suspensions were obtained from brains of 5 donor C57BL6/J or CX3CR1
-/-
 

mice. Brains were isolated, freed of meninges and put into a 5% CO2/ 37°C incubator for 15 

min. The tissue was minced mechanically and flushed several times with a 1-ml pipette. 

Pooled minced tissue was harvested in PBS, and cells were centrifuged at 2000 rpm for 10 

min. The pellet was resuspended in fresh medium, and floating cells were separated from 

debris by decantation. This process was repeated 3 times. Harvested cells were centrifuged 

again. Finally, 200 µl of cell suspension (1.5 million glial cells, about 1/10 microglial cells) 

was placed in each of 5 µm pore polycarbonate Transwell inserts with 5-µm pores (Corning, 

Avon, France). CX3CL1, CCL2 and CCL5 (R&D Systems, Lille, France) were used in 24-

well plates at concentrations of 0.5 to 50 µM (dilution in DMEM medium, GIBCO BRL, Life 

Technology, Paisley, Scotland). Media in wells with chemokines (Peprotech, Rocky Hill, NJ) 

were harvested 1 day later and analyzed by flow cytometry (FACSCalibur, Becton Dickinson) 

for the CD11b marker (clone M1/70, BD Pharmingen, San Diego, CA, USA). 

2.7. Statistical Analysis 

Graph Pad Prism 4 (GraphPad Software, San Diego, CA, USA) was used for the data analysis 

and graphic representations. All values are reported as means ± SEM. Statistical comparisons 

used unpaired two-sample t-tests for means and the Mann-Whitney U test. Significance was 

set at p < 0.05. 



 

3. Results and Discussion 

3.1. MC accumulation precedes photoreceptor degeneration in CX3CR1
-/-
 mice  

We previously showed that photoreceptor cell degeneration occurred secondarily to the MC 

accumulation in subretinal space in both chronic (aging) and aggressive acute (laser 

photocoagulation) models of retinal insult. We sought to replicate these results in a less 

aggressive model of acute light insult that, unlike laser photocoagulation, does not promote 

angiogenesis. C57Bl/6 control and CX3CR1
-/-
 mice were exposed to a short period of very 

bright light. After 40 days, the mice were euthanized and their retinas stained with toluidine 

blue as shown in Figure 1. A marked degeneration of photoreceptors was observed in the 

CX3CR1
-/- 
mice exposed to bright light (Fig. 1B), compared with control mice

 
(Fig. 1A) and 

control unexposed mice (data not shown). Measurements of photoreceptor cell layer thickness 

showed significant thinning (~50%) of the photoreceptor cell layer in the CX3CR1
-/-
 mice 

compared with control whereas cell layer thickness were similar in unexposed CX3CR1
-/-
 and 

CX3CR1
+/+
 mice (Fig. 1C) modifier la figure 1C et réajuster par rapport a jour 40.. These data 

indicate that CX3CR1
-/- 
mice are much more sensitive to light exposure and that CX3CR1 

may participate in photoreceptor survival.  

To track the CX3CR1-expressing cells, we repeated these experiments in CX3CR1
GFP/GFP 

mice in which the GFP is driven by the CX3CR1 promoter. Ten days after light injury, 

CX3CR1
+/GFP

 mice displayed only occasional GFP-positive MCs adjacent to the RPE 

monolayer (red fluorescence in Fig. 2A), compared with the CX3CR1
GFP/GFP

 mice, which 

showed a massive MC accumulation (Fig. 2B). Before light injury, the number of subretinal 

MC were similarly low in two-months old CX3CR1
+/GFP 

and CX3CR1
GFP/GFP 

mice (Fig.2C). 

In CX3CR1
+/GFP

 mice, MCs were present in the subretinal space as early as one day after light 



exposure, and their number remained unchanged for 40 days (Fig. 2C). MC accumulation in 

CX3CR1
GFP/GFP

 intensified early, on the other hand, peaking at day 10 and slowly returning to 

baseline by day 40. A more detailed analysis of MC morphology in bright light-exposed 

pigmented CX3CR1
+/GFP

 and CX3CR1
GFP/GFP

 mice revealed small cell bodies with long, thin 

pseudopodia 1 day and 10 days after light exposure in the CX3CR1
+/GFP

 mice (Fig. 2D). In 

contrast, in the MCs of the CX3CR1
GFP/GFP

mice, the average cell body increased significantly 

in size by day 10 and the cells appeared bloated with intracellular inclusions (Fig. 2E). 

Quantification of the ratio of body size and pseudopodia length showed an increase in body 

size in the CX3CR1
GFP/GFP

 mouse cells that was not observed in CX3CR1
+/GFP

 mice (Fig. 2F). 

Nevertheless, some MCs in CX3CR1
GFP/GFP

 mice at day 10 had the slim body and long 

pseudopodia phenotype observed at day 1 and in control mice.  

We previously showed that body growth in MCs may be attributed to ROS ingestion and lipid 

accumulation (Combadière et al., 2007). Our observations suggested that the average duration 

of time that CX3CR1
GFP/GFP

 MCs spend in the subretinal space is longer than for controls. The 

accumulation of MCs in CX3CR1-deficient mice may therefore be due to their defective 

clearance from the subretinal space. This additional time may favor MC phagocytic functions 

and their transformation into bloated “foam cells”. The transient occurrence of MCs in this 

bright-light model and in our experiments with albino CX3CR1
-/- 
mice (Combadière et al., 

2007), together with the observation by Ng et al. (Ng and Streilein, 2001), suggests that 

retinal MCs may leave the subretinal space. 

3.2. MC migrated in response to inflammatory chemokines 

To evaluate the role of the CX3CL1/CX3CR1 axis in MC redistribution, we studied 

CX3CL1 expression in 12-month-old CX3CR1
+/+
 mice (Fig. 3A). CX3CL1 (red stain) was 

strongly expressed in the major vessels of the retina and choroid (arrows). When the primary 

antibody was omitted, this staining was not observed in adjacent sections (Fig. 3B). No or 



very faint CX3CL1 staining was found in the photoreceptor layer, where the MCs 

accumulated in CX3CR1
-/-
 mice. To assess the role of the chemokine pathway in MC 

redistribution, we performed an in vitro migration assay on single-cell suspensions of MCs 

from the brains of CX3CR1
+/+
 and CX3CR1

-/-
 mice (Fig. 3C). In cell suspensions from 

CX3CR1
+/+
 brains, CD11b-positive MCs migrated specifically in response to CX3CL1, CCL2 

and CCL5 at concentrations ranging from 0.1 nM to 50 nM (Fig. 3C and data not shown). As 

expected, MC migration in the CX3CR1
-/-
 mice was totally blunted in response to CX3CL1 

but remained unchanged in response to CCL2 and CCL5. These findings suggest that the 

CX3CR1/CX3CL1 axis is not involved in MC redistribution to the subretinal space but may 

be required for further movement in or outside the retina. 

3.3. Rhodopsin-positive MCs exit the subretinal space by different routes 

The failure of studies in retinal degeneration models to detect TUNEL-positive cells in 

the subretinal space suggests that MCs, unlike photoreceptors, do not disappear by apoptosis 

(Tso et al., 1994). We hypothesized that MCs actively leave the subretinal space by migration. 

As MC phagocytize ROS, they become rhodopsin-positive and can be tracked outside the 

photoreceptor cell layer for as long as the intralysosomal antigen is recognized by the 

rhodopsin-specific antibody. In humans, MCs migrate into the inner retina after engulfing 

injured ROS in AMD (Gupta et al., 2003; Combadière et al., 2007). As subretinal MCs did 

not accumulate significantly in the light induced model in CX3CR1
+/+
 mice this model, we 

found it not suitable to monitor the fate of subretinal in CX3CR1 competent MCs. Instead we 

used the model of dystrophic RCS rats, where MCs accumulate secondary to photoreceptor 

degeneration caused by a genetic defect (Roque et al., 1996). Dystrophic 35-day-old RCS rats 

displayed rhodopsin-positive cells (red fluorescence) expressing the microglial cell marker 

CD68 (green fluorescence) outside the photoreceptor cell layer  in the inner nuclear layer 

(Fig. 4A, B and C) and in the choroid (Fig. 4D, E and F). Furthermore, transmission electron 



microscopy of sections of dystrophic RCS rat retina (but not of control rat retina) showed the 

presence of cells in the lumen of choriocapillaries with the characteristic appearance of 

intralysosomal ROS remnants (Fig. 5A). Ultrastructural analysis confirmed the presence of 

both the early (Fig. 5B) and late (Fig. 5C) stages of ROS degradation, which are usually 

observed only in RPE cells. Taken together, our data show that cells positive for MC markers 

and containing ROS/rhodopsin can be found outside the photoreceptor cell layer, the 

exclusive site of physiological rhodopsin expression. The presence of rhodopsin-positive 

SrMCs in the inner retina suggests an exit via the retinal vessels, and their presence in the 

choroids points to an exit route through the choroid or ciliary body.  

4. Conclusions 

MCs in CX3CR1-deficient mice after bright light injury migrated to the subretinal space 

where they accumulate in a CX3CR1 independent way. Secondarily to this accumulation, 

photoreceptor cells degenerated in these mice. To investigate the fate of CX3CR1 competent 

subretinal MCs we used dystrophic RCS rats, where important subretinal MCs accumulations 

are found secondarily to primary photoreceptor degeneration. Detection of ROS debris 

containing mononuclear cells outside the photoreceptor cell layer in dystrophic RCS rats 

suggests that MCs actively migrate away from their subretinal location. The absence of these 

ectopic rhodopsin positive MCs in models of CX3CR1-deficient MC accumulation suggests a 

role of CX3CR1 in this process. These results describe a new clearance route that will 

necessitate further investigation to clarify and detail its mechanisms. 
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Figure Legends 

Figure 1: Photoreceptor degeneration after bright light injury in CX3CR1-/- mice.  

Toluidine blue-stained epoxy retinal semithin sections of CX3CR1
+/+ 

(A) and CX3CR1
-/- 
(B) 

show degeneration of photoreceptors in CX3CR1
-/- 

bright light-exposed mice. (C) 

Measurements of photoreceptor cell layer thickness show significant thinning of the 

photoreceptor cell layer in CX3CR1
-/-
 mice. Experiments were performed on 4 to 8 eyes from 

different mice for C57BL/6 mice (+/+, empty columns) and CX3CR1
-/-
 (-/-, plain columns). *, 

P < 0.05. ONL: outer nuclear layer; ROS: rod outer segments. Scale bars: 50 µm.  

 

Figure 2: MC accumulate in the subretinal space after bright-light injury in CX3CR1-/-

mice. 

RPE flatmounts of CX3CR1
+/GFP 

(A) and CX3CR1
GFP/GFP

 (B) show a substantial 

accumulation of subretinal MCs in CX3CR1
GFP/GFP 

mice in the bright light-exposure model. 



(C) Quantification of subretinal GFP cells on RPE flatmounts reveals a substantial 

accumulation of subretinal MC in CX3CR1-/- mice. Magnification of individual cells of 

bright light-exposed eyes reveals that subretinal MCs at day 10 after exposure of 

CX3CR1
GFP/GFP

 (D) have large cell bodies and short pseudopodia compared with cells of 

CX3CR1
+/GFP

 mice (E). (F) Measurements of the ratio of the cell body versus the pseudopodia 

at d1 and d10 reveal that the bodies of CX3CR1
GFP/GFP

 subretinal cells increase in size with 

time after bright light exposure. Experiments were performed on 4 to 8 eyes from different 

mice for CX3CR1
+/GFP

 (+/G, hatched columns) and CX3CR1
GFP/GFP

 (G/G, plain columns). *, 

P < 0.05. Scale bars: 50 µm.  



 

Figure 3: Localization of the chemokine CX3CL1 and in vitro migration assay. 

(A) In C57BL/6 mice, CX3CL1 (red staining) localizes to the major vessels of the retina and 

choroid (arrows). (B) Negative control omitting the primary antibody. NFL: nerve fiber layer; 

INL: inner nuclear layer; ONL: outer nuclear layer; ch: choroids. Scale bar 100 µm. (C) In 

vitro migration assays of brain microglial cells compare chemotactic responses to 10 nM of 

the indicated chemokines in CX3CR1
-/-
 (plain columns) to C57BL/6 (empty columns) groups 

of mice. Results are representative of at least three independent experiments. 



Figure 4: 

Rhodopsin-positive cells are found outside the PRL. 

Dystrophic 35-day-old RCS rats display rhodopsin-positive cells (A and D, red fluorescence) 

expressing the microglial cell marker CD68 (B and E, green fluorescence) outside the 

photoreceptor cell layer in the inner retina (A, B and C for overlay) and in the choroid (D, E 

and F for overlay). Results are representative of at least three independent experiments. ONL: 

outer nuclear layer; RPE: retinal pigment epithelium. Ch: choroid. Scale bars : 50 µm. 

 

Figure 5 : ROS remnants in electron microscopy. 

(A) Electron microscopy of choroidal vessels of dystrophic rat retina show intraluminal cells 

(stars) with degrading intralysosomal outer segments (arrows). Ectopic MC show intracellular 



intralysosomal remnants of the outer segment at early (B) and late (C) stages of degradation. 

Results are representative of at least four independent experiments. RPE: retinal pigment 

epithelium. Ch: choroid. Scale bars: 2 µm. 


