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G-protein-coupled receptors (GPCRs) are dynamically regulated by various 

mechanisms, which tune their response to external stimuli. Modulation of their 

plasma membrane density, via trafficking between sub-cellular compartments, 

constitutes an important process in this context. Substantial information has 

been accumulated on cellular pathways, which remove GPCRs from the cell 

surface for subsequent degradation or recycling.  In comparison, much less is 

known about mechanisms controlling trafficking of neo-synthesised GPCRs 

from intracellular compartments to the cell surface. Although GPCR export to 

the plasma membrane is commonly considered to mostly implicate the default, 

unregulated secretory pathway, an increasing number of observations indicate 

that trafficking to the plasma membrane from the endoplasmic reticulum may 

be tightly regulated and involve specific protein partners. Moreover, a new 

paradigm is emerging in some cellular contexts, in which stocks of functional 

receptors retained within intracellular compartments may be rapidly mobilized 

to the plasma membrane to maintain sustained physiological responsiveness.  
  

Established models of GPCR maturation  

Introduction 

Polytopic proteins (spanning membranes several times) are synthesized by 

ribosomes attached at the cytosolic face of the endoplasmic reticulum (ER) and enter 

cotranslationally in the ER lumen via a translocation complex (the translocon), to which they 

are targeted by hydrophobic signal sequences (Figure 1). Membrane insertion of 

transmembrane domains is driven by the translocon and orientation signals contained in the 

polypeptidic chain itself and it is assisted by molecular chaperones and folding factors1, 2. 

Most polytopic proteins fold properly with the aid of the general chaperone system, which 

comprises classical and lectin chaperones, in addition to enzymes that catalyze disulfide 

bond formation or peptidyl-prolyl cis-trans isomerization3,4. Once polytopic proteins have 
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achieved their native conformation, they leave the ER and are transported through the 

secretory pathway to their destination. This complex ER machinery constitutes the major 

quality-control system for proof-reading newly synthesized proteins: folding-defective 

polypeptides are exported across the ER membrane into the cytosol and destroyed by the 

ER-associated degradation pathway (ERAD)5.  

Several studies have investigated the implication of the general chaperone system in 

GPCR folding. The Hsp70 family ER luminal protein BiP/GRP78 is the master regulator of 

the ER. Assisted by Hsp40 family co-factors, BiP facilitates translocation of nascent chains in 

the ER lumen, participates in protein folding and oligomerization and contributes to the retro-

translocation of misfolded proteins to ERAD4. Some GPCRs, such as thyrotropin-releasing 

hormone receptor (TRH receptor) and lutenizing hormone receptor (LSH receptor), were 

reported to interact with BiP6,7. LSH receptor, was also found to interact in the ER with 

GRP94, a member of the Hsp90 family and Bip cofactor7. GRP94 likely interacts with more 

advanced folding intermediates than BiP, since it binds some substrates that have been 

released from BiP4. N-glycosylation of the aminoterminal region or of extracellular loops 

(which are luminal in the ER) is common among GPCRs. Cotranslational addition of a 

Glucose3Mannose9N-acetylglucosamine2 chain to asparagine residues by the 

oligosaccharyltransferase provides binding sites for carbohydrate-binding lectin chaperones 

such as calnexin and calreticulin. After the removal of the 2 terminal glucoses by a 

glucosidase, monoglucosylated nascent proteins interact with lectin chaperones, the 

interaction being terminated by the cleavage of the last glucose by glucosidase II. Once 

released, correctly folded glycoproteins can exit the ER. In contrast, incorrectly or 

incompletely folded glycoproteins are re-glucosylated by glucosyltransferase promoting a 

renewed association with calnexin and calreticulin. Cycles of glucosylation and de-

glucosylation continue until the glycoprotein has either reached its native conformation or is 

targeted for degradation3. As expected from the GPCR glycosylation profile, multiple reports 

illustrate the interaction between GPCRs and carbohydrate-binding chaperones6-12. 

Interestingly, ER-retained receptor mutants were found to display enhanced interaction with 

both carbohydrate-binding chaperones and/or BiP9,13. Finally, several reports documented 

the degradation of wild type or mutant GPCRs by ERAD12,14,15. The developing field of the 

proteomic analysis of GPCR-associated protein complexes16 will likely confirm that 

interaction with the general chaperone system is a common feature for all receptors. 

 

Post ER trafficking 

Exit of proteins from the ER occurs at ER exit sites, where buds are formed and 

coated with the COPII coat under the control of the Sar1p GTPase. Proteins released from 

the ER quality control machinery accumulate in these buds17. A recent study provided 
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experimental evidence that ER exit of GPCRs is indeed mediated through Sar1-dependent 

COPII-coated vesicles18. Signals in the cytoplasmically exposed C-terminal tails of 

transmembrane protein cargos (i.e. the transmembrane proteins that are being transported in 

the secretory pathway) are likely involved in direct binding with components of COPII19.  

These signals comprise di-acidic motifs (DXE or similar) and pairs of aromatic (FF, YY or FY) 

or bulky hydrophobic (LL or IL) amino acid residues17. Cargo receptors for soluble secretory 

proteins present in ER buds also possess these motifs in their carboxyterminal tail. Many 

GPCRs contain similar ER export motifs 20, suggesting that they might interact directly with 

COPII complex proteins, although experimental evidence for this is lacking.  

In mammalian cells, protein traffic moving from ER-exit sites to the Golgi complex 

passes through the ER-Golgi intermediate compartment (ERGIC). ERGIC is a site of 

anterograde and retrograde sorting under the control of COPI coat proteins, Rab and Arf 

GTPases21. Vesicles exiting from this compartment are either directed to the Golgi or back to 

the ER, depending on the cargo, the ARF-GTPase isoform involved in coat recruitment, and 

on Rab effectors. ERGIC mainly harbors two Rabs that have opposing functions. Rab2 likely 

promotes the formation of vesicles returning to the ER22, whereas Rab1 isoforms are 

involved in ER to ERGIC and ERGIC to cis-Golgi transport23. Indirect evidence for GPCR 

trafficking through the ERGIC has been provided by studies analyzing the effects of Rab1 

and Rab2 proteins on receptor export. Forward trafficking of both the angiotensin AT1 

receptor and the ß2-adrenoceptor were impaired by siRNA-mediated knockout of Rab1b and 

overexpression of dominant-negative Rab1a24. Surprising, trafficking of the α2B-adrenoceptor 

was not affected, suggesting receptor-specific pathways. The surface expression of both ß2- 

and α2B- adrenoceptors was perturbed by Rab2 mutants or siRNA-promoted inhibition of 

Rab2 25. 

The Golgi complex is composed of stacks of flattened cisternae. Each layer of the 

stack, from cis-Golgi to the trans-Golgi network (TGN) contains glycosyltransferases. ER to 

Golgi carriers join the Golgi stack by fusing with cis cisternae26. The transport mechanisms of 

cargo and enzymes through the Golgi stack has not been completely elucidated and lead to 

conflicting models27. Once in the Golgi, cargo proteins may be sorted to the plasma 

membrane, the endosomal system or the ER. Retrograde transport to the ER is likely 

involved in re-targeting misfolded proteins to the ERAD28.  Other defective proteins are 

targeted to lysosomal degradation after sorting to endosomes28. Studies of δ-opioid (DOP) 

receptor glycosylation demonstrated that its O-glycosylation (on Ser or Thre residues) and 

final processing of N-linked oligosaccharides occur in different compartments of the Golgi29. 

Perturbing the function of the Rab6 GTPAse, which regulates vesicular transport in the 

Golgi30, inhibited the anterograde transport of Drosophila rhodopsin31 and of mammalian 

GPCRs 25. There is no evidence for GPCR sorting from the Golgi to endosomes or ER and it 
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remains unknown whether GPCR targeting to the cell surface from the Golgi is regulated. 

However, a recent report indicates that the N-terminus of the α2B-adrenoceptor may contain a 

signal to exit from the Golgi.  Indeed, a receptor mutant, in which adjacent Tyr and Ser amino 

acid residues were substituted, was totally trapped in this organelle32.  

 

GPCR oligomerization might control receptor maturation and cell surface translocation 

Most GPCRs may exist as either homodimers or heterodimers. Dimerization seems to 

occur in the ER where it could have an important role in biosynthesis and quality control of 

newly synthesized receptors33. Heterodimerization can mask retention signals present in the 

sequence of some receptors, such as the GABAB(1)
34, which are constitutively trapped in the 

ER in the absence of maturation partners. In contrast, the mechanism by which GPCR 

homodimerization might affect ER exit remains to be elucidated. A plausible hypothesis is 

that homodimerization might help receptor folding. Association of nascent polypeptides with 

chaperones prevents unproductive interactions with the environment that result in protein 

aggregation35. Hydrophobic regions (such as membrane spanning domains of GPCRs) are 

particularly prone to non-specific aggregation. Thus, the ordered association of two nascent 

GPCR polypeptides via their transmembrane regions (often constituting the dimerization 

interface) could hide a significant proportion of the exposed hydrophobic surface and 

facilitate correct folding. The hypothesis that in a GPCR dimer receptor protomers may serve 

as folding chaperones one to each other, is consistent with the fact that functional GPCR 

heterodimers have been obtained in reconstituted cell models containing receptors, which do 

not “meet” in real life. In these artificial conditions, where two distinct GPCR polypeptides are 

forced to enter simultaneously in the ER, if they display sufficient structure-driven propensity 

to assemble, they may form heterodimers. Homodimerization might also contribute to quality 

control. Dimeric receptors are likely to be structurally symmetric. Random mutations affecting 

the overall structure of one protomer, may generate asymmetry within the dimer. Checking 

for symmetry could represent a simple method for ER quality-control mechanisms to 

recognize and retain nascent mutations, for disposal via the ERAD. Consistent with this 

model, mutant ER-retained GPCRs generally display dominant negative effect of over wild 

type forms in heterozygous individuals or in reconstituted cellular models33.  

   

Changing Paradigms  

 

GPCRs displaying regulated translocation to the plasma membrane from intracellular stores.  

It is commonly believed that, in the absence of agonist-promoted endocytosis, 

GPCRs are mainly expressed at the cell surface, but this may not always be the case. The 
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protease-activated receptor (PAR) family represents a well-known example. Thrombin 

receptors (PAR1 and PAR2) are irreversibly activated by cleavage, internalized and 

degraded in lysosomes. A large pool of intracellular receptor, mostly localized in the Golgi 

apparatus and protected from activation by thrombin, is translocated to the plasma 

membrane upon activation of cell surface receptors. Replenishment of plasma membrane 

thrombin receptors is correlated with recovery of thrombin responsiveness36.  

Similarly, regulated pools of intracellular dopamine D1 receptors exist in tubular renal 

cells. In these cells, receptor recruitment from cytosolic stores to the plasma membrane is 

elicited by agonist activation of cell surface receptors37 or via atrial natriuretic peptide-

dependent heterologous activation38.  An analogous phenomenon was also reported for α1A-

adrenoceptors in response to neuropeptide Y stimulation38, leading to the concept that 

receptor recruitment to the plasma membrane might be a mechanism for receptor 

sensitization. Selective up-regulation of D1 receptor was subsequently reported in neuronal 

dendritic spines upon NMDA receptor activation and increased intracellular calcium39. The 

recruitment of renal D1 receptor seems to occur via Golgi-derived vesicles and requires an 

intact microtubular network40.  

Another model of regulated cell surface GPCR delivery, is represented by DOP 

receptor in neuronal cells41. Only a small fraction of DOP receptors is localized at the 

neuronal plasma membrane42, consistent with their low physiological involvement in acute 

pain response43. Sustained stimulation of µ-opioid receptors can redistribute DOP receptors 

to neuronal plasma membranes in vivo and improve DOP-dependent antinociceptive 

effects44,45. It was suggested that cell surface translocation of DOP receptor from intracellular 

compartments might account for the enhanced effect of DOP-targeting drugs during chronic 

pain41. Several stimuli may elicit DOP receptor translocation, including the rise in intracellular 

calcium by either release from intracellular stores or direct opening of ion channels39.  

Several other GPCRs inefficiently expressed at the plasma membrane, such as the 

odorant receptors46, the human GnRH receptor47, the α1D-adrenoceptor48 and the LSH 

receptor49, might represent other candidates for regulated translocation to the cell surface.  

 

The increasing number of non-conventional chaperones and escorts assisting GPCR 

translocation to the plasma membrane (Table 1).  

 

 Some proteins may necessitate the specialized assistance of specific chaperones in 

the ER to fold properly. These so-called “private” chaperones assist nascent proteins in 

various ways. Outfitters50, are chaperones or enzymes that directly participate in the folding 

of their cognate proteins. A few private chaperones involved in GPGR folding have been 

reported. NinaA and RANBP2, two cyclophilin type II proteins displaying peptidyl-prolyl cis-
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trans isomerase activity, function as chaperones for Drosophila and vertebrate rhodopsin, 

respectively51, 52. Rhodopsin also interacts with HSJ1b, a protein member of the DnaJ/Hsp40 

chaperone family53. In neurons, HSJ1 proteins, which function at the cytosolic face of the ER, 

facilitate the transfer of “client” proteins onto Hsc70 chaperones and their subsequent 

ubiquitylation and sorting to the proteasome54. Thus, HSJ1 isoforms likely participate in 

ERAD and protect neurons against cytotoxic protein aggregation. Another group of GPCR 

private chaperones falls in the category of escort proteins50, which bind nascent proteins in 

the ER and escort them to the Golgi complex and the plasma membrane.  

During the past ten years, a vast array of membrane-associated or cytoplasmic 

proteins has been identified, which constitutively interact with GPCRs within intracellular 

compartments and facilitate their cell surface expression. These proteins functionally behave 

like GPCR chaperones or escorts although they often display other biological roles. They 

were often identified by expression-cloning approaches or two-hybrid screens aimed to 

identify accessory factors helping the functional expression of “difficult to study” receptors.  

The first example of non-conventional escort proteins for GPCRs is represented by 

receptor-activity-modifying-proteins (RAMPs55). RAMPs are type-I single-transmembrane 

domain proteins with a large N-terminal extracellular domain and a short C-terminus. They 

were initially described as obligatory interacting partners for the cell surface expression of a 

Class-B56 GPCR, the calcitonin-like receptor. RAMPs remain associated with the receptor at 

the cell surface. Interestingly, depending on the associated RAMP, the ligand binding 

properties of the calcitonin-like receptor vary, RAMP1 inducing affinity for the calcitonin gene-

related peptide (CGRP) whereas RAMP2 determines an adrenomedullin receptor 

phenotype57. Subsequent studies uncovered that RAMPs also aid in the constitutive plasma 

membrane translocation of a Class-C GPCR, the calcium-sensing receptor (CaS)58. 

However, some observations suggest that being an escort protein for GPCRs is not the 

principal physiological function of RAMPs. First, RAMPs are almost ubiquitous, contrasting 

with the restricted tissue distribution of calcitonin-like57 and CaS receptor58. Second, the cell 

surface expression of other RAMP-interacting Class-B GPCRs (VPAC, parathyroid hormone, 

glucagon and glucagon-like peptide receptors), is not affected by their association with 

RAMPs55. 

 For a long time, the study of odorant receptors has been hampered by the lack of 

functional cell surface expression in heterologous cells, raising the hypothesis that odorant 

tissue must contain specific auxiliary factors regulating their plasma membrane trafficking. 

Single transmembrane proteins named RTP1, RTP2 (Receptor Transporting Protein 1 and 2) 

and REEP1 (Receptor Expression Enhancing Protein 1) were finally found to permit 

functional cell surface targeting of odorant receptors in fibroblasts46, reminiscent of previous 

studies in C. elegans, in which odorant receptor localization to olfactory cilia required 
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interaction with the ODR-4 transmembrane protein59. Members of the RTP and REEP 

families display a much more diffuse distribution than the olfactory epithelium, suggesting 

that these proteins may regulate other GPCRs and/or exhibit additional functions. In 

particular, RTP and REEP mRNAs were detected in human circumvallate papillae and testis, 

which are the sites of bitter taste (TAS2) receptor expression. Experiments in heterologous 

cells confirmed the enhancement of TAS2 receptor cell surface targeting upon interaction 

with RTP3-4 and REEPs60.   

The mammalian vomeronasal organ, a small sensory organ located near the base of 

the nasal septum and involved in the detection of pheromones, contains specific Class-C 

GPCRs, which function as pheromone receptors. These vomeronasal receptors require the 

association with M10s proteins for proper traffic to the plasma membrane61. M10s belong to 

the superfamily of MHC class-I molecules, but are exclusively expressed in the vomeronasal 

organ. As classical MHC molecules, M10s contain an open peptide-binding cleft and 

associate with ß2-microglobulin. It was proposed that M10s, in addition to their escort role, 

might modulate the ligand specificity of vomeronasal receptors (similar to RAMPs) or 

participate in neuronal plasticity62.  

As for odorant receptors, it has been very difficult to obtain functional expression of 

exogenous adrenocorticotropin MC2 receptor, except in cells of adrenocortical origin, 

suggesting that MC2 receptor expression may require an adrenal-specific accessory factor. In 

a genetic disease, the familial glucocorticoid deficiency (FGD), the adrenal cortex is resistant 

to adrenocorticotropin. By investigating patients with FGD and normal MC2 receptor, 

mutations were identified in a gene encoding a 19-kDa single-transmembrane domain 

protein, named MC2 receptor accessory protein (MRAP). MRAP was found to interact with 

MC2R and to regulate its trafficking from the endoplasmic reticulum to the cell surface63, 64. 

This example illustrates particularly well the physiopathological relevance of the interaction 

between a GPCR and a “private” escort protein. 

Another similar example comes from studies in mice. Abnormal serotonin signaling 

has been implicated in the pathophysiology of depression. Cell surface density and function 

of the serotonin 5-HT1B receptors are decreased in knockout mice for p1165 (also known as 

calpactin I- or annexin II-light chain) a member of the S100 EF-hand calcium-dependent 

signaling modulators66. These mice exhibit a depression-like phenotype. The distribution of 

p11 mRNA in the brain resembles that of 5-HT1B receptor mRNA, p11 specifically interacts 

with 5-HT1B receptors (not with other serotonin or dopamine receptors), and colocalizes with 

the receptor at the cell surface of transfected cells65. Interestingly, p11 is increased in the 

brain of mice treated with antidepressants and reduced in depressed patients. 

As for p11, other GPCR-interacting proteins may control plasma membrane receptor 

targeting without traveling to the cell surface. A well-known example is the ER-membrane-
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associated protein, DRiP78. Overexpression or down-modulation of this putative two-

transmembrane domain protein leads to ER retention of D1 receptors, reduced ligand 

binding, and impaired kinetics of receptor glycosylation67. DRiP78 binds to a FXXXFXXXF 

motif found in the C-terminus of various GPCRs, supporting the hypothesis that DRiP78 may 

function as a chaperone for several receptors. Accordingly, a subsequent study indicated a 

role of DRiP78 in the maturation of the AT1 angiotensin II receptor68. Noteworthy, DRiP78 

also specifically interacts with Gγ subunits of heterotrimeric G proteins, protecting them from 

degradation until a stable partner (cognate Gβ subunit) is provided. These results suggest a 

chaperone role of DRiP78 in the assembly of Gβγ subunits69. 

A membrane-associated Golgi protein, ATBP50 (for AT2 receptor binding protein of 

50 kDa) was reported to bind to the cytoplasmic carboxyterminal tail of the angiotensin AT2 

receptor and to control its cell surface expression, as demonstrated by receptor retention 

within intracellular compartments after inhibition of ATBP50 expression70. ATBP50 and two 

splice variants of the same gene share two myosin-like coiled-coil regions and form homo 

and hetero-dimers in vitro. These proteins display a much broader distribution than the AT2 

receptor, consistent with additional functions or with a more general role of escort protein for 

other GPCRs. 

Another example of intracellular protein, interacting with the carboxyterminal tail of a 

GPCR (and also the first intracellular loop) and regulating its cell surface expression, is 

represented by RACK1 (from Receptor for Activated C-Kinase 1)71. RACK1 is an ER protein 

that constitutively binds the thromboxane A2 receptor (TPß). The cell surface expression of 

TPß was directly correlated with the concentration of RACK1: in cells with low RACK1 after 

specific siRNA treatment, TPß was retained in the ER. Interestingly, RACK1 displays 

selectivity for GPCRs since its expression level was able to affect the cell surface distribution 

of the chemokine receptor CXCR4 but not that of the ß2-adrenoceptor or prostanoid DP 

receptors. 

Comparable specificity was documented for GEC1, a 117-residue protein, member of 

the microtubule associated protein (MAP) family72.  GEC1 interacts in the Golgi and the ER 

with the C-terminus of κ-opioid (KOP) receptors, but not with that of µ or δ subtypes. GEC1 

expression enhanced the level of mature fully glycosylated forms of KOP receptors, and 

facilitated trafficking of KOP receptor to the cell surface. GEC1 levels appear to be tightly 

regulated, as indicated by a toxic effect of overexpression. Moreover, because of its broad 

tissue distribution, GEC1 might participate in cell trafficking of other membrane proteins72. 

Finally a number of GPCR-interacting proteins, such as the dynein light-chain subunit 

TcTex, Homer proteins and Filamin A, were reported to connect rhodopsin73, glutamate 

receptors74 and dopamine75 receptors, respectively, to the cytoskeleton, participating by this 

mean to their final subcellular localization. At least in the case of the visual receptor, this 
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targeting function is also associated with an escort/chaperone-like role, as indicated by toxic 

effects of rhodopsin mutations, which inhibit the interaction with TcTex73. 

 

Proteins that negatively regulate GPCR export via retention. 

A simple explanation of GPCR retention within intracellular compartments in the 

absence of appropriate signals of forward export or in the case of a lack of “private” 

chaperones or escort proteins, might be the persistent interaction with proteins of the general 

quality-control machinery. Although this hypothesis remains plausible, some observations 

argue for the existence of specific retention mechanisms.  

For example, the second extracellular loop of PAR2 was shown to interact with the N-

terminal domain of the Golgi-resident type I transmembrane protein p24A. PAR2 is trapped 

in the Golgi because of this interaction. Upon activation of cell surface PAR2, the small G 

protein ARF1 is recruited in its GDP-bound form, to Golgi membranes, where a specific 

exchange factor activates ARF1. This process results in the dissociation of PAR2 from p24A 

and receptor sorting to the plasma membrane76. During development, a GPCR-retaining 

protein was reported to control the surface receptor availability of Frizzled (FZD), a GPCR, 

which promotes caudalizing signals. This ER-resident protein, Shisa, is specifically 

expressed in head ectoderm, where it binds to and inhibits cell surface trafficking of FZD. 

Shisa-mediated receptor retention thus constitutes a mechanism to control head-tail 

polarity77. Although evidence for receptor-specific retention mechanisms is still limited for 

GPCRs, other recent examples exist for growth-factor receptors78, suggesting that this field 

may rapidly evolve in the near future.  

 

Concluding remarks and perspectives. 

The emerging picture of GPCR trafficking from biosynthetic compartments to the 

plasma membrane appears much more sophisticated than expected, particularly if the recent 

hypothesis of large signaling complexes containing GPCRs, G proteins and effectors being 

assembled during maturation79, is confirmed by future studies. 
Several receptors are retained within intracellular compartments waiting for external 

signals that control their release from molecular tethers. In most cases, the pathways 

connecting signaling events with receptor export and the entity of the tethers have not been 

identified yet. Moreover, the subcellular location of retained receptors is not unique, 

implicating at least the ER and the Golgi complex.  

Many GPCRs are constitutively associated with a long list of “private” chaperones or 

escort proteins, which are necessary for their proper targeting to the plasma membrane. How 

general this phenomenon may be, what the mechanisms involved in receptor retention and 

release are and the potential connection between this phenomenon and signal-regulated 
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transport remain to be elucidated.  Moreover, these private chaperones, which often display 

other cellular functions, might actually assist multiple GPCRs and possibly other integral 

membrane proteins in their trafficking to the cell surface.  

Several conserved motifs have been identified in the sequence of many GPCRs, 

which may have some role in their forward trafficking. These motifs represent a molecular 

code determining the association with proteins that retain or assist GPCR in their journey 

through biosynthetic compartments. Deciphering the code is still a task that lies ahead. 

Finally, the issue of GPCR maturation and trafficking to the cell surface is already an 

important issue in human health, as several receptor mutants leading to intracellular 

retention have been identified, which cause disease via impaired signaling80. Maturation and 

trafficking of these mutated receptors can be improved by membrane-permeant small 

molecules, which bind to retained receptors and induce export-competent conformational 

changes81. Thus, improving our knowledge on the routing regulation of this important class of 

membrane receptors will probably elicit the development of new therapeutical approaches to 

control the targeting of GPCRs at the plasma membrane.   
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Figure 1. Subcellular events involved in GPCR maturation and cell surface export.
The scheme represents a step-by-step outline of GPCR synthesis and transport along the
secretory pathway. Numbered boxes refer to either general mechanisms of protein
transport (in black) or to GPCR-specific events (in blue). The proteins indicated in the
boxes are described in the text and have all been shown to specifically contribute to GPCR
transport.
ER: endoplasmic reticulum; ERGIC: ER-Golgi intermediate compartment; ERAD:ER-
associated degradation pathway; COPII: coat protein II (or coatomer), involved in the
transport of proteins from the rough endoplasmic reticulum to the Golgi apparatus. COPI:
coat protein I, found on Golgi membrane at steady state, and involved in the formation of
vesicles leaving the Golgi, including those of the retrograde transport to the ER.

Cotranslational entry in the ER via
the retrotranslocon, and folding

ER chaperones involved in GPCR
folding:
Bip/GRP78
GRP74
Calnexin
Calreticulin

Private GPCR chaperones and
escort proteins (see Table 1)

ER exit sites and COPII-coated
buds and vesicles, the formation of
which is regulated by the Sar1
GTPase

Proteins involved in anterograde or
retrograde sorting in the ERGIC,
which regulate GPCR export:
Rab1
Rab2

1

2

3

4

5

Retrograde transport from the
Golgi to the ER via COPI vesicles 6

Golgi proteins involved in GPCR
maturation and export:
Glycosyl transferases
Rab6 7

Sites of GPCR retention within
the biosynthetic pathway:
Golgi (p24A,PAR2)
ER (Shisa, Frizzled) 8

GPCR



Table 1. Non-classical chaperones and escorts, which assist GPCR translocation to  
the plasma membrane. 
 

 
 
Abbreviations: AMY, amylin; CaS, calcium-sensing;CGRP, calcitotonin gene-related peptide; 
TM, transmembrane 
“?” denotes a possible, but unconfirmed property 
 
 
 
 
 
 
 
 
 
 
 

Name Type of 
protein 

Other functions 
Tissue distribution 

Chaperone 
(C) 

or Escort (E) 
GPCR(s) References 

RAMP (1-3 ) Type 1, 1-TM broad E AMY, CGRP 
CaS  

52-54 
55 

RTP (1-4) Type 1, 1-TM broad E Odorant 
Taste 

43 
56 

REEP Type 1, 1-TM broad E Odorant 
Taste 

43 
57 

ODR4 Type 1, 1-TM olfactory neurons E C elegans 
Odorant  

56 

M10s Type 1, 1-TM ß2-µglobulin- 
associated  

MHC class I 
vomeronasal organ 

E Vomeronasal 58, 59 

MRAP Type 1, 1-TM adrenal 
brain 

E ? MC2 60, 61 

P11 Ca-binding 
EF-hand 

(helix-loop-
helix motif) 

protein 

Ca-dependent 
signaling modulator 

C ? 5-HT1B 62 

DRiP78 2-TM broad 
Gβγ subunit 
assembly 

C ? D1 
AT1 

64 
65 

ATBP50 myosin-like 
coiled-coil 

regions 

broad C ? AT2 67 

RACK1 7 WD repeat 
predicted 
propeller 
structure 

ubiquitous 
receptor for 

activated C-kinase 1 

C ? TPß 
CXCR4 

68 
68 

GEC1 microtubule 
associated 

Protein (MAP)  

broad C ? KOP 69 


