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Abstract

Viruses are very small and most of them can be seen only by transmission electron microscopy (TEM). TEM has therefore made a major

contribution to virology, including the discovery of many viruses, the diagnosis of various viral infections, and fundamental investigations

of virus/host cell interaction. However, TEM has gradually been replaced by more sensitive methods, such as the polymerase chain

reaction. In research, new imaging techniques for fluorescence light microscopy have supplanted TEM, making it possible to study live

cells and dynamic interactions between viruses and the cellular machinery. Nevertheless, TEM remains essential for certain aspects of

virology. It is very useful for the initial identification of unknown viral agents in particular outbreaks and is recommended by regulatory

agencies for investigations of the viral safety of biological products and/or the cells used to produce them. In research, only TEM has a

resolution sufficiently high for discrimination between aggregated viral proteins and structured viral particles. Recent examples of

different viral assembly models illustrate the value of TEM for improving our understanding of virus/cell interactions.

MESH Keywords             Animals ; DNA ; Viral ; diagnostic use ; ultrastructure ; HIV-1 ; ultrastructure ; Hepacivirus ; physiology ; ultrastructure ; Hepatitis B ; diagnosis ; Hepatitis

             B virus ; physiology ; ultrastructure ; Hepatitis C ; diagnosis ; Humans ; Microscopy ; Electron ; RNA ; Viral ; diagnostic use ; ultrastructure ; Virus Assembly ; Virus Replication

Author Keywords    virus detection ; viral morphogenesis ; viral assembly ; electron microscopy

Introduction

Most viruses are small enough to be at the limit of resolution of even the best light microscopes, and can be visualised in liquid samples or

infected cells only by electron microscopy (EM). However, there has been passionate debate about whether it is useful or useless for medical

virology ( ; ; ; ; ; ). InCurry et al., 1999 Curry et al., 2000a Curry et al., 2000b McCaughey et al., 2000a McCaughey et al., 2000b Madeley 2000

this review, I analyse and discuss the benefits of viral detection by EM in various aspects of current and past virology.

The discovery of many viruses and a role in routine diagnosis: the glory days  of the past“ ”

EM was first developed in the 1930s, by physicists in various countries, including Germany in particular (reviewed recently by Haguenau

). The first microscope for transmission electron microscopy (TEM), which was also known as a supermicroscope , was initiallyet al., 2003 “ ”
described by  ( ; ). This microscope had a much higher resolution than theMax Knoll and Ernst Ruska in 1932 Knoll and Ruska 1932 Ruska 1987

light microscopes of the time, and promised to revolutionise many aspects of cell biology and virology. Helmut Ruska, a medical doctor and

brother of the physicist Ernst Ruska ( ) rapidly recognised the potential of ultramicroscopy  for investigating the nature ofRuska et al., 1939 “ ”
viruses. Despite the lack of appropriate methods of sample preparation for TEM at the time, several viruses were characterised morphologically

and an attempt was made to develop a viral classification based on fundamental science ( ). The first use of TEM in clinical virologyRuska 1943

concerned the differential diagnosis of smallpox (caused by the variola virus of the poxvirus family) and chicken pox (caused by the

varicella-zoster virus of the herpes family), using fluid from the vesicles on the patients  skin ( ). Commercially available’ Nagler and Rake, 1948

electron microscopes became widely available from several manufacturers during the 1960s and 1970s. Medical publications from this time

feature large numbers of ultrastuctural investigations in thin sections of many embedded cells and organs (infected or uninfected; ).Figure 1A

The introduction of negative staining, making it possible to detect viruses from liquid samples deposited on carbon-coated grids and stained

with heavy metals salts (such as phosphotungstic acid or uranyl acetate), led to the widespread use of TEM in basic virology and rapid viral

diagnosis ( ; ). Negative staining not only makes the virus stand out from the background, it alsoBrenner and Horne, 1959 Figure 2, A and B

provides morphological information about symmetry and capsomer arrangement, for example, making it possible the specific identification of

viruses, or their classification into morphologically similar groups. Thus, the use of TEM for the study of viruses peaked during the 1970s and

1980s, when it contributed to the discovery of many clinically important viruses, such as adeno-, entero-, paramyxo- and reoviruses, which

were isolated from diagnostic cell cultures. Differences in virus size and fine structure were used as criteria for classification (Tyrrell and

). However, TEM failed to detect agents for other diseases, such as hepatitis and gastroenteritis, because susceptible cell culturesAlmeida 1967

were not available for virus isolation or because the virus could not be cultured. However, a major breakthrough was made for these viruses in

the 1970s, when TEM was applied to dirty  clinical samples, such as plasma, urine and faeces ( ). The aetiological agents of“ ” Madeley 1979

hepatitis B ( ) and A ( ) were detected in plasma and stool samples, respectively. Parvovirus B19 wasDane et al., 1970 Feinstone et al., 1973



discovered during a search for hepatitis B virus in a serum sample from a patient ( ). The BK virus, a polyomavirus, was firstCossart et al., 1975

identified in the urine of patients undergoing organ transplantation ( ) ( ). Rotaviruses were also identified as theGardner et al., 1971 Figure 1B

main cause of epidemic gastroenteritis in humans and animals by this technique ( ; ). However, otherBishop et al., 1973 Flewett et al., 1973

viruses were found to be responsible for many outbreaks of gastroenteritis. The first of these viruses was the Norwalk virus, identified during a

community outbreak of gastroenteritis in Norwalk, Ohio, USA ( ; ). Viruses with a similar morphology wereKapikian et al., 1972 Kapikian 2000

subsequently discovered elsewhere and called Norwalk-like  or small round structured viruses  to reflect the similarity of their appearance on“ ” “ ”
TEM ( ), before being officially renamed noroviruses  ( ). Other viruses from the adenovirus ( ),Caul and Appleton 1982 “ ” Mayo 2002 Morris 1975

astrovirus ( ; ) and calicivirus ( ) families were alsoAppleton and Higgins 1975 Madeley and Cosgrove 1975 Madely 76 and Cosgrove 1976

identified in the stool samples of children suffering from gastroenteritis. This large diversity of viruses potentially involved in human

gastroenteritis contributed to the use of TEM on negatively stained samples for routine diagnosis by this rapid, catch-all  method in clinical“ ”
virology ( ).Figure 2, C and D

However, by the 1990s, the increasing development of other techniques, such as enzyme-linked immunosorbent assays (ELISAs) and

polymerase chain reaction (PCR), had contributed to a gradual decline in the use of TEM for viral diagnosis in cases of gastroenteritis (

; ). Indeed, these antigenic and molecular techniques are much more sensitive than TEM, whichMcGaughey et al., 2000 Biel and Madeley 2001

has a detection limit of between 10  and 10  particles/ml. These new techniques are also more appropriate for the screening of large numbers of5 6

samples, and can now be used to detect most of the virus families involved in human gastroenteritis ( ; ; Medici et al., 2005 Logan et al., 2006

; ). A similar change has also been observed in veterinary medicine, in which ELISAs and PCR haveOka et al., 2006 Logan et al., 2007

progressively replaced TEM for routine viral diagnosis ( ; ; ; ). InTang Y et al., 2005 Rodak et al., 2005 van der Poel et al., 2003 Guo et al., 2001

human medicine, EM viral diagnosis for the differentiation of smallpox virus from other viruses present in the vesicle fluids of skin lesions is

no longer required, due to an intensive worldwide vaccination programme leading to the successful eradication of the variola virus in 1980 (

). It has been argued that TEM remains potentially useful for viral diagnosis because the variola virus might be used forHenderson 2002

bioterrorism ( ; ). However, the risk of smallpox reappearing is very small, and even in the unlikely event ofMiller 2003 Curry et al., 2006

smallpox re-emerging, molecular techniques would certainly surpass TEM for its diagnosis.

Identifying emerging or re-emerging  agents and the control of viral biosafety“ ”

The benefits of TEM for resolving diagnostic problems in clinical virology have nonetheless been clearly illustrated on several occasions in

the last fifteen years. TEM proved essential for the identification of a new morbillivirus (Hendra virus, belonging to the Paramyxoviridae) in

horses and humans suffering from fatal respiratory infections in 1995 in Australia ( ). A related virus, the Nipah virus,Murray et al., 1995

mostly affecting pig farmers in Malaysia, was discovered more recently ( ). The aetiology of the severe acute respiratoryChua et al., 1999

syndrome (SARS) pandemic in Hong Kong and Southern China in 2003 was first identified as a coronavirus by TEM, leading to subsequent

laboratory and epidemiological investigations ( , ; ). A human monkeypoxDrosten et al., 2003 Ksiazek et al., 2003 Goldsmith et al., 2004

outbreak in the USA in 2003 was also diagnosed only once TEM had been used ( ). TEM is occasionally useful for theReed et al., 2004

identification of new subtypes of viruses involved in human gastroenteritis, such as adenovirus ( ) or picornavirus (Jones et al., 2007a Jones et

). The role of TEM in clinical virology in recent years has thus changed from that of a routine technique to a support for theal., 2007b

identification of unknown infectious agents in particular outbreaks. In such investigations, the underlying catch-all  principle of this technique“ ”
is essential for the recognition of an unknown agent. There are also many recent similar examples of the usefulness of TEM for identifying the

virus involved in particular outbreaks in veterinary medicine ( ; ; ; Prukner-Radovcic et al., 2006 Coyne et al., 2006 Literak et al., 2006

; ; ; ).Matz-Rensing et al., 2006 Chan et al., 2007 Maeda et al., 2007 Gruber et al., 2007

TEM currently plays an important role in controls of the biosafety of biological products. Rodent cell lines are widely used as substrates for

producing biological therapeutic molecules, such as monoclonal antibodies, recombinant proteins, vaccines and viral vectors for gene therapy.

These cell lines have long been known to contain retroviral elements, because the rodent genome contains many copies of endogenous

retrovirus-like sequences ( ). Most of the particles produced in cell culture, such as the intracisternal A-type and R-type particles, areWeiss 1982

defective and are non-infectious. However, other particles, such as C-type particles, bud at the cell surface and may infect non-rodent cells (

). Some murine retroviruses have been shown to be tumorigenic in primates ( ). Murine retroviral vectorsLueders 1991 Donahue et al., 1992

have been shown to cause leukaemia in children with severe combined immunodeficiency treated by gene therapy with these vectors (

). Regulatory agencies therefore recommend the use of a wide safety margin for biological products derived fromHacein-Bey-Abina et al., 2003

rodent cells. They also recommend the use of several, complementary techniques  reverse transcriptase assays (reverse transcriptase being—
specific to retroviruses), assays of infectivity in coculture and TEM on ultrathin sections (U.S. Food and Drug Administration: 

; European Medicines Agency: ) http://www.fda.gov/cder/Guidance/Q5A-fnl.pdf http://www.emea.europa.eu/pdfs/human/ich/029595en.pdf —
for the detection and characterisation of retroviruses in the manufacturer s master and end-of-production cells ( ). These agencies also’ Figure 3

recommend testing for viruses in unprocessed bulks (one or multiple pools of harvested cells and culture media). RT assays with such bulks are



hampered by high background levels due to cell-derived DNA polymerases and are no more sensitive overall than TEM with negative staining

for retrovirus detection ( ). PCR assays are difficult to set up because investigators are faced with a multitude of murineBrorson et al., 2002

viruses, many of which remain uncharacterised. Thus, TEM with negative staining appears to be a useful technique for ensuring the biosafety

of biological products in these conditions.

The study of virus/host cell interactions: a link between the past, the present and the future

TEM is the only technique able to deliver clear images of viruses, due to their small size. Moreover, the fine detail of viral structure may

become visible if viral preparations are rapidly frozen and the vitrified specimens examined by cryo-EM. When combined with data from X-ray

diffraction studies, or with electron tomography or single-particle analyses of isolated virions, highly detailed structures can be obtained at near

atomic resolution ( ; ; ; ; ; Grunewald et al., 2003 Cyrklaff et al., 2005 Forster et al., 2005 Briggs et al., 2006 Harris et al., 2006 Roux and Taylor

). However, these approaches based on purified viral preparations are beyond the scope of this review, which focuses on the detection of2007

viruses in fluids or infected cells or tissues. As obligate intracellular parasites, viruses depend on living cells for their replication. Interactions

with host cells begin with the binding of the virus to specific receptors on the cell surface ( ). Some viruses releaseMarsh and Helenius, 2006

their genomes directly into the cell by rupturing the plasma membrane, but most enter cells by endocytosis. Following their internalisation,

viral particles are sequestered in endocytotic organelles until appropriate conditions for viral genome release into the cytoplasm occur. Two

main sequestration strategies are used: enveloped viruses fuse with a cell membrane, whereas non-enveloped viruses partially disrupt cellular

membranes. Further uncoating reactions and/or transport of the core may also be required. The viral genome is then translocated to specific

sites in the cytoplasm or nucleus for replication and expression. The formation of factories  has been reported for many viruses. These“ ”
factories consist of perinuclear or cytoplasmic foci  mostly excluding host proteins and organelles but sometimes recruiting specific cell—
organelles  that form a unique structure characterised by a number of complex interactions and signalling events between cellular and viral—
factors ( ). The newly synthesised viral proteins and genetic material are then assembled into progeny viruses.Wileman, Science 2006

Enveloped viruses acquire a lipid membrane by budding through a cellular membrane. Virus assembly may occur at the plasma membrane, but

many viruses begin their assembly process in intracellular organelles, such as the endoplasmic reticulum, Golgi apparatus or endosomes (

). Our understanding of the various stages of the viral life cycle has therefore been greatly enhanced by TEM studies,Griffiths and Rottier, 1982

some of which have included immunolabelling protocols. For example, virus entry pathways based on the use of clathrin-coated pits or

caveolae have been documented by TEM analysis for various viruses ( ; ; ).Helenius et al., 1980 Kartenbeck et al., 1989 Bousarghin et al., 2003

TEM has been used to study the generation of new virions, providing particularly striking images of viral factories  for several virus families (“ ”
) ( ). TEM has also proved important for the characterisation of morphological features at various stages in theNovoa et al., 2005 Figure 4

assembly of viral particles, including the acquisition of lipid membranes by enveloped viruses, and for distinguishing between immature and

mature particles ( ; ) ( ).Hourioux et al., 2000 Pelchen-Matthews and Marsh 2007 Figure 5

However, the recent development of new imaging techniques for light microscopy has progressively limited the use of TEM for studies of

virus/cell interactions. Viruses labelled with small fluorescent proteins or small dye molecules are currently the most powerful tools for

studying dynamic interactions between viruses and the cellular machinery (reviewed recently by ). It is nowBrandenburg and Zhuang 2007

possible to follow the trafficking of a single virus in a single cell. One of the chief disadvantages of TEM is the need to use dead and fixed

samples. The new techniques, which can be used on living cells, make it possible to follow the fate of individual viral particles and to monitor

dynamic interactions between viruses and cellular structures, making it possible to study steps in infection that were previously unobservable.

For example, the long-standing debate concerning whether poliovirus breaches the plasma membrane barrier or relies on endocytosis to deliver

its genome into cells was recently settled using this approach ( ). This study demonstrated that poliovirus enters cells viaBrandenburg et al. 2007

clathrin-, caveolin- and microtubule-independent but tyrosine kinase- and actin-dependent endocytosis. Many studies have also demonstrated

that various viruses hijack the microtubule- and actin filament-based transport machinery for their transport within living cells (Brandenburg

).and Zhuang 2007

Nevertheless, these fluorescence methods can reveal little about structure. Viruses can be visualised as small spots on fluorescence

microscopy, but the resolution of this technique is too low to determine whether these fluorescent spots correspond to assembled virions or

aggregated viral proteins. Thus, TEM remains an essential technique for visualising structured virions in infected cells, as illustrated by several

recent studies. Hepatitis C virus (HCV) is unusual in that it was first identified by the cloning of its genome, before TEM visualisation (

). Even today, little is known about the morphogenesis of this virus. TEM on a virus-like particle (VLP) model obtainedRoingeard et al., 2004

by expressing genes encoding the HCV structural proteins has demonstrated that viral budding occurs at the ER membrane and that the HCV

core protein drives this process ( ). Fluorescence microscopy has shown that most of the HCV core protein is associatedBlanchard et al., 2003

with the surface of lipid droplets (McLauchlan et al., 2003), and TEM has shown that viral budding occurs at the ER membrane, in the close

vicinity of these lipid droplets ( ; ) ( ). TEM has also shed light on the morphogenesisAit-Goughoulte et al., 2006 Hourioux et al., 2007 Figure 6

and intracellular trafficking of subviral envelope particles associated with the hepatitis B virus (HBV). According to an initial model based on



biochemical and fluorescence microscopy studies, the major HBV envelope protein forms dimers in the ER membrane before its transport, as

transmembrane dimers in vesicles, to the ER-Golgi intermediate compartment (ERGIC), where its self-assembly leads to the morphogenesis of

subviral envelope particles ( ). However, recent TEM studies have shown that HBV subviral particles self-assemble intoHuovila et al., 1992

filaments within the ER lumen ( ). TEM has also shown that these filaments are packed into crystal-like structures forPatient et al., 2007

transport by ER-derived vesicles to the ERGIC, where they are unpacked and relaxed ( ). HIV morphogenesis also provides aFigure 7

remarkable example of intensive research on virus/host cell interactions, for which the debate concerning the site of virus assembly remains

unresolved. Studies in this field make use of TEM to determine the site of virus assembly, which may occur at the plasma membrane or in late

endosomes, depending on the virus/host cell system ( ; ; ; Grigorov et al., 2006 Jouvenet et al., 2006 Pelchen-Matthews and Marsh 2007 Welsch

). Thus, light microscopy and TEM are not exclusive and rather complementary. One particularly interesting development iset al., 2007

correlative light electron microscopy (CLEM), which combines ultrastructural and fluorescence visualisation ( ). The useFrishknecht et al., 2006

of quantum dots ( ) or small genetic tags, such as tetra-cysteine motifs ( ; ), whichGiepmans et al., 2005 Gaietta et al., 2002 Lanman et al., 2007

are readily visible on both TEM and light microscopy, is useful for such approaches. Other methods such as GRAB (GFP Recognition After

Bleaching) use oxygen radicals generated during the GFP bleaching process to photooxidize diaminobenzidine into an electron-dense

precipitate that can be visualized by EM ( ).Grabenbauer et al., 2005

In conclusion, TEM is clearly less important than it once was in the field of diagnostic virology, but this technique remains useful for the

occasional identification of unknown agents during particular outbreaks. In this respect, it is a valuable technique for controlling the viral safety

of biological products. For research, TEM is complementary to other investigative techniques for elucidating many aspects of the life-cycle of

the virus in an infected cell, including viral assembly in particular, as ultrastructural analyses may be remarkably informative.
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Figure 1
Diagnosis of virus infections by examiation of ultrathin sections of human tissues or cells
(A) Parapoxvirus (Orf virus) infection on a human skin biopsy specimen. Multiple oval viral particles (arrow) consisting of a dense core

surrounded by an envelope (high magnification in inset) are observed in an infected cell. The Orf virus is a parapoxivus that causes a common skin

disease of sheep and goats and is occasionally transmitted to human. (B) Polyomavirus (BK virus) infection in cells pelleted from a urine sample

taken from an organ transplant patient. The presence of a large number of viral particles leads to their arrangement into a crystal-like structure

(high magnification in inset).



Figure 2
Direct negative staining of virus in fluid recovered from human skin vesicles (A and B) or from stool samples (C and D)
The panels A and B illustrate rapid morphological diagnosis and differential diagnosis from a herpesvirus (Varicella, in A) and a parapoxvirus (Orf

virus, in B). The penetration of the negative stain into the herpesvirus particle may reveal the presence of the viral capsid within the envelope. The

panels C and D show that a negative staining of viruses involved in gastroenteritis reveals the surface detail of the subunit arrangement of the

adenovirus core particle (C), showing clearly its icosahedral form, whereas rotavirus displays its typical wheel-like  appearance (D).“ ”



Figure 3
Detection of retroviruses in rodent hybridoma cells used for the production of biological products
Ultrathin sections of cells of different origins may show intracisternal A-type retroviral particles (in A) or C-type retroviral particles budding at the

cell surface (in B). The C-type particles released by the cells can be detected by negative staining in the cell supernatant (inset in B).



Figure 4
Ultrastructural changes associated with viral replication, or viral factories“ ”
A: the Semliki forest virus (SFV), an alphavirus, induces the formation of a cytopathic vacuole (CPV), surrounded by the endoplasmic reticulum

(ER). Numerous viral replication complexes (arrow) are anchored in the internal membrane of these CPV. B: The non-structural proteins of the

hepatitis C virus (HCV), a flavivirus, induce the formation of a membranous web in the perinuclear area.



Figure 5
Budding of the human immunodeficiency virus (HIV)
The viral particle at the top shows virus formation with distortion of a cellular membrane away from the cytoplasm. The budding particle and the

particle at the bottom are immature viral particles, whereas the two particles in the centre are mature, and have a truncated cone-shaped core. Thus,

maturation of the core by the viral protease occurs shortly after the release of the particle from the host cell membrane.



Figure 6
Budding of the hepatitis C virus (HCV)
Ultrastructural analysis of cells producing the HCV core protein shows that this protein self-assembles into HCV-like particles (arrows) at

convoluted and electron-dense ER membranes surrounding the lipid droplets (LD) present in the perinuclear area.



Figure 7
Hepatitis B subviral envelope particle morphogenesis and intracellular trafficking
Ultrastructural analysis of cells producing the hepatitis B virus (HBV) major envelope protein shows that this protein self-assembles in the ER into

filaments packed into crystal-like structures (A, see also a high magnification of these packed filaments in the inset). These filaments are

transported to the ERGIC, where they are unpacked and relaxed (B).


