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Abstract 

Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects 

depending on its environment. We therefore constructed a BCG strain producing murine IL-

18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. 

BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of 

ovalbumin (OVA)-alum and primary (D20-22) and secondary (D62, 63) challenged with 

OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1hr before each 

immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the 

development of AHR, mucus production, eosinophil influx and local Th2 cytokine production 

in BAL, both after the primary and secondary challenge.  

These data show that IL-18 did not increase allergic airway responses in the context of the 

mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the 

development of local Th2 responses and therefore inhibit allergen-induced airway responses 

even after restimulation.  

 

 

Key words: Asthma, mouse model, BCG, IL-18, airway hyperresponsiveness 

Abbreviations: AHR = Airway hyperresponsiveness, BAL: Bronchoalveolar lavage, BCG: 

Mycobacterium bovis Bacillus Calmette-Guerin 
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Introduction 

Airway inflammation and hyperresponsiveness, increased Th2 cytokine production in 

bronchoalveolar lavage and enhanced IgE secretion in serum are the hallmarks of allergic 

asthma. Increased prevalence of asthma has been related to decreased microbial infection or 

immunization during early infancy. In particular, Mycobacterium bovis Bacillus Calmette-

Guerin (BCG) vaccination have been suggested to decrease the risk of asthma in a population 

with family history of rhinitis or eczema [1, 2]. Studies in mouse models have shown that 

BCG immunization inhibits the development of asthma features in ovalbumin (OVA)-

sensitized mice [3-8]. Several authors reported a switch toward a Th1 pattern of response [3, 

5, 9], with little evidence of increased regulatory cell activity, since production of the 

regulatory cytokine IL-10 as well as production of IL-4 was suppressed [3, 9]. 

Originally named IFN-γ-inducing factor, IL-18 is important for the generation of protective 

immunity to mycobacteria. IL-18-deficient mice infected with Mycobacterium tuberculosis 

and Mycobacterium bovis BCG developed increased granulomatous lesions while IFN-γ 

production decreased [10]. IL-18 role on allergic inflammation is complex, as it can promote 

both Th1 and Th2 responses depending on its environment, the time of its administration 

and/or the response assessment. IL-18 deficiency selectively enhances OVA-induced 

eosinophilia in mice, whereas IL-18 gene transfer by adenovirus into the respiratory tract at 

the time of OVA airway challenge prevents the development of AHR and decreases allergen-

specific IL-4 production, airway eosinophilia, mucus production and increases IFN-γ 

production [11, 12]. In contrast, high doses of IL-18 administered alone or concomitantly with 

the antigen have been shown to increase allergic sensitization including serum IgE, Th2 

cytokines and airway eosinophilia, especially 3 weeks after IL-18 injection [13]. 

Intraperitoneal coadministration of IL-18 and IL-12 or IL-18 and IL-2 during the airway 

challenge period inhibits airway hyperresponsiveness (AHR), eosinophilia and serum IgE 
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levels [14, 15], whilst intranasal of IL-18 plus IL-2 induced allergic airway disease in naïve 

mice [16].  

A BCG producing IL-18 was shown to exhibit enhanced antimicrobial immunity compared to 

non recombinant BCG due to increased production of IFN-γ [17]. Therefore we constructed a 

recombinant BCG producing IL-18 (BCG-IL-18) in order to increase the efficiency of 

intraperitonealy injected BCG in preventing allergic reactions. This strain produces low doses 

of IL-18 and increases Th1 response [18]. We previously showed that i.p. BCG-IL-18 

immunization at the time of OVA–sensitization decreases bronchoalveolar lavage (BAL) 

eosinophilia, IL-5 production by lymph node cells, but increases IFN-γ production by lymph 

node cells [19]. The aim of the present work was firstly to evaluate the effect of non-

recombinant BCG and BCG-IL-18 immunization on AHR, and secondly to analyze BCG and 

BCG-IL-18 effects in the long term, i.e. after a secondary challenge occurring 6 weeks after 

the primary OVA challenge. We showed that both BCG and BCG-IL-18 were able to 

similarly prevent AHR and airway inflammation (BAL eosinophilia, Th2 cytokine production 

in BAL and mucus production) after primary and secondary challenges.  
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Materials and Methods 

 

Sensitization and airway challenge for acute and chronic inflammatory reaction 

10-12 week old female BALB/c mice (H-2d) (Iffa Credo, l’Arbresle, France) were sensitized 

by intraperitoneal (i.p.) injection of 20 µg ovalbumin (OVA) (Grade V, Sigma Chemical Co., 

St. Louis, MO) emulsified in 2.25 mg aluminum hydroxide (AlumImject: Pierce, Rockford, 

IL) in a total volume of 100 µl on days (D)1 and 10. Mice were challenged (20 min) via the 

airways with OVA (1% in saline) for 3 days (D20, 21 and 22) using ultrasonic nebulization. 

Mice were divided into 2 groups: the groups of OVA-sensitized mice were i.p. injected with 

OVA and received OVA challenges aerosols. The groups of non-sensitized mice only 

received OVA-challenges by aerosols. 

In the primary challenge protocol, 48 hours after the last OVA challenge (D24), AHR and 

tissues were assessed. For the secondary challenge protocol, 6 weeks after the first challenge, 

mice were exposed to OVA challenges (1% in saline on D62, 5% in saline on D63), and 

airway reactivity and tissues were assessed on D64. Non-sensitized control groups only 

received OVA-challenges by aerosols.  

 

Immunization with BCG or IL-18-producing recombinant BCG 

Non-sensitized and sensitized mice were or were not treated with BCG or BCG-IL-18. 

Mycobacterium bovis BCG (Pasteur strain 1173P2; WHO Stockholm, Sweden) and the 

recombinant BCG producing IL-18 (BCG-IL-18) [18] were grown, using stationary flasks, at 

37°C in Sauton medium containing 10 µg/ml HgCl2 when required and frozen until use. Non-

recombinant BCG or rBCG producing IL-18 were administered intraperitoneally on D0 and 

D10 (5 X 106 CFU in a final volume of 100 µl).  
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Airway Hyperresponsivness 

Airway responsiveness was assessed using single-chamber whole body plethysmography 

(Buxco Electronics, Sharon, CT), as described previously [20]. Enhanced pause (Penh) was 

used as the measure of airway responsiveness in this study. In the plethysmography, mice 

were exposed for 2 min to nebulized PBS and followed by increasing concentrations of 

nebulized methacholine (MCh) (1,5–12 mg/ml in PBS) (Sigma-Aldrich) using an AeroSonic 

ultrasonic nebulizer (Systam). After each nebulization, recordings were taken for 3 min. The 

Penh values measured during each 3-min sequence were averaged and were expressed for 

each MCh concentration as the percentage of baseline Penh values measured after PBS 

exposure. There were no significant differences in any of the treatment groups for baseline 

(PBS) Penh. 

 

Bronchoalveolar Lavage 

Immediately after assessment of AHR, lungs were lavaged via the tracheal tube with PBS (1x 

1ml). Total leukocyte numbers were counted with a hemocytometer. Differential cell counts 

were performed on bronchoalveolar lavages by counting at least 200 cells on cytocentrifuged 

preparations, stained with Diff Quick (Dade Behring, Deerfield, IL) and differentiated by 

standard hematological procedures. 

 

Histochemistry 

Lungs were fixed by inflation (1 ml) and immersion in Immunohistofix® (Aphase, Gosselies, 

Belgium) and embedded in Immunohistowax® (Aphase). For detection of mucus containing 

cells in fixed airway tissue, 5µm sections were stained with Periodic Acid Schiff (PAS) 

(Sigma Aldrich, Missouri, USA) and hematoxylin (Labonord, Templemars, France) as 

previously described [21].  
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Measurement of cytokines 

IFN-γ, IL-5, IL-12 and IL-13 levels in the bronchoalveolar lavage fluid (BALF) were 

measured by ELISA according to the manufacturer direction (Pharmingen, San Diego, CA, 

for IFNγ, IL-5, IL-12; R&D systems, Mineapolis, MN, for IL-13). The limits of detection 

were 4 pg/ml for IL-5, 10 pg/ml for IL-12 and IFN-γ, and 1.5 pg/ml for IL-13.  

 

Measurement of total and OVA-specific serum IgE  

Serum levels of total IgE, and OVA-specific IgE were measured by ELISA as previously 

described [19]. Briefly, 96-well plates (Immulon 2, Dynatech, Chantilly, VA) were coated 

with either OVA (5 µg/ml) or purified anti-IgE (clone 02111D, Pharmingen). After addition 

of serum samples, a biotinylated anti-IgE antibody (clone 02122D, Pharmingen) was used as 

detecting antibody, and the reaction amplified with avidin-horseradish peroxidase (Sigma). 

The OVA-specific antibody titers of the samples were related to pooled standards that were 

generated in the laboratory and expressed as ELISA units per ml (EU/ml). Total IgE levels 

were calculated by comparison with known mouse IgE standards (Pharmingen). The limit of 

detection was 100 pg/ml for total IgE. 

 

Statistical analysis 

Values for all measurements were expressed as the mean ± standard error of the mean (SEM). 

Statistical analyses were done using STATVIEW 5 software. Differences within all groups 

were first evaluated for each parameter using the Kruskal Wallis test. When statistical 

significance was observed, differences were subsequently analyzed by using the Mann 

Whitney test. p values for significance were set to 0.05.  

 

 - 7 - 



Results 

 

BCG and BCG-IL-18 prevented airway hyperresponsiveness following primary and 

secondary challenge 

OVA-sensitized mice developped airway hyperresponsiveness compared to the non-sensitized 

mice after primary (figure 1A) and secondary (figure 1B) challenge. Mouse treatment by 

intraperitonal injections with BCG or IL-18-producing-BCG (BCG-IL-18) before and during 

sensitization significantly inhibited airway hyperresponsiveness (figure 1A). In order to 

evaluate the long term effect of BCG and BCG-IL-18 on AHR, we waited 6 weeks after the 

primary challenge and then rechallenged the animals. It has previously been shown that at this 

time point, the inflammatory reaction and AHR developing after primary challenge are 

resolved but that a secondary airway challenge induces a strong inflammatory reaction with 

concomitant development of AHR [22]. Under these conditions, BCG and BCG-IL-18 

treatment inhibited the increase in airway reactivity (Figure 1B). Baseline airway reactivity 

was not affected by OVA or BCG or BCG-IL-18 treatment (data not shown). 

 

BCG and BCG-IL-18 decreased BAL inflammation and goblet cell hyperplasia 

following primary and secondary challenge 

In OVA-sensitized mice, inflammatory cell recruitment into the airways was increased after 

primary as well as secondary airway challenge (Figure 2). Increased total cell numbers in 

BAL were largely due to increased numbers of eosinophils. There was also a small but 

significant (p=0.0005) increase in the number of lymphocytes compared to the non-sensitized 

mice (Figure 2). Administration of BCG or BCG-IL-18, led to a significant (p<0.05) decrease 

in total cell numbers, macrophage, lymphocyte and eosinophil numbers in the primary 

challenge protocol compared to OVA-sensitized mice (Figure 2A). In the secondary challenge 
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protocol, administration of BCG or BCG-IL-18 significantly decreased eosinophil numbers 

only (Figure 2B).  

Lung tissue was obtained and processed 48 hr after allergen provocation. To assess the degree 

of goblet cell hyperplasia, tissue sections were stained with Periodic Acid Schiff (PAS). After 

primary (Figure 3A-D) and secondary (Figure 3E-H) challenge, non-sensitized mice showed 

no PAS-positive cells, whereas non-treated OVA-sensitized mice showed many PAS-positive 

cells (92% and 81% of PAS positive cells/mm basement membrane for the primary and 

secondary challenge protocol respectively). In contrast, sensitized and BCG or BCG-IL-18 

treated mice showed only scattered PAS-positive cells (71% and 66% of PAS positive 

cells/mm basement membrane for BCG treated mice in the primary and secondary challenge 

protocol respectively and 48% and 40% of PAS positive cells/mm basement membrane for 

BCG-IL-18 treated mice in the primary and secondary challenge protocol respectively), with a 

stronger inhibition for BCG-IL-18 treatment after the secondary challenge (Figure 3H).  

 

Effect of BCG and BCG-IL-18 on cytokine production following primary and secondary 

challenges 

BAL fluid was obtained in order to assess Th1 (IFN-γ), pro-Th1 (IL-12), and Th2 (IL-5, IL-

13) cytokine levels, 48 or 24 hours after primary or secondary allergen challenge, 

respectively. Th1 (IFN-γ) and pro-Th1 (IL-12) cytokines were decreased in OVA-sensitized 

mice compared to non-sensitized mice, significantly after the primary challenge, and non-

significantly after the secondary challenge (Figure 4). IL-5 and IL-13 production was 

significantly increased in OVA-sensitized mice after the primary and the secondary challenge. 

Treatment of OVA-sensitized mice with BCG or BCG-IL-18 did not significantly affect IFN-

γ, IL-12 (Figure 4) or IL-10 (data not shown) production, but significantly inhibited IL-5 and 

IL-13 production both in primary and secondary challenge protocols.  
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BCG and BCG-IL-18 treatment did not modify total IgE production but inhibited OVA-

specific IgE 

Serum from OVA-sensitized mice showed elevated total IgE levels and OVA-specific IgE 

antibodies compared to non-sensitized mice following the primary and the secondary 

challenge protocol (Figure 5). Treatment with BCG and BCG-IL-18 did not affect total IgE 

measured after the primary and the secondary challenge (Figures 5A, 5B). OVA-specific IgE 

measured after the primary or the secondary challenge were not modified after BCG treatment 

(Figures 5C, 5D). In contrast, treatment with BCG-IL-18 significantly increased levels of 

OVA-specific IgE after the primary and decreased them after the secondary challenge 

compared to OVA-sensitized mice (Figures 5C, 5D). 
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Discussion 

In this study we showed that BCG and BCG-IL-18 given at the time of OVA-sensitization 

were efficient to prevent AHR even after a secondary challenge performed 6 weeks after the 

initial allergen challenge. This effect is related to the decrease in the local Th2 immune 

response, as seen with the decreased BAL IL-5 and IL-13 production. In human as well as in 

mouse models, Th2 cells are indeed considered as the central cells involved in the 

development of asthma [23, 24]. Others have shown that BCG was effective in attenuating 

allergic airway inflammation and associated changes in pulmonary function in animal models. 

Administered before OVA sensitization, BCG decreases BAL eosinophilia and IL-5 

production in the draining lymph nodes in an IFN-γ dependent manner [4]. In our hands, in a 

previous study, similar effects were found both with intraperitoneal and intranasal 

administration at the dose of 5x106 CFU, when BCG was given at the time of OVA-

sensitization [19]. Systemically injected (by intravenous injection) 14 days before the 

challenge, BCG also suppressed OVA-induced airway responses [9]. In the present study, 

BCG was injected i.p. at the time of sensitization, and inhibition of airway responses was still 

observed 10 weeks after the first injection. Only few studies investigated BCG long-term 

effects: similar results to ours were obtained although BCG was always given long before 

OVA-sensitization. Given from 4 to 16 weeks before OVA-sensitization by i.n. 

immunization, BCG prevented airway allergic inflammation [7, 8].  

After primary and secondary challenge, BCG and BCG-IL-18 treatment locally decreased the 

production of IL-5 and IL-13, in parallel to decreased mucus hyperplasia, arguing for a role, 

in this process, of IL-13, the main cytokine involved in mucus production [25, 26]. However, 

BCG treatment did not modify IFN-γ and IL-12 production in BAL, in contrast to decreased 

IFN-γ production seen in the spleen [9] or the draining lymph nodes [19]. This absence of 

effect on IFN-γ production in BAL may be due to the way of injection (i.p. instead i.n. route 
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of administration) and the analyzed tissue. Another hypothesis, pointed out by Trujillo and 

colleagues [27] suggests that the treatment before sensitization may inhibit the onset and 

consequently the recruitment of Th2 cells thus preventing from allergic reaction. Our previous 

studies are in favor of this hypothesis as we showed that i.p. administration of BCG or BCG-

IL-18 increased in vitro production of IFN-γ by splenocytes or lymph node cells, whilst 

decreasing IL-5 production [18, 19].  

In the present work, total IgE production was unchanged after BCG treatment either following 

primary or secondary challenge, suggesting that BCG was not able to totally prevent Th2 

responses. Although Mycobacterium tuberculosis has been shown to induce IgE production 

[28], BCG was shown to prevent OVA-specific IgE production after systemic (intravenous), 

but not local (i.n.) administration [4, 7, 9]. In our study, BCG does not seem to induce total 

IgE either as non-sensitized mice treated with BCG-IL-18 did not develop total IgE response, 

either in the primary or the secondary challenge protocol. However BCG and BCG-IL-18 

treatment decreased OVA-specific IgE after the secondary challenge, as well as OVA-specific 

IgG1 (data not shown). Only BCG-IL-18 treatment effect was significant suggesting a 

potentiating effect of IL-18 produced by BCG and a long term effect of BCG-IL-18.  

BCG-IL-18 did not demonstrate a stronger ability to prevent airway inflammation and 

hyperresponsiveness than BCG alone, in contrast to what we previously showed [19]. The 

protocol used to sensitize mice in this first study was much weaker (sensitizing doses were 

twice lesser and OVA aerosol concentration were 0.1% OVA instead of 1% in the present 

study) and did not allow the measurement of significant AHR. The absence of a differential 

effect between BCG and BCG-IL-18 may therefore be related to the strength of the 

sensitization protocol and the already maximal effect of the non-recombinant BCG on AHR. 

We previously showed that BCG and BCG-IL-18 were still viable and detected after 94 days. 

Moreover, although undetectable, IL-18 was efficiently produced in vivo by the recombinant 
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BGC, as suggested by its potentiating effect over non recombinant BCG [18, 19]. In the 

present study, BCG-IL-18 significantly modified OVA-specific IgE production in contrast to 

non recombinant BCG, suggesting that IL-18 is really produced in vivo, probably in low 

concentration. 

Finally, after the primary and secondary OVA-challenge, BCG or BCG-IL-18 treatment 

inhibits BAL eosinophilia. BCG was already known to inhibit this feature of asthma when 

given before sensitization [7]. Interestingly BCG-IL-18 increased the number of BAL 

lymphocytes compared to BCG-treated mice and non-treated mice. This was not accompanied 

with decreased or increased airway responses, in contrast to the increased Th2 response 

induced by IL-18 as previously shown [13]. The only parameter increased after BCG-IL-18 

treatment compared to BCG treatment or no treatment was the OVA-specific IgE after the 

primary challenge. These data suggest a systemic transient effect of IL-18 produced by BCG. 

IL-18 has been shown previously to increase Th2 responses and more particularly IgE 

production [13, 29, 30]. The modulation of the production of Th1/Th2 cytokines by IL-18 was 

suggested to be time dependent [31], which might relate to our observation that OVA-specific 

IgE transiently increased due to IL-18 produced by i.p. injected BCG. This increase in IgE 

production was not accompanied by effect on airway inflammation and function. Dissociation 

of serum IgE and airway inflammation and hyperresponsiveness was previously demonstrated 

in the same model [32]. Conflicting data have been reported on the role of IL-18 in airway 

inflammation. In the presence of IL-12, IL-18 administered i.p. before the allergen challenge 

has been reported to attenuate eosinophil accumulation [14]. OVA-sensitized IL-18 deficient 

mice exhibit greater BAL eosinophilia than wild-type mice [11]. In contrast, local instillation 

of recombinant IL-18 was reported to favor the eosinophil recruitment through the release of 

eotaxin from bronchial epithelial cells without any effect on AHR [33]. Moreover i.p. 

injection of large quantities of IL-18, in the absence of IL-12, also increases the recruitment of 
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eosinophils in the airways [34]. Finally, lower doses of IL-18 regularly administered 

intraperitoneally increase eosinophil recruitment in the airways 3 weeks after the last injection 

[13]. BCG-IL-18 administered in our study produces only low doses of IL-18 as previously 

demonstrated [18] and no IL-18 could be detected in BAL (data not shown). Moreover, BCG 

has been shown to favor IL-12 production by macrophages [6]. The low dose of IL-18 

released and the cytokine environment may explain the absence of an increased AHR and 

eosinophilia in BCG-IL-18 treated mice even after OVA restimulation.  

In conclusion, we showed that BCG as well as BCG producing IL-18 administered at the time 

of sensitization prevents airway responses after primary as well as secondary OVA-challenge, 

suggesting their effect after systemic injection, which had not been demonstrated yet. 

Moreover, our study suggests that, thank to the environment induced by BCG, low doses of 

IL-18 do not increase Th2 responses, even after secondary allergen challenge. 
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Figure legends 

Figure 1:   BCG and BCG-IL-18 prevent the development of AHR 

OVA-sensitized mice were OVA-sensitized and challenged, whereas non-sensitized mice 

were challenged only. At the time of each OVA sensitization, treated mice were injected 

either with BCG or BCG-IL-18. Airway reactivity was evaluated after inhalation of 

increasing doses of metacholine by whole body plethysmography and penh (enhanced pause) 

measurement after primary (A) or secondary (B) challenge. Results are expressed as mean ± 

sem of penh percentage increase above PBS inhalation. Statistical analysis were performed 

and showed p<0.04 for differences between OVA-challenged and OVA-sensitized and 

challenged mice (*), between OVA-sensitized and challenged mice and OVA-sensitized and 

challenged mice + BCG treatment (#), and between OVA-sensitized and challenged mice and 

OVA-sensitized and challenged mice + BCG-IL-18 treatment (&).  

 

Figure 2: BCG and BCG-IL-18 effect on BAL composition after primary and secondary 

challenge. 

BAL infiltrate was analyzed after primary (A) or secondary (B) challenge. Results are 

expressed as mean ± sem of cell number. *: p<0.05. 

 

Figure 3: BCG and BCG-IL-18 effect on mucus hyperplasia after primary and 

secondary challenge. 

Mucus production was detected using Periodic Acid Schiff staining on lung section from non-

sensitized mice (A, E), sensitized mice (B, F), sensitized mice treated with BCG (C, G) or 

BCG-IL-18 (D, H), after primary (A-D) or secondary (E-H) OVA-challenge.  
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Figure 4: BCG and BCG-IL-18 effect on BAL cytokine production after primary and 

secondary challenge. 

BAL cytokines were measured after primary (A) or secondary (B) challenge. Results are 

expressed as mean ± sem pg/ml. *: p<0.03.  

 

Figure 5: BCG and BCG-IL-18 decrease OVA-specific IgE, but do not modify serum 

total IgE. 

IgE were measured after primary (A, C) or secondary (B, D) challenge. Results are expressed 

as mean ± sem ng/ml for total IgE (A, B), and mean ± sem ELISA units/ml (EU/ml) for 

OVA-specific IgE (C, D). *: p<0.01. 
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