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Abstract—In this correspondence, we propose a vector-radix 
algorithm for the fast computation of two-dimensional (2-D) 
discrete Hartley transform (DHT). For data sequences whose 
length is power of three, a radix-3×3 decimation in frequency 
algorithm is developed. It decomposes a length-N×N DHT into 
nine length-(N/3)×(N/3) DHTs. Comparison of the computational 
complexity with known algorithms shows that the proposed 
algorithm, in some cases, reduces significantly the number of 
arithmetic operations. 
 

Index Terms—2-D discrete Hartley transform, 2-D radix-3×3, 
vector-radix algorithm 
 

I. INTRODUCTION 
HE two-dimensional (2-D) discrete Hartley transform 
(DHT) introduced by Bracewell [1] has become an 

important tool in image and signal processing [2] and circular 
convolution [3]. Because the computation of 2-D DHT by the 
traditional row-column algorithm [4] is still time consuming, 
many fast algorithms for computing the 2-D DHT have been 
reported in the literature. These algorithms can be grouped into 
two categories. The first category uses the method of (split) 
vector-radix to decompose the whole processing task into many 
smaller ones [5-10]. Among them, both Bi’s decimation in 
frequency (DIF) algorithm [9] and Bi’s decimation in time 
(DIT) algorithm [10], which support the block size q*2m×q*2m, 
for m ≥ 2, where q is an odd integer, require the least number of 
arithmetic operations. These (split) vector-radix algorithms 
were recently extended to the fast computation of 3-D [11-14] 
and M-D ([15], [16]) DHT. The second category utilizes other 
transforms such as discrete Radon transform (DRT) [17-19] or 
the polynomial transform (PT) [20-22] to speed up the 
computational efficiency. Among this kind of algorithms, 
Zeng’s method [21], supporting the block size 

, for mrmmm qqq ××× 21
i ≥ 2, i = 1, 2, …, r, where q is an 

odd prime integer, and Zeng’s approach [22], supporting the 

block size 2 × × ×
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, for mi ≥ 2, i = 1, 2, …, r, are 
probably the most efficient algorithms in terms of the arithmetic 
complexity. 

Generally speaking, the (split) vector-radix algorithms 
have many desirable properties such as regular computational 
structure, in-place computation, and low implementation cost 
[9], [10]. On the other hand, the DRT or PT based algorithms 
require less number of arithmetic operations than that of the 
(split) vector-radix algorithms, but need a special sequence 
reordering, thus necessitating extra arithmetic operations, 
modulo operations, and bit-shift operations and complex 
computational structures [16]. 

Most of the (split) vector-radix algorithms developed till 
now for the fast computation of 2-D DHT dealt with the block 
size 2m×2m, m ≥ 2. However, in some practical applications, for 
example, in the computation of 2-D circular convolution where 
one uses the minimum block sizes compatible to the filter 
specifications [23], the block size is not limited to 2m×2m, m ≥ 2, 
even not to q*2m×q*2m, m ≥ 2, where q is an odd integer. 
Therefore, a new 2-D vector-radix DHT algorithm which 
supports a more wide range of choices on different block sizes 
is required. This is the objective of the present paper. 

In Ref. [24], Zhao proposed a radix-3 DIF algorithm for 
efficient computation of 1-D DHT. Inspired by his research 
work, we present here a new vector-radix-3×3 DIF algorithm 
for fast computing the 2-D DHT. 

 

II. METHOD 
The 2-D N×N -point DHT of x(n1, n2) is defined by [1] 
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,  

0 ≤ ni, ki ≤ N – 1, i = 1, 2,       (1) 
where cas(x) = cos(x)+sin(x) and N is assumed to be power of 3. 
For simplicity, the normalization factor 1/N2 is omitted in the 
following derivation. The following properties can be easily 
verified:  

    0 ≤ k1, k2 ≤ N–1.      (2) 

Based on (2), nine cases need to be calculated instead of 
computing (1) directly: X(3k1, 3k2), X(3k1, 3k2+1), X(3k1, 
3k2–1), X(3k1+1, 3k2), X(3k1–1, 3k2), X(3k1+1, 3k2+1), 
X(3k1–1, 3k2–1), X(3k1+1, 3k2–1), and X(3k1–1, 3k2+1), for 0 ≤ 
k1, k2 ≤ N/3–1. These values can be easily got from the 
following Ai(k1, k2), i = 0, 1, 2, 3, 4, and Bi(k1, k

T
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In order to facilitate the presentation, we introduce some 
intermediate variables as follows: 
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In the following, we discuss the way for efficiently computing 
Ai(k1, k2), i = 0, 1, 2, 3, 4, and Bi(k1, k2), i = 1, 2, 3, 4. 
 
1. Computation of A0(k1, k2). 
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2. Computation of A1(k1, k2). 
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3. Computation of B1(k1, k2). 
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Similarly, we have 
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The indices  and  from (8) to (16) are ranged from 0 to 
N/3 – 1. 

1k 2k

So far, we have decomposed a length-N×N DHT (defined 
in (1)) into nine length-(N/3)×(N/3) DHTs (defined in (8) 
through (16)). Fig. 1 shows the flowgraph of the realization of 
the proposed algorithm.  

 

III. COMPUTATIONAL COMPLEXITY AND COMPARISON 
ANALYSIS 

In this section, we consider the computational complexity of 
the proposed algorithm and compare it with some known 
algorithms. The detailed analysis is given below. 
i)  The computation of (4) and (5) requires (N/3)×(N/3)×14 

additions. 
ii)  The implementation of the butterfly in the input data 

sequence of Ai(k1, k2) and Bi(N/3–k1, N/3–k2), i = 1, 2, 3, 4, 
needs 4 multiplications and 2 additions, thus, the 
computation from (8) to (16) requires (N/3)×(N/3)×16 
multiplications and (N/3)×(N/3)×25 additions. 

iii) The computation of X(k1, k2) from Ai(k1, k2), i = 0, 1, 2, 3, 4, 
and Bi(k1, k2), i = 1, 2, 3, 4, requires (N/3)×(N/3)×8 
additions. 

iv) Taking the special cases n1 = 0, n2 = 0, n1 + n2 = 0 or N/3, 
and n1 = n2 into consideration, 4N multiplications and 2N+2 
additions can be saved in the computation through (8) to 
(16). In fact, let us consider, for example, the number of 
arithmetic operations that can be saved in the computation 
of (13) and (14) for the cases where n1 + n2 = 0 or N/3. 
Letting a11 = 2E3–E4–S3 and b11 = D1+D2–D3, when n1 + 
n2 = 0, the input data sequences in (13) and (14) become a11 
and 113b , in such case, 3 multiplications and 2 additions 
can be saved. When n1 + n2 = N/3, the input data sequences 

become 111111 2)(
2
1 bba −−−  and )(
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multiplications can be saved. Therefore, for the two cases 
n1 + n2 = 0 and n1 + n2 = N/3, N multiplications and 2 
additions can be saved in the computation of (13) and (14). 
A similar analysis can be done for other cases. 
The computational complexity of the proposed algorithm is 

therefore given by 

                  (17) 

with initial values M3×3 = 4 and A3×3 = 47. 
     Table I shows the computational complexity required by the 
proposed algorithm and Zeng’s method [21] for the block size 
3m×3m, m≥1. Tables II and III present the computational 
complexities of Zeng’s approach [22] and Bi’s algorithm (q = 1) 
[9], [10] for the block size 2m×2m, m ≥ 2 and Bi’s algorithm (q = 
3) for the block size 3*2m×3*2m, m ≥ 0, respectively. Note that 
in Bi’s algorithm for q = 3, the same initial values M3×3 = 4 and 
A3×3 = 47 are used. To make the comparison more clear, Fig. 2 
shows the number of multiplications plus additions, involved in 
the computation of the length-N×N DHT, using the proposed 
method and the algorithms presented in [9], [10], [21] and [22].  
     It can be seen from Table I that the proposed algorithm is 
more efficient than Zeng’s method [21] in terms of the total 
number of arithmetic operations. Tables II and III, as well as 
Fig. 2, show that the proposed algorithm is more efficient, in 
some cases, than the algorithms presented in [9], [10], and [22] 
in terms of the number of arithmetic operations, especially for 
the cases where there is many zero padding, such as block sizes 
9×9 and 81×81. Thus, user may favor a given technique 
depending on the selected block size. For more detailed 
discussion about the vector-radix algorithm and the polynomial 
algorithm, we refer the readers to Ref. [16]. 

 

IV. CONCLUSIONS 
We have proposed in this paper a radix-3×3 DIF algorithm 

for the fast computation of 2-D DHT. Compared with some 
known algorithms, the proposed one achieves substantial 
saving on the number of arithmetic operations. Moreover, the 
proposed algorithm possesses properties such as the 
butterfly-style and in-place computations that are highly 
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lq ×1

desirable for software as well as hardware implementation. It 
can be used for fast convolution where one uses the minimum 
block sizes compatible to the filter specifications. Note that our 
radix-3×3 algorithm can be easily extended to the arbitrary 
radix-q×q case, where q is an odd integer, which provides a 
wider choice of block sizes. Thus, user can favor an approach 
for a desired block. Furthermore, our proposed algorithm, 
combing with other split vector-radix algorithms [5-10], can 
realize the 2-D DHT with block size 3m2n×3m2n, m, n ≥ 2. Since 
the DHT is an efficient alternative to the DFT for real data, the 
proposed algorithm may also find its application in array signal 
processing [25]. 
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Fig. 1. Radix-3×3 algorithm for the 2-D DHT 

“arrange” means the time-reversal operation of the sequence 
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Fig.2. Comparison among the proposed algorithm, Bi’s algorithm and Zeng’s algorithm 

 in terms of multiplications plus additions. 
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