
HAL Id: inserm-00304144
https://inserm.hal.science/inserm-00304144

Submitted on 22 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Radix-3x3 algorithm for the 2-D discrete Hartley
transform

Jiasong Wu, Huazhong Shu, Lotfi Senhadji, Limin M. Luo

To cite this version:
Jiasong Wu, Huazhong Shu, Lotfi Senhadji, Limin M. Luo. Radix-3x3 algorithm for the 2-D discrete
Hartley transform. IEEE Transactions on Circuits and Systems Part 2 Analog and Digital Signal
Processing, 2008, 55 (6), pp.566-570. �10.1109/TCSII.2007.916796�. �inserm-00304144�

https://inserm.hal.science/inserm-00304144
https://hal.archives-ouvertes.fr

 1

Radix-3×3 algorithm for the 2-D discrete Hartley
transform

J.S. Wu, H.Z. Shu, Senior Member, IEEE, L. Senhadji, Senior Member, IEEE, L.M. Luo, Senior
Member, IEEE

rmmm 22 21
Abstract—In this correspondence, we propose a vector-radix
algorithm for the fast computation of two-dimensional (2-D)
discrete Hartley transform (DHT). For data sequences whose
length is power of three, a radix-3×3 decimation in frequency
algorithm is developed. It decomposes a length-N×N DHT into
nine length-(N/3)×(N/3) DHTs. Comparison of the computational
complexity with known algorithms shows that the proposed
algorithm, in some cases, reduces significantly the number of
arithmetic operations.

Index Terms—2-D discrete Hartley transform, 2-D radix-3×3,
vector-radix algorithm

I. INTRODUCTION
HE two-dimensional (2-D) discrete Hartley transform
(DHT) introduced by Bracewell [1] has become an

important tool in image and signal processing [2] and circular
convolution [3]. Because the computation of 2-D DHT by the
traditional row-column algorithm [4] is still time consuming,
many fast algorithms for computing the 2-D DHT have been
reported in the literature. These algorithms can be grouped into
two categories. The first category uses the method of (split)
vector-radix to decompose the whole processing task into many
smaller ones [5-10]. Among them, both Bi’s decimation in
frequency (DIF) algorithm [9] and Bi’s decimation in time
(DIT) algorithm [10], which support the block size q*2m×q*2m,
for m ≥ 2, where q is an odd integer, require the least number of
arithmetic operations. These (split) vector-radix algorithms
were recently extended to the fast computation of 3-D [11-14]
and M-D ([15], [16]) DHT. The second category utilizes other
transforms such as discrete Radon transform (DRT) [17-19] or
the polynomial transform (PT) [20-22] to speed up the
computational efficiency. Among this kind of algorithms,
Zeng’s method [21], supporting the block size

, for mrmmm qqq ××× 21
i ≥ 2, i = 1, 2, …, r, where q is an

odd prime integer, and Zeng’s approach [22], supporting the

block size 2 × × ×

This work was supported by National Basic Research Program of China
under grant N0 2003CB716102 and Program for Changjiang Scholars and
Innovative Research Team in University.

J.S. Wu, H.Z. Shu, and L.M. Luo are with the Laboratory of Image Science
and Technology, School of Computer Science and Engineering, Southeast
University, 210096, Nanjing, China (e-mail: jswu@seu.edu.cn;
shu.list@seu.edu.cn; luo.list@seu.edu.cn).

L. Senhadji is with the INSERM, U642, Rennes, F-35000, France, and with
the Université de Rennes 1, LTSI, Rennes, F-35000, France (e-mail:
lotfi.senhadji@univ-rennes1.fr).

Authors are all with “Centre de Recherche en Information Biomédicale
Sino-Français (CRIBs)”.

, for mi ≥ 2, i = 1, 2, …, r, are
probably the most efficient algorithms in terms of the arithmetic
complexity.

Generally speaking, the (split) vector-radix algorithms
have many desirable properties such as regular computational
structure, in-place computation, and low implementation cost
[9], [10]. On the other hand, the DRT or PT based algorithms
require less number of arithmetic operations than that of the
(split) vector-radix algorithms, but need a special sequence
reordering, thus necessitating extra arithmetic operations,
modulo operations, and bit-shift operations and complex
computational structures [16].

Most of the (split) vector-radix algorithms developed till
now for the fast computation of 2-D DHT dealt with the block
size 2m×2m, m ≥ 2. However, in some practical applications, for
example, in the computation of 2-D circular convolution where
one uses the minimum block sizes compatible to the filter
specifications [23], the block size is not limited to 2m×2m, m ≥ 2,
even not to q*2m×q*2m, m ≥ 2, where q is an odd integer.
Therefore, a new 2-D vector-radix DHT algorithm which
supports a more wide range of choices on different block sizes
is required. This is the objective of the present paper.

In Ref. [24], Zhao proposed a radix-3 DIF algorithm for
efficient computation of 1-D DHT. Inspired by his research
work, we present here a new vector-radix-3×3 DIF algorithm
for fast computing the 2-D DHT.

II. METHOD
The 2-D N×N -point DHT of x(n1, n2) is defined by [1]

()∑ ∑
−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ +=

1

0

1

0
221121221

1 2

2cas),(1),(
N

n

N

n

knkn
N

nnx
N

kkX π

),,(),(
),,(),(
),,(),(

2121

2121

2121

kkXkNkNX
kkXkkNX
kkXkNkX

−−=−−
−=−

−=−

2), i = 1, 2, 3, 4.

,

0 ≤ ni, ki ≤ N – 1, i = 1, 2, (1)
where cas(x) = cos(x)+sin(x) and N is assumed to be power of 3.
For simplicity, the normalization factor 1/N2 is omitted in the
following derivation. The following properties can be easily
verified:

 0 ≤ k1, k2 ≤ N–1. (2)

Based on (2), nine cases need to be calculated instead of
computing (1) directly: X(3k1, 3k2), X(3k1, 3k2+1), X(3k1,
3k2–1), X(3k1+1, 3k2), X(3k1–1, 3k2), X(3k1+1, 3k2+1),
X(3k1–1, 3k2–1), X(3k1+1, 3k2–1), and X(3k1–1, 3k2+1), for 0 ≤
k1, k2 ≤ N/3–1. These values can be easily got from the
following Ai(k1, k2), i = 0, 1, 2, 3, 4, and Bi(k1, k

T

 2

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
−+
−−
++

−
+

−
+

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)13,13(
)13,13(
)13,13(
)13,13(

)3,13(
)3,13(
)13,3(
)13,3(

)3,3(

1- 1
1 1

1- 1
1 1

 1- 1
1 1

1- 1
 1 1

1

),(
),(
),(
),(
),(
),(
),(
),(
),(

21

21

21

21

21

21

21

21

21

214

214

213

213

212

212

211

211

210

kkX
kkX
kkX
kkX
kkX
kkX

kkX
kkX
kkX

kkB
kkA
kkB
kkA
kkB
kkA
kkB
kkA
kkA

(3)

()

()

In order to facilitate the presentation, we introduce some
intermediate variables as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++
++

+
++
++

+
+
+

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)3/2,3/2(
)3/,3/2(

),3/2(
)3/2,3/(

)3/,3/(
),3/(

)3/2,(
)3/,(

),(

1- 1
1- 1

 1- 1
 1- 1

1 1
1 1

 1 1
1 1

 1

21

21

21

21

21

21

21

21

21

4

3

2

1

4

3

2

1

0

NnNnx
NnNnx

nNnx
NnNnx

NnNnx
nNnx

Nnnx
Nnnx

nnx

D
D
D
D
S
S
S
S
S

(4)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

0

5

4

3

2

1

0

1 1
 1 1

1 1
 1 1

 1 1
1 1

S
S
S
S
S

E
E
E
E
E
E

 (5)

(22113
)

/
2 knkn

N
+=

πφ , (6)

)(2
21, qnpn

Nqp +=
πθ , p, q = –1, 0, 1. (7)

In the following, we discuss the way for efficiently computing
Ai(k1, k2), i = 0, 1, 2, 3, 4, and Bi(k1, k2), i = 1, 2, 3, 4.

1. Computation of A0(k1, k2).

(

() .cas)(

3/
2cas),(

),(

13/

0

13/

0
151

1

0

1

0
221121

210

1 2

1 2

φ

π

∑ ∑

∑ ∑
−

=

−

=

−

=

−

=

++=

⎥⎦
⎤

⎢⎣
⎡ +=

N

n

N

n

N

n

N

n

SEE

knkn
N

nnx

kkA

) (8)

2. Computation of A1(k1, k2).

()

()[

()] .cas sin3

cos)(2

3/
2cas

2
cos),(2

)13(32cas

)13(32cas),(

),(

1,0431

13/

0

13/

0
1,0151

2211

1

0

1

0

2
21

2211

1

0

1

0
221121

211

1 2

1 2

1 2

φθ

θ

π

π

π

π

DDD

SEE

knkn
N

N
n

nnx

knkn
N

knkn
N

nnx

kkA

N

n

N

n

N

n

N

n

N

n

N

n

−+−

+−=

⎥⎦
⎤

⎢⎣
⎡ +×

⎟
⎠

⎞
⎜
⎝

⎛=

⎭
⎬
⎫

⎥⎦
⎤

⎢⎣
⎡ −++

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ++=

∑ ∑

∑ ∑

∑ ∑

−

=

−

=

−

=

−

=

−

=

−

=

 (9)

3. Computation of B1(k1, k2).

()

()

() ,
3/

2cas

2sin),(2

)13(32cas

)13(32cas),(

),(

2211

1

0

1

0

2
21

2211

1

0

1

0
221121

211

1 2

1 2

⎥⎦
⎤

⎢⎣
⎡ +−×

⎟
⎠
⎞

⎜
⎝
⎛=

⎭
⎬
⎫

⎥⎦
⎤

⎢⎣
⎡ −+−

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ++=

∑ ∑

∑ ∑

−

=

−

=

−

=

−

=

knkn
N

N
nnnx

knkn
N

knkn
N

nnx

kkB

N

n

N

n

N

n

N

n

π

π

π

π

we have

()

()[

()] .cas cos3

sin)(2

3/
2cas

2
sin),(2

3
,

3

1,0431

13/

0

13/

0
1,0151

2211

1

0

1

0

2
21

211

1 2

1 2

φθ

θ

ππ

DDD

SEE

knkn
NN

n
nnx

kNkNB

N

n

N

n

N

n

N

n

−++

+−=

⎥⎦
⎤

⎢⎣
⎡ +⎟

⎠

⎞
⎜
⎝

⎛=

⎟
⎠
⎞

⎜
⎝
⎛ −−

∑ ∑

∑ ∑
−

=

−

=

−

=

−

=

()[

(10)
Similarly, we have

()] .cas sin3

cos2

),(

0,1432

13/

0

13/

0
0,1250

212

1 2

φθ

θ

DDD

SEE

kkA
N

n

N

n

++−

−−= ∑ ∑
−

=

−

=

 (11)

 3

()[

()] .cas cos3

sin2

3
,

3

0,1432

13/

0

13/

0
0,1250

212

1 2

φθ

θ

DDD

SEE

kNkNB

N

n

N

n

+++

−−=

⎟
⎠
⎞

⎜
⎝
⎛ −−

∑ ∑
−

=

−

=

 (12)

()[

()] .cas sin3

cos2

),(

1,1321

13/

0

13/

0
1,1343

213

1 2

φθ

θ

DDD

SEE

kkA
N

n

N

n

−+−

−−= ∑ ∑
−

=

−

=

 (13)

()[

()] .cas cos3

sin2

3
,

3

1,1321

13/

0

13/

0
1,1343

213

1 2

φθ

θ

DDD

SEE

kNkNB

N

n

N

n

−++

−−=

⎟
⎠
⎞

⎜
⎝
⎛ −−

∑ ∑
−

=

−

=

 (14)

()[

()] .cas sin3

cos2

),(

1,1421

13/

0

13/

0
1,1442

214

1 2

φθ

θ

−

−

=

−

=
−

+−+

−−= ∑ ∑
DDD

SEE

kkA
N

n

N

n

 (15)

 ()[

()] .cas cos3

sin2

3
,

3

1,1421

13/

0

13/

0
1,1442

214

1 2

φθ

θ

−

−

=

−

=
−

+−−

−−=

⎟
⎠
⎞

⎜
⎝
⎛ −−

∑ ∑
DDD

SEE

kNkNB

N

n

N

n

 (16)

The indices and from (8) to (16) are ranged from 0 to
N/3 – 1.

1k 2k

So far, we have decomposed a length-N×N DHT (defined
in (1)) into nine length-(N/3)×(N/3) DHTs (defined in (8)
through (16)). Fig. 1 shows the flowgraph of the realization of
the proposed algorithm.

III. COMPUTATIONAL COMPLEXITY AND COMPARISON
ANALYSIS

In this section, we consider the computational complexity of
the proposed algorithm and compare it with some known
algorithms. The detailed analysis is given below.
i) The computation of (4) and (5) requires (N/3)×(N/3)×14

additions.
ii) The implementation of the butterfly in the input data

sequence of Ai(k1, k2) and Bi(N/3–k1, N/3–k2), i = 1, 2, 3, 4,
needs 4 multiplications and 2 additions, thus, the
computation from (8) to (16) requires (N/3)×(N/3)×16
multiplications and (N/3)×(N/3)×25 additions.

iii) The computation of X(k1, k2) from Ai(k1, k2), i = 0, 1, 2, 3, 4,
and Bi(k1, k2), i = 1, 2, 3, 4, requires (N/3)×(N/3)×8
additions.

iv) Taking the special cases n1 = 0, n2 = 0, n1 + n2 = 0 or N/3,
and n1 = n2 into consideration, 4N multiplications and 2N+2
additions can be saved in the computation through (8) to
(16). In fact, let us consider, for example, the number of
arithmetic operations that can be saved in the computation
of (13) and (14) for the cases where n1 + n2 = 0 or N/3.
Letting a11 = 2E3–E4–S3 and b11 = D1+D2–D3, when n1 +
n2 = 0, the input data sequences in (13) and (14) become a11
and 113b , in such case, 3 multiplications and 2 additions
can be saved. When n1 + n2 = N/3, the input data sequences

become 111111 2)(
2
1 bba −−− and)(

2
3

1111 ba −

⎪⎩

⎪
⎨
⎧

+−−=

+−=

××

××

,9229/47

,949/16

)3/()3/(
2

)3/()3/(
2

NNNN

NNNN

ANNA

MNNM

, N–3

multiplications can be saved. Therefore, for the two cases
n1 + n2 = 0 and n1 + n2 = N/3, N multiplications and 2
additions can be saved in the computation of (13) and (14).
A similar analysis can be done for other cases.
The computational complexity of the proposed algorithm is

therefore given by

 (17)

with initial values M3×3 = 4 and A3×3 = 47.
 Table I shows the computational complexity required by the
proposed algorithm and Zeng’s method [21] for the block size
3m×3m, m≥1. Tables II and III present the computational
complexities of Zeng’s approach [22] and Bi’s algorithm (q = 1)
[9], [10] for the block size 2m×2m, m ≥ 2 and Bi’s algorithm (q =
3) for the block size 3*2m×3*2m, m ≥ 0, respectively. Note that
in Bi’s algorithm for q = 3, the same initial values M3×3 = 4 and
A3×3 = 47 are used. To make the comparison more clear, Fig. 2
shows the number of multiplications plus additions, involved in
the computation of the length-N×N DHT, using the proposed
method and the algorithms presented in [9], [10], [21] and [22].
 It can be seen from Table I that the proposed algorithm is
more efficient than Zeng’s method [21] in terms of the total
number of arithmetic operations. Tables II and III, as well as
Fig. 2, show that the proposed algorithm is more efficient, in
some cases, than the algorithms presented in [9], [10], and [22]
in terms of the number of arithmetic operations, especially for
the cases where there is many zero padding, such as block sizes
9×9 and 81×81. Thus, user may favor a given technique
depending on the selected block size. For more detailed
discussion about the vector-radix algorithm and the polynomial
algorithm, we refer the readers to Ref. [16].

IV. CONCLUSIONS
We have proposed in this paper a radix-3×3 DIF algorithm

for the fast computation of 2-D DHT. Compared with some
known algorithms, the proposed one achieves substantial
saving on the number of arithmetic operations. Moreover, the
proposed algorithm possesses properties such as the
butterfly-style and in-place computations that are highly

 4

lq ×1

desirable for software as well as hardware implementation. It
can be used for fast convolution where one uses the minimum
block sizes compatible to the filter specifications. Note that our
radix-3×3 algorithm can be easily extended to the arbitrary
radix-q×q case, where q is an odd integer, which provides a
wider choice of block sizes. Thus, user can favor an approach
for a desired block. Furthermore, our proposed algorithm,
combing with other split vector-radix algorithms [5-10], can
realize the 2-D DHT with block size 3m2n×3m2n, m, n ≥ 2. Since
the DHT is an efficient alternative to the DFT for real data, the
proposed algorithm may also find its application in array signal
processing [25].

[18] W. Ma, “Algorithm for computing two-dimensional discrete Hartley
transform of size pn×pn,” Electron. Lett., vol. 26, no. 21, pp. 1795-1797,
Oct. 1990.

[19] W. Ma, “Number of multiplications necessary to compute length-2n
two-dimensional discrete Hartley transform DHT (2n; 2),” Electron. Lett.,
vol. 28, no. 5, pp. 480-482, Feb. 1992.

[20] S.C. Chan and K.L. Ho, “Polynomial transform fast Hartley transform,”
IEEE ISCAS, vol. 1, Jun. 1991, pp. 642-645.

[21] Y. H. Zeng, G. Bi, and A. C. Kot, “Fast algorithm for multi-dimensional
discrete Hartley transform with size rll qq ××2 ,” Signal Process.,
vol. 82, no. 3, pp. 497-502, Mar. 2002.

[22] Y. H. Zeng, G. Bi, and A. R. Leyman, “New algorithms for
multidimensional discrete Hartley transform,” Signal Process., vol. 82, no.
8, pp. 1086-1095, Aug. 2002.

[23] E. Dubois and A.N. Venetsanopoulos, “A new algorithm for the radix-3
FFT,” IEEE Trans. Acoust., Speech, Signal Process., vol. 26, no. 3, pp.
222-225, Jun. 1978.

[24] Z.J. Zhao, “In-place radix-3 fast Hartley transform algorithm,” Electron.
Lett., vol. 28, no.3, pp. 319-321, Jan. 1992.

REFERENCES [25] C.J. Ju, “Algorithm of defining 1-D indexing for M-D mixed radix FFT
implementation,” IEEE PRCCCSP, vol.2, May 1993, pp. 484-488. [1] R.N. Bracewell, The Hartley Transform, New York, NY: Oxford Univ.

Press, 1986.
 [2] I. Duleba, “Hartley transform in compression of medical ultrasonic

images,” Proc. IEEE ICIAP, Sept. 1999, pp. 722-727. Table I The computational complexity required by the proposed algorithm and Zeng’s
method for the block size 3m×3m, m≥1 [3] N.C. Hu and F.F. Lu, “Fast computation of the two-dimensional

generalised Hartley transforms,” IEE Proc. Vis. Image Signal Process.,
vol. 142, no.1, pp. 35-39, Feb. 1995.

N×N
(N)

Proposed algorithm Zeng’s method [21]
Mults. Adds. M.+A. Mults. Adds. M.+A.

3 4 47 51 4 47 51
9 144 826 970 136 892 1028
27 2484 11185 13669 2188 12394 14582
81 33696 134764 168460 28432 150904 179336

243 407268 1520755 1928023 334612 1712422 2047034
729 4607280 16460638 21067918 3720088 18600436 22320524

[4] R.N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, “Fast
two-dimensional Hartley transform,” Proc. IEEE, vol. 74, no. 9, pp.
1282-1283, Sept. 1986.

[5] R. Kumaresan and P.K. Gupta, “Vector-radix algorithm for a 2-D discrete
Hartley transform,” Proc. IEEE, vol. 74, no. 5, pp. 755-757, May 1986.

[6] E.A. Jonckheere and C. Ma, “Split-radix fast Hartley transform in one and
two dimensions,” IEEE Trans. Signal Process., vol. 39, no.2, pp. 499-503,
Feb. 1991.

Table II The computational complexity needed by Zeng’s approach and Bi’s

algorithm (q=1) for the block size 2m×2m, m≥2
[7] S. Huang, J. Wang, and H. Qiu, “Split vector radix algorithm for

two-dimensional Hartley transform,” IEEE Trans. Aerosp. Electron. Syst.
vol. 27, no.6, pp. 865-868, Nov. 1991.

N×N
(N)

Zeng’s approach [22] Bi’s algorithm (q=1) [9][10]
Mults. Adds. M.+A. Mults. Adds. M.+A.

4 2 58 60 2 58 60
8 26 354 380 24 408 432
16 218 2018 2236 264 2216 2480
32 1370 10594 11964 1800 11368 13168
64 7514 52578 60092 10536 55176 65712

128 38234 251234 289468 55560 260840 316400
256 185690 1168738 1354428 277992 1200712 1478704
512 873818 5330274 6204092 1333320 5443368 6776688
1024 4019546 23942498 27962044 6232872 24305288 30538160

[8] J.L. Wu and S.C. Pei, “The vector split-radix algorithm for 2D DHT,”
IEEE Trans. Signal Process., vol. 41, no.2, pp. 960-965, Feb. 1993.

[9] G. Bi, “Split-radix algorithm for 2-D discrete Hartley transform,” Signal
Process., vol. 63, no. 1, pp. 45-53, Nov. 1997.

[10] G. Bi, A.C. Kot, and Z. Meng, “Computation of 2D discrete Hartley
transform,” Electron. Lett., vol. 34, no.11, pp. 1058-1059, May 1998.

[11] S. Boussakta, O.H. Alshibami, and M.Y. Aziz, “Radix-2×2×2 algorithm
for the 3-D discrete Hartley transform,” IEEE Trans. Signal Process., vol.
49, no. 12, pp. 3145-3156, Dec. 2001.

 [12] O. Alshibami and S. Boussakta, “Fast 3-D decimation-in-frequency
algorithm for 3-D Hartley transform,” Signal Process., vol. 82, no. 1, pp.
121-126, Jan. 2002.

Table III The computational complexity needed by Bi’s algorithm (q=3) for the
block size 3*2m×3*2m, m ≥ 0

N×N
(N)

Bi’s algorithm (q=3) [9][10]
Mults. Adds. M.+A.

3 4 47 51
6 16 260 276
12 64 1328 1392
24 472 6680 7152
48 3400 31976 35376
96 20296 150440 170736

192 111208 689096 800304
384 565576 3117608 3683184
768 2764072 13886600 16650672

[13] S. Bouguezel, M.O. Ahmad, and M.N.S. Swamy, “An efficient
three-dimensional decimation-in-time FHT algorithm based on the
radix-2/4 approach,” Proc. IEEE ISSPIT, Dec. 2004, pp. 52-55.

[14] S. Bouguezel, M.O. Ahmad, and M.N.S. Swamy, “A split vector-radix
algorithm for the 3-D discrete Hartley transform,” IEEE Trans. Circuits
Syst.-I: Regular paper, vol. 53, no. 9, pp. 1966-1976, Sept. 2006.

[15] S. Bouguezel, M.O. Ahmad, and M.N.S. Swamy, “An efficient
multidimensional decimation-in-frequency FHT algorithm based on the
radix-2/4 approach,” IEEE ISCAS, May 2005, pp. 2405-2408.

[16] S. Bouguezel, M.N.S. Swamy, and M.O. Ahmad, “Multidimensional
vector radix FHT algorithms,” IEEE Trans. Circuits Syst.-I: Regular
paper, vol. 53, no. 4, pp. 905-917, Apr. 2006.

[17] D. Yang, “New fast algorithm to compute two-dimensional discrete
Hartley transform,” Electron. Lett., vol. 25, no. 25, pp. 1705-1706, Dec.
1989.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220

 5

Fig. 1. Radix-3×3 algorithm for the 2-D DHT

“arrange” means the time-reversal operation of the sequence

3 9 27 81 243 729

10
2

10
3

10
4

10
5

10
6

10
7

Block size(N×N)

T
he

 n
um

be
r

of
 m

ul
tip

lic
at

io
ns

 p
lu

s
ad

di
tio

ns

Proposed algorithm

Zeng's method

Zeng's approach
Bi's algorithm(q=1)

Bi's algorithm(q=3)

51
(N)

Fig.2. Comparison among the proposed algorithm, Bi’s algorithm and Zeng’s algorithm

 in terms of multiplications plus additions.

	I. INTRODUCTION
	II. Method
	III. Computational complexity and comparison analysis
	IV. Conclusions

