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Abstract: In this letter, an efficient algorithm for three-dimensional (3-D) vector radix 
decimation in frequency is derived for computing the type-III 3-D discrete W transform 
(DWT). Comparison of the computational complexity with the familiar row-column 
algorithm shows that the proposed approach reduces significantly the number of arithmetic 
operations. Moreover, the proposed method has very regular structure, thus, it is easy to 
implement. 
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1. Introduction 
The discrete Hartley transform (DHT) was first introduced by Bracewell [7] and then 

extended to the generalized DHT (GDHT) [12]. Wang and Hunt [18] presented four versions 
of the discrete W transform (DWT) which depend on the symmetry type chosen for the 
sequences in the temporal domain and in the frequency domain. It was shown [17] that the 
DWT and the type-I, -II, -III and –IV GDHT have a similar definition with difference in 
constant scaling factors. 

The multi-dimensional DHT or type-I DWT has wide application in digital image 
processing such as image filtering, restoration, encoding and spectrum analysis [9, 14, 15]. 
The other types of DWT also find their application in various areas. In particular, the type-III 
DWT was used for harmonic analysis [18] and interpolation [19]. Hu et al. showed [12] that 
the type-III GDHT can be used to compute the DHT for any number of data points in the least 
number of operations. It is known that the circular and skew-circular convolutions (CC and 
SCC) are basic building blocks in the computation of FIR filters, convolutions, and fast 
Fourier transforms [10]. Wang [18] and Hu [12] showed respectively that the 1-D SCC can be 
efficiently computed using the type-III DWT. Hu and Lu [13] then extended their method to 
the computation of 2-D SCC. 

In the past decade, a number of algorithms have been reported in the literature for fast 
computation of DWT or GDHT. For example, Bi [2] developed radix-type algorithms for 
efficiently computing the type-II, -III and -IV 2-D DWT. Boussakta et al. [5] and Alshibami 
and Boussakta [1] proposed respectively decimation in time and decimation in frequency 
methods for calculating the 3-D DHT. Using the polynomial transform, Zeng et al. [20] 
presented new approaches to speed up the calculation of multi-dimensional (m-D) DHT. 
Bouguezel et al. [3, 4] developed respectively split vector radix and vector radix algorithms 
for computing the 3-D and m-D DHT. However, to the authors’ knowledge, little attention has 
been paid on the fast computation of type-II, III and -IV 3-D DWT. The 3-D DWT can be 
calculated using the traditional row-column method [11]. Cheng et al. [8] recently proposed 
an approach, based on the polynomial transform, to calculate the 3-D DWT. Their method 
can efficiently reduce the computational complexity compared to the row-column method, 
but at the expense of very complicated structure. 

Inspired by a research work reported in [1], we present in this letter a vector radix 
decimation in frequency algorithm for the fast computation of the type-III 3-D DWT. Rather 
than decomposing the 3-D DWT into lower dimensional computation, the proposed approach 
decomposes the whole computation task into a number of smaller ones. The computational 
complexity of the method is analyzed and compared to the existing algorithms. We also show 
briefly how to compute the 3-D SCC via the type-III 3-D DWT. 
 
2. Method 

The forward type-III 3-D DWT of a real 3-D input data x(n1, n2, n3) is defined by 
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where )sin()cos()(cas θθθ += . Without loss of generality, we assume that Ni = N, for i = 1, 
2, 3, where N is a power of two. 
   Depending on the parity of k1, k2 and k3, eight cases need to be considered: X(2k1, 2k2, 
2k3), X(2k1, 2k2, 2k3+1), X(2k1, 2k2+1, 2k3), X(2k1+1, 2k2, 2k3), X(2k1, 2k2+1, 2k3+1), 
X(2k1+1, 2k2, 2k3+1), X(2k1+1, 2k2+1, 2k3), and X(2k1+1, 2k2+1, 2k3+1) for 0 ≤ ki ≤ N/2 – 1, 
i = 1, 2, 3. Instead of computing these coefficients directly, we propose in this section an 
algorithm for 3-D vector radix decimation in frequency suitable for fast computation. 

2.1. Computation of [ ])12,12,12()2,2,2(
2
1),,( 3213213211 ++++= kkkXkkkXkkkA . 
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Eq. (2) shows that A1(k1, k2, k3) is the N/2×N/2×N/2 type-III DWT. 

2.2. Computation of [ ])2,2,2()12,12,12(
2
1),,( 3213213211 kkkXkkkXkkkB −+++= . 
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Eq. (7) can be rewritten as 
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which is also the N/2×N/2×N/2 type-III DWT, and the input sequence b1(n1, n2, n3) is given by 
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for 0 ≤ ki ≤ N/2 – 1, i = 1, 2, 3. 
Proceeding in a similar way as for A1(k1, k2, k3) and B1(k1, k2, k3), we obtain 
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where uijk(n1, n2, n3) and vlmn(n1, n2, n3) are defined in Eqs. (4) and (5). 
It is noted that Eqs. (16)–(21) are all the N/2×N/2×N/2 type-III DWT. When A1(k1, k2, k3), 

B1(k1, k2, k3), A2(k1, k2, k3), B2(k1, k2, k3), A3(k1, k2, k3), B3(k1, k2, k3), A4(k1, k2, k3) and B4(k1, 
k2, k3) are computed, the final output sequences can be obtained with N3 additions only. 
 
3. Computational complexity and comparison analysis 

Fig. 1 shows the flowgraph of the realization of the proposed algorithm. The whole 
process for computing N×N×N type-III DWT using the new approach (including trivial 
multiplications and additions) requires 2N3log2N real multiplications and 4N3log2N real 
additions. On the other hand, if the traditional row-column approach is used to compute the 
3-D type-III DWT, it requires 3N3log2N real multiplications and (9/2)N3log2N + 3N3 
additions. If the algorithm presented in [8] is applied, it needs approximately (1/2)N3log2N 
real multiplications and (7/2)N3log2N real additions. Fig. 2 shows the number of multiplications 
plus additions per point, involved in the computation of the N×N×N type-III DWT, using the 
proposed method, the row-column approach and the algorithm based on the polynomial 
transform. 

It can be seen from Fig. 2 that the polynomial transform algorithm has the best performance 
in terms of the number of arithmetic operations. This is because it belongs to the non-radix 
category, which usually requires smaller computational complexity than radix-type algorithm [8]. 
However, the algorithm based on the polynomial transform needs a process to reorder the input 
sequence for the conversion process and to reorder the coefficients of the (m-1)-dimensional 
polynomial transform to obtain the final transform, which is very difficult to implement in-place 
and needs extra data storage spaces to store temporary work arrays and extra computation [2, 8, 
20]. As stated in [6], the main consideration in choosing a fast algorithm is computational and 
structural complexities. As the technology of computers and DSPs evolves, the execution time   
of arithmetic operation has become very short, and regular computational structure becomes the 
most important factor [6]. Although the proposed algorithm does not achieve the lowest number 
of arithmetic operations, it has a regular computational structure to achieve desirable features such 
as regular data indexing and in-place computation [2]. 
 
4. Fast computation of 3-D SCC 

The SCC is usually computed via the separable type-III DWT. By transforming the 2-D 
separable DWT into the corresponding 2-D DWT, Hu and Lu [13] presented an efficient 
algorithm for computing the 2-D SCC. We extend here their algorithm to the computation of 
3-D SCC. The type-III 3-D separable DWT is defined as [16] 
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By using the identity 
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Eq. (28) can be converted into the 3-D type-III DWT as follows 
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It can be easily seen from Eq. (30) that 
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Based on Eqs. (30) and (31), Xs(k1, k2, k3) can be computed from X(k1, k2, k3) with 
additional 2N3 real additions. Therefore, the computation of the separable 3-D type-III DWT 
requires 2N3log2N real multiplications and 4N3log2N+2N3 real additions. 
 
5. Conclusions 

In this letter, we have presented a new 3-D vector radix decimation in frequency algorithm for 
efficient computation of type-III 3-D DWT. We have also discussed the application of type-III 
3-D DWT in the fast computation of 3-D SCC. The computational complexity of the proposed 
approach has been analyzed and compared with the existing algorithms. The comparison shows 
that the new algorithm is more efficient than the traditional row-column method, and it needs 
more arithmetic operations than that required by the polynomial transform algorithm presented in 
[8]. However, the proposed algorithm has significantly reduced structural complexities compared 
to the polynomial transform algorithm reported in [8]. The simplicity and regularity of the 
computational structure achieved by the proposed approach permit minimizing the overall 
computational costs for high processing throughput. 
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Fig.1. 3-D vector-radix algorithm for 3-D type-III DWT 
 

 
Fig.2. Arithmetic complexity comparison 
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