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Mechanical and structural assessment of cortical and deep cytoskeleton reveals substrate-dependent alveolar macrophage remodeling

The sensitivity of alveolar macrophages to substrate properties has been described in a recent paper (Féréol et al., Cell Motil.Cytoskeleton, 63: 321-340, 2006). It is presently re-analyzed in terms of F-actin structure (assessed from 3D-reconstructions in fixed cells) and mechanical properties (assessed by Magnetic Twisting Cytometry experiments in living cells) of cortical and deep cytoskeleton structures for rigid plastic (Young Modulus: 3MPa) or glass (70 MPa) substrates and a soft ( 0.1 kPa) confluent monolayer of alveolar epithelial cells. The cortical cytoskeleton component (lowest F-actin density) is represented by the rapid and softer viscoelastic compartment while the deep cytoskeleton component (intermediate F-actin density) is represented by the slow and stiffer compartment. Stiffness of both cortical and deep cytoskeleton is significantly decreased when soft confluent monolayer of alveolar epithelial cells replace the rigid plastic substrate while F-actin reconstructions reveal a consistent actin cytoskeleton remodeling observable on both cytoskeleton components.

Introduction

In a recent review of the literature dedicated to cell sensitivity to substrate stiffness, Disher et al. [START_REF] Discher | Tissue cells feel and respond to the stiffness of their substrate[END_REF] have pointed out that tissue cells do experiment substrate of stiffness varying by several order of magnitude. For instance, values of elasticity (Young) modulus range (i) from 1.5 kPa to 5 kPa in brain [START_REF] Gefen | Are in vivo and in situ brain tissues mechanically similar?[END_REF], (ii) from 5 kPa to 15 kPa in muscles [START_REF] Fung | Biomechanics: mechanical properties of living tissues[END_REF] with a mean at 12 kPa [START_REF] Engler | Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments[END_REF] and (iii) from 40 to 160 kPa in skin [START_REF] Hendriks | The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments[END_REF], while disease conditions could result in some rigidification process [START_REF] Gefen | Are in vivo and in situ brain tissues mechanically similar?[END_REF][START_REF] Paszek | Tensional homeostasis and the malignant phenotype[END_REF]. Importantly, cells are thought to be able to provide a biological response adapted to the large diversity in surrounding tissues stiffness [START_REF] Discher | Tissue cells feel and respond to the stiffness of their substrate[END_REF][START_REF] Engler | Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments[END_REF].

Cellular adaptation to, for instance, a stiffer mechanical environment, occurs through changes in cell shape secondary to cytoskeleton remodeling, (e.g., flattening process mostly associated to generation of stress fibers in the basal cell plane) [START_REF] Pelham | Cell locomotion and focal adhesions are regulated by substrate flexibility[END_REF][START_REF] Yeung | Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion[END_REF], adjustment of cellular properties (e.g., increase in internal tension) [START_REF] Georges | Cell type-specific response to growth on soft materials[END_REF], and finally modulation of major cell functions, (e.g., less migration, less proliferation…) [START_REF] Lo | Cell movement is guided by the rigidity of the substrate[END_REF][START_REF] Wang | Focal adhesion kinase is involved in mechanosensing during fibroblast migration[END_REF].

Surprisingly, the cell sensitivity to tissue mechanical properties requires not only the outside-in signaling classically used to understand the cell response to external forces, but a more complex feedback loop of inside-outside-in signaling that definitely involves elasticity of the extracellular environment [START_REF] Discher | Tissue cells feel and respond to the stiffness of their substrate[END_REF]. To mediate the cell response, the mechano-chemical signaling pathways still need to be identified. They firstly implicate the variety of adhesion sites (e.g., from the stable focal adhesion sites to the dynamic nascent adhesion sites) which all constitute physical links between intracellular to extracellular mediums and have been thought to play the role of mechanosensors [START_REF] Bruinsma | Theory of Force Regulation by Nascent Adhesion Sites[END_REF][START_REF] Chiquet | How do fibroblasts translate mechanical signals into changes in extracellular matrix production?[END_REF][START_REF] Ingber | Integrins as mechanochemical transducers[END_REF]. Second, mechanotransduction pathways include the various types of cytoskeleton biopolymers (e.g., actin filaments, microtubules, intermediate filaments) [START_REF] Forgacs | On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation[END_REF][START_REF] Wang | Long-distance propagation of forces in a cell[END_REF]. For instance, the contractile forces generated by crossbridging interactions between actin and myosin filaments are transmitted to the adhesion sites along stress fibers and thereby contribute to the inside-out signaling [START_REF] Bruinsma | Theory of Force Regulation by Nascent Adhesion Sites[END_REF].

However complete understanding of how cells not only adhere but also sense their microenvironment and thereby respond in a way related to extracellular matrix elasticity remain to be achieved. Recently, we have explored the sensitivity to substrate stiffness of fast moving adherent cells, i.e., alveolar macrophages (AMs), which functionally differ from tissue cells [START_REF] Féréol | Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties[END_REF]. The results obtained in AMs in terms of mechanosensitive pathways suggest that the highly tensed cytoskeletal elements are most likely not exclusive pathways for mechanotransduction, while tensed actin fibers were thought to contribute to transmission of mechanical signal within tensed tissue cells [START_REF] Chiquet | How do fibroblasts translate mechanical signals into changes in extracellular matrix production?[END_REF]. Noteworthy, sensitivity of AMs to substrate stiffness occurs in the absence of stress fibers and at negligible levels of internal tension [START_REF] Féréol | Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties[END_REF].

The aim of the present study is to re-analyze with a deeper insight, the cytoskeleton remodeling of AMs corresponding to environmental conditions having two very different substrate stiffness, namely a glass (or plastic) substrate classically used in in vitro experiments and a physiologically-relevant substrate made of a confluent monolayer of alveolar epithelial cells on which AMs basically adhere and move. To do so, we have considered the associated changes in mechanical properties and in actin structure of both the cortical and deep cytoskeleton components, following a method we previously validated in cultures of alveolar epithelial cell lines (A549) [START_REF] Laurent | Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting[END_REF]. Such a mechanical assessment requires a specific curve fitting analysis by two viscoelastic solid elements in series of the cellular deformation, (i.e., the mean rotation over a large population of twisted microbeads attached to macrophage cytoskeleton through integrin receptors). This cell deformation occurs in response to a step function of stress resulting from a magnetic torque created by a laboratory made Magnetic Twisting Cytometry (MTC) device previously described [START_REF] Laurent | Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers[END_REF][START_REF] Planus | Role of collagenase in mediating in vitro alveolar epithelial wound repair[END_REF]. The structural rearrangement was assessed from 3D-reconstruction of the stained actin structure evidenced at two levels of fluorescent intensity in confocal images [START_REF] Fodil | Characterization of cytoskeleton mechanical properties and 3D-actin structure in twisted living adherent cells[END_REF].

The results so re-analyzed in AM cells, show that actin structure remodeling in response to a drastic change in substrate stiffness (0.1 kPa versus 3-70 MPa) concerns both the cortical and the deep cytoskeleton. However, this structural remodeling does not resemble to that previously observed in tissue cells since it occurs without stress fibers generation even for the deep cytoskeleton structure. Consistently, the stiffness of the cortical and deep cytoskeleton is not significantly altered by cytochalasin D treatment. Importantly, the large decrease in substrate stiffness presently tested results in a significant decrease in stiffness for both the cortical and the deep cytoskeleton components. Altogether, present results suggest that the mechanical properties of cell substrate must be controlled as it could strongly influence the cellular response. Thus, cell sensitivity to mechanical environment concerns both cellular biology and cellular bioengineering studies.

Material and Methods

Culture of alveolar macrophages on epithelial monolayer or rigid substrate:

AMs were isolated from pathogen-free male or female Sprague-Dawley rats following a procedure previously described in [START_REF] Féréol | Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties[END_REF]. An average yield of 4.10 6 cells/rat was obtained.

After isolation of rat AMs, AMs were seeded at a density of 1.5×10 6 cells/ml onto the two types of tested substrates and incubated for 3 hours on these substrates, namely the soft cellular and the rigid plastic/glass substrates. For the cellular substrate, rat type II pneumocytes were isolated as described above and then plated at a density of 10 6 cells per cm 2 on Lab-Tek chambered coverglass (8 wells) previously coated with type I collagen. The stiffness (Young Modulus) value of the epithelial cell monolayer was taken equal to 0.1 kPa, corresponding to the typical value measured in (A549) epithelial cell monolayer by the MTC method after appropriate geometrical correction [START_REF] Laurent | Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers[END_REF][START_REF] Ohayon | Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: a finite element model based on a homogenization approach[END_REF]. We have also characterized the confluent nature of the epithelial cell monolayer by Atomic Force Microscopy (Nanowizard, JPK Instrument Berlin). Moreover, typical values of stiffness (Young Modulus) were used for the highly rigid plastic or glass surface (i.e., respectively 3 MPa and 70 MPa) [START_REF] Fung | Biomechanics: mechanical properties of living tissues[END_REF]. These quite different substrates (i.e., epithelial cell monolayer and/or glass/plastic) aimed at mimicking the wide variety of elasticity properties of substrates encountered by the cells, e.g., between in vitro to in vivo environments. The 3 hours time allowed for AM adhesion was chosen as a compromise between optimal adhesion and minimal de-differentiation [START_REF] Rossman | Adherence and morphology of guinea pig alveolar macrophages: effect of N-formyl methionyl peptides[END_REF]. Nonadherent cells were then removed by 3 rinses with RPMI 1640 supplemented with 0.1% BSA (37°C). For each substrate studied, (i.e., cellular monolayer or glass/plastic substrate), the macrophages pertaining to the same population, (i.e., issued from the same rat) were seeded in culture wells without addition of any chemoattractant. The absence of chemo-attractant guaranteed no chemical activation of AMs in our experimental conditions, meaning that the wide majority of AMs maintained a symmetrical actin shape without front-rear polarization (see Results).

Spatial reconstruction of F-actin:

Five days later, rat type II pneumocytes had formed a confluent cell monolayer and AMs isolated by bronchoalveolar lavages were seeded over the monolayer for 3 hours before fixation and staining. The fixation of the co-culture was performed with 1% glutaraldehyde and then F-actin was stained with rhodamined phalloidin (1.5 µM), as previously described [START_REF] Doornaert | Time course of actin cytoskeleton stiffness and matrix adhesion molecules in human bronchial epithelial cell cultures[END_REF]. The stained F-actin cytoskeleton structure was examined with a 100/1.3 numerical aperture Plan Neofluar objective mounted on a laser confocal microscopy (LSM 410, Zeiss, Rueil-Malmaison, France). Spatial organisation of F-actin structure was obtained from 3Dreconstructions performed from optical sections recorded every 0.3 µm which revealed intracellular fluorescence by means of a grey level scale. Contours of external and internal subcellular structures corresponding to two different levels of fluorescent intensity where defined using the curve of the "logarithmic" decrease in cumulated pixels of the stack images versus the grey level (0 to 255). Practically, the cell image ranged from 8 to 230. The lower value detectable (i.e., 8-13) corresponded to the external boundary of the actin structure while the deep cytoskeleton structure was systematically defined at a value located at 25% of that range (i.e., ~63-67) which standardly reveals stress fibers in adherent tissue cells.

Stiffness and prestress measurements:

Cell elasticity modulus was assessed by a previously described laboratory-made Magnetic Twisting Cytometry device (MTC) [START_REF] Féréol | Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties[END_REF] similar to that initially described by Wang et al. [START_REF] Wang | Mechanotransduction across the cell surface and through the cytoskeleton [see comments[END_REF], i.e., based on the measure of the mean rotation over a wide population twisted ferromagnetic RGD-coated beads attached to transmembrane mechanoreceptors (integrins) linked to actin cytoskeleton. The difference with initial MTC method resides in data analysis. Indeed, the torque-bead rotation relationships used to deduce the actual cell stiffness from the apparent cell stiffness (or torque divided by the product: bead rotation×bead volume) is corrected by a factor deduced from a numerical model. The latter takes into account the halfangle of bead immersion calculated from 3D-reconstructions of the AM F-actin structure. This immersion angle was 108° ± 30° estimated for a population of 10 beads [START_REF] Féréol | Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties[END_REF]. The average bead rotation angle was measured by an on-line magnetometer over the entire bead/cell population present in the culture and for a constant torque applied to the beads herein equal to 800 pNµm (corresponding to a 5 mT perpendicular magnetic field).

AMs were plated at a density of 10 6 cells/ml in bacteriological dishes (96-well). The dishes were either or not covered by a confluent monolayer of rat pneumocytes seeded 5 days sooner after coating with type I collagen. Before use, AMs were incubated in RPMI 1640 medium supplemented with 1% BSA for at least 30 minutes at 37°C to block non-specific binding. RGD-coated ferromagnetic beads were then added to the cells (40µg per well) for 30 minutes at 37°C in a 5% CO 2 -95% air incubator. Unbound beads and AMs were washed away systematically three times with RPMI 1640 medium supplemented with 1% BSA. We verified in a previous study that neither the three repeated rinsing nor the torque application significantly affected the remnant magnetic field nor the stiffness measurement [START_REF] Ohayon | Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: a finite element model based on a homogenization approach[END_REF].

To study the effect of actin depolymerization on the mechanical properties of AMs plated on different substrates, we used treatments with low concentrations of cytochalasin D (cyto D) (1 µg/ml) for 11 min before MTC measurements. We have previously shown on highly structured F-actin alveolar epithelial cells (A549) adherent on glasses that the main effect of cyto D treatment primarily alters the dense F-actin network [START_REF] Laurent | Specific Mechanical and Structural Responses of Cortical and Cytosolic Cytoskeleton in Living Adherent Cells[END_REF] resulting in a decrease in cellular prestress [START_REF] Wendling | Role of cellular tone and microenvironmental conditions on cytoskeleton stiffness assessed by tensegrity model[END_REF]. Hence, decay in stiffness was systematically found in adherent cells once treated with cyto D [START_REF] Wang | Mechanotransduction across the cell surface and through the cytoskeleton [see comments[END_REF][START_REF] Wang | Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells[END_REF]. Subsequently, the difference in stiffness between cyto D treatment and control has been used as a quantification of prestress [START_REF] Planus | Role of collagenase in mediating in vitro alveolar epithelial wound repair[END_REF][START_REF] Pourati | Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells?[END_REF].

The recent findings obtained in contractile adherent cells by Wang et al. about the positive linear relationships between cell stiffness and cell prestress confirms the validity of this approach [START_REF] Wang | Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells[END_REF].

Two-element rheological model:

The two-compartment model basically consists of a series of two viscoelastic solid (Voigt) bodies representing two individualized cytoskeleton components with specific properties. These mechanical properties are defined by best curve fittings of experimental response from the following equation which describes the time course of bead deviation (t) during a given stepwise loading:
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E1 and E2 are the elasticity modulus and  1 and  2 are the time constants of the cortical and deep cytoskeleton compartments which correspond to respectively a rapidly responsive submembranous "cortical" cytoskeleton associated to the low F-actin density structure and a slowly responsive "deep" cytoskeleton associated to the dense F-actin structure.  is the mechanical stress applied (equal to the ratio of initial magnetic torque modulus to bead volume) corrected for geometrical effects (notably the angle of bead immersion in the cytoplasm), This model has been previously proposed by our group for its mechanical and biological consistency with experimental data in living cells [START_REF] Laurent | Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting[END_REF][START_REF] Laurent | Mechanical assessment by magnetocytometry of the cytosolic and cortical cytoskeletal compartments in adherent epithelial cells[END_REF]. For instance, the rapidly responsive cortical cytoskeleton compartment appears softer than the deep compartment which is consistent with a larger and faster adaptability of the cortical component to the local environment. On the other hand, the more rigid and slower deep compartment is consistent with the need to maintain cell stability and cell anchorage to substrate.

Results and Discussion

Feasibility of the cellular model (Fig. 2):

First, it should be noted that we were able to measure the mechanical properties of AMs co-cultured, i.e., adherent, over the confluent of monolayer of alveolar epithelial cells because AMs do bind the RGD coated beads (Fig. 1) but the underlying type II alveolar cells could not. This is illustrated by Figure 1 which shows a partial view of the co-culture of macrophages adhering on pneumocytes II. Noteworthy, the spherical beads of 4.5 m in diameter appear exclusively attached to the AMs just because RGD-coated beads, which came in contact with pneumocytes II, could not adhere and were removed by lavages. Indeed, we have already found that the mechanical characterization by RGD-coated beads of a confluent monolayer of type II alveolar epithelial cells was not possible due to the lack of attached beads [START_REF] Planus | Role of collagenase in mediating in vitro alveolar epithelial wound repair[END_REF], most likely because during these 5-days culture, cells acquire a strong apico-basolateral polarity with tight junctions, letting no free integrin on apical side of the confluent monolayer of type II alveolar epithelial cells [START_REF] Féréol | Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties[END_REF]. This polarity presumably induces a redistribution of integrins receptors towards the basal face, impeding RGD coated beads to attach to the apical face through integrin receptors.

Figure 2A-C shows that the 4.5 µm RGD coated beads are largely embedded in the AM cytoplasm (evidenced by the large bead immersion half angle >100° in AMs illustrated in Fig 2 B andC) and also tightly connected to the F-actin structure. Noteworthy, both the cortical F-actin structure (in grey in Fig. 2) and the deep F-actin structure (in white in Fig. 2), are present and likely attached to the bead. It is interesting to point out, based on the crosssectional view (Fig 2C ), that not only the cortical structure but also the dense F-actin structure are organized around the bead. These 3D-reconstructions demonstrate also that F-actin structure in AMs strongly differ from the actin structure standardly found in adherent cells.

These images are also used to prove the effectiveness of the RGD-coated bead attachment to F-actin structure, evidenced by the large bead embedment in the cytoplasm and by the local remodeling of the AM cytoskeleton in response to the bead. This justifies the use of a bead twisting method (MTC) to measure mechanical properties in cells such as alveolar macrophages which are almost not affected by cytochalasin D treatment (see below).

Stiffness specificity of cortical and deep cytoskeleton structures (Fig. 3):

We found that both the cortical and deep cytoskeleton structures exhibit a statistically significant decrease in stiffness when the rigid plastic substrate is replaced by the soft confluent monolayer of type II alveolar epithelial cells (see Figure 3). More precisely, the mean values (+/-SEM) of cortical and deep cytoskeleton elasticity modulus are respectively: E1=39 Pa ± 3 and E2 =115 Pa ± 7 for AMs adhering on rigid plastic substrate. These values are higher than the values obtained for AMs adhering on a confluent monolayer of type II alveolar epithelial cells, namely E1= 25 Pa ± 3 and E2 = 86 Pa ± 7. These results clearly show that stiffness of underlying substrate affects the AM stiffness. Note also that substituting epithelial cell monolayer for plastic/glass substrate corresponds to huge drop in elasticity modulus, (i.e., by 7 orders of magnitude). Another important result obtained by MTC is that stiffness of the cortical and the deep cytoskeleton structures of AMs is not affected by cytochalasin D treatment. Indeed, the cortical and deep cytoskeleton stiffness values measured during cytochalasin D treatment are: E1= 41 Pa ± 4 and E2= 24 Pa ± 4.2 for glass substrate and E1= 136 Pa ± 7 and E2 = 91 Pa ± 12 for cellular substrate which mean no significant difference in terms of cellular stiffness in spite of the blockage of F-actin polymerisation induced by cyto D. Such a result might be surprising if we consider that in tissue cells, the deep cytoskeleton and to a lesser extent the cortical cytoskeleton, was found to be highly sensitive to cyto D treatment. Note however that AMs and alveolar epithelial cells exhibit a common behaviour in terms of range of viscoelastic time constant for the cortical and the deep cytoskeleton, i.e.,  1 = 0.3 -0.5s ± 0.03 while  2 = 30s ± 6.

Influence of biological versus non biological substrates on F-actin structure of AMs (Figs. 4 and 5):

Over a large population of 600-1000 AMs cultured on rigid glass substrate, we have found that the majority of AMs (more than 65%) exhibited a flattened shape. By contrast, the same AMs cultured on a cellular monolayer substrate, exhibited by more of 90% rounded shapes. Confocal cumulative side view of F-actin structures in two adherent AMs with typical symmetrical shape (i.e., without front-rear F-actin polarisation) are presented on the right upper side of Fig. 4A and4B. On the two graphs of Fig 4A and4B, we have plotted (on vertical axis) the cumulated surface area of AMs versus the altitude in µm from the bottom plane (horizontal axis). These graphs reveal that AM shapes are totally dependent on substrate properties. On rigid glass substrates, AMs are flattened with a large cumulated area of more than 600 µm 2 5C,5E) and cellular monolayer (Figs 5B, 5D, 5F) substrates, it can be said that: (i) filipodia/lamilipodia formation generally (the front with intense polymerisation) is essentially planar on rigid substrate but more spatial on cellular substrate (Fig 5A vs 5B), (ii) cortical (in grey) and dense F-actin structure (in white) exhibit quite different organisations with a circular structure of dense F-actin at the beginning of the lamellipodia on glass substrate while the dense structure is more homogeneously distributed within the rounded cortical shape on cellular substrate (Figs 5C vs 5D), (iii) The cortical structure resembles to a submembranous mantle thinner on glass substrate than on cellular monolayer substrate, with no evidence of stress fibers or F-actin bundles (even in the case of glass substrate) in spite of the evidence of dense actin structures (Figs 5E vs 5F). It appears that on cellular substrates, F-actin structure of AMs are closely linked to the F-actin structure of the underlying cellular substrate, suggesting a physical continuity of the connection: F-actin of AMs / integrins / ICAM 1 receptors / F-actin of pneumocytes II at the sites of adherence. Still concerning Fig. 5, it should be said that the boundary between actin structures of AMs (in white and grey) and of pneumocytes II (in violet) is not easily distinguishable and might occur at a cell height of about 1 µm. Note also that F-actin staining in the alveolar epithelial cells forming the underlying cellular monolayer (in violet in Fig. 5 B,D,F) in only partial (hence the mistaken impression of discontinuity of the cellular monolayer in Fig. 5 B,D,F), while the F-actin staining in AMs is total, providing confident spatial reconstructions of AM structure.

Note that staining of F-actin in alveolar epithelial cells of the monolayer is only partial giving the confusing impression that the cellular monolayer is not confluent (Figs 5 B,D,F). 4A, 4B, 5E and5C). In a previous paper [START_REF] Féréol | Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties[END_REF], we provide some additional evidence that these punctuated structures of actin could be podosomes. Indeed, podosomes which are short-lived punctuate adhesion structures through which AMs adhere, are formed by a diffuse membrane domain of integrins and associated proteins (e.g., vinculin and talin) surrounding a dense actin core [START_REF] Destaing | Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein[END_REF]. In a recent study, the dynamic nature of these podosomes-like adhesion sites has been characterized from fibroblasts adhering on different matrix rigidities [START_REF] Collin | Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility[END_REF]. In the macrophage model presently studied, there is no doubt that these podosomes-like adhesion sites play a key role in the interaction between AMs and substrate (either glass or cellular monolayer). This suggests that the mechanosensitivity of AMs to the substrate properties would most likely be mediated by these specific adhesion sites which actually would act as mechanosensors of the passive mechanical properties of the substrate.

Conclusions

Present results concern the cell sensitivity to substrate stiffness of non activated and mostly non migrant alveolar macrophages. These non tissue cells are for the first time evaluated structurally and mechanically through two selected components of their cytoskeleton namely the cortical and the deep cytoskeleton components. As previously proposed for alveolar epithelial cells, the cortical cytoskeleton component of AMs evidenced by the lowest F-actin density detectable on confocal images is assumed to be satisfactorily described the rapid and softer viscoelastic compartment while the deep cytoskeleton component evidenced by an intermediate F-actin density is assumed to be satisfactorily described by the slow and stiffer compartment [START_REF] Laurent | Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting[END_REF]. The two different substrates tested are (i) a non biological rigid plastic/glass substrate routinely used in in vitro cellular studies (Young Modulus ~ 3 / 70 MPa respectively) and (ii) a more biological and thus soft cellular substrate made of a confluent monolayer of type II alveolar epithelial cells (Young Modulus ~ 0.1 kPa).

Mechanical results were obtained by the Magnetic Twisting Cytometry method earlier described [START_REF] Laurent | Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers[END_REF][START_REF] Wang | Mechanotransduction across the cell surface and through the cytoskeleton [see comments[END_REF] and analyzed in terms of stiffness of cortical and deep cytoskeleton components whose mechanical and biological relevance has already been shown for alveolar epithelial cells [START_REF] Laurent | Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting[END_REF]. Structural results concern the spatial reconstructions of cortical and deep cytoskeleton from confocal images treated at two levels of fluorescence intensity [START_REF] Fodil | Characterization of cytoskeleton mechanical properties and 3D-actin structure in twisted living adherent cells[END_REF]. It is noteworthy that in alveolar macrophages, mechanical results are consistent with structural results and reveal a significant substrate-dependent alveolar macrophage remodelling, which notably depends on the stiffness of the substrate tested. Importantly, this remodeling which reflects the cellular response after three hours of macrophage culture on either rigid or soft substrates, implicates the whole cytoskeleton. Note however that the deep component of macrophages does not resemble to the deep component of alveolar epithelial cells. Indeed, in macrophages, the deep cytoskeleton does not exhibit stress fibers whereas its sensitivity to cytochalasin D treatment is negligible. The same lack of sensitivity to cytochalasin D is observed for the cortical cytoskeleton component of alveolar macrophages. These results mean that both the cortical and the deep cytoskeleton have a negligible internal tension, consistently with the lack of stress fibers. Hence the need to consider pathways for the mechanosensivity of alveolar macrophage which could differ from the pathways classically proposed to describe mechanotransduction in tensed tissue cells, (i.e., focal contacts, integrins, tensed actin stress fibers transmitting eventually distant acto-myosin contraction) [START_REF] Chiquet | How do fibroblasts translate mechanical signals into changes in extracellular matrix production?[END_REF][START_REF] Galbraith | Forces on adhesive contacts affect cell function[END_REF][START_REF] Ingber | Integrins as mechanochemical transducers[END_REF][START_REF] Yamada | Integrin signaling[END_REF]. Based on present results, we have recently proposed [START_REF] Féréol | Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties[END_REF] that non actinic cytoskeleton filament such as microtubules -which have been shown to be in direct contact with podosomes [START_REF] Linder | Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages[END_REF] -coupled with the contractile apparatus present at the level of podosomes [START_REF] Tanaka | Morphological and biochemical analyses of contractile proteins (actin, myosin, caldesmon and tropomyosin) in normal and transformed cells[END_REF] could act as mechanosensitive pathways specific to alveolar macrophages.

Importantly, it has been shown that force regulation through highly dynamic adhesion sites to which podosomes pertain, could be controlled by substrate mechanical properties [START_REF] Bruinsma | Theory of Force Regulation by Nascent Adhesion Sites[END_REF][START_REF] Collin | Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility[END_REF]. In other words, the immature (i.e., nascent) character of adhesion sites seems to be required to match the exerted forces to the stiffness of the substrate [START_REF] Choquet | Extracellular Matrix Rigidity Causes Strengthening of Integrin-Cytoskeleton Linkages[END_REF][START_REF] Pelham | Cell locomotion and focal adhesions are regulated by substrate flexibility[END_REF]. Hence, due to their dynamic adhesion sites (podosomes), alveolar macrophages could sense mechanical properties of their environment. Interestingly enough, present results indicate that biologically relevant substrate (here a cellular monolayer) might enhance the sensitivity of alveolar macrophages to their spatial environment which can be suggested by the generation of 3D filopodic extensions shown in Figs 5B.

From a cellular engineering point of view, the present study is a new demonstration that there is a need to perform in vitro cellular studies using realistic substrate conditions which notably means the control of mechanical properties of extracellular matrix. We are aware that in the present study, adhesion conditions were certainly different between the glass/plastic substrate and the cellular substrate which could in turns contribute for a part to the measured stiffness. Incidentally, the expected higher affinity of alveolar macrophages for the cellular substrate does not necessarily result in higher cellular stiffness but, on the contrary in lower stiffness.

To conclude, the present study can be seen as a new contribution to the rapidly growing field of mechanobiology in which mechanical properties of the cellular environment contribute, in relation with the cytoskeleton, to the overall cell response. 
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