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ABSTRACT

Motivation: Array-based comparative genomic hybridization

(arrayCGH) has recently become a popular tool to identify

DNA copy number variations along the genome. These profiles

are starting to be used as markers to improve prognosis or

diagnosis of cancer, which implies that methods for automated

supervised classification of arrayCGH data are needed. Like

gene expression profiles, arrayCGH profiles are characterized

by a large number of variables usually measured on a limited

number of samples. However, arrayCGH profiles have a

particular structure of correlations between variables, due to

the spatial organization of BACs along the genome. This

suggests that classical classification methods, often based on

the selection of a small number of discriminative features, may

not be the most accurate methods and may not produce easily

interpretable prediction rules.

Results: We propose a new method for supervised classification

of arrayCGH data. The method is a variant of support vector

machine (SVM) that incorporates the biological specificities

of DNA copy number variations along the genome as prior

knowledge. The resulting classifier is a sparse linear classifier

based on a limited number of regions automatically selected

on the chromosomes, leading to easy interpretation and

identification of discriminative regions of the genome. We test

this method on three classification problems for bladder and

uveal cancer, involving both diagnosis and prognosis. We

demonstrate that the introduction of the new prior on the

classifier leads not only to more accurate predictions, but also

to the identification of known and new regions of interest in the

genome.

Availability: All data and algorithms are publicly available.

Contact: franck.rapaport@curie.fr

1 INTRODUCTION

Genome integrity is essential to cell life and is ensured in

normal cells by a series of checkpoints, which enable DNA

repair or trigger cell death to avoid abnormal genome cells

to appear. The p53 protein is probably the most prominent

protein known to play this role. When these checkpoints are

bypassed the genome may evolve and undergo alterations to
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a point where the cell can become premalignant and further

genome alterations lead to invasive cancers.

This genome instability has been shown to be an enabling

characteristic of cancer (Hanahan and Weinberg, 2000), and

almost all cancers are associated with genome alterations.

These alterations may be single mutations, translocations, or

copy number variations (CNVs). A CNV can be a deletion or

a gain of small or large DNA regions, an amplification, or an

aneuploidy (change in chromosome number).

Many cancers present recurrent CNVs of the genome,

like for example monoploidy of chromosome 3 in uveal

melanoma (Speicher et al., 1994), loss of chromosome 9

and amplification of the region of cyclin D1 (11q13) in

bladder carcinomas (Blaveri et al., 2005), loss of 1p and

gain of 17q in neuroblastoma (Bown et al., 2001; Van Roy

et al., 2002), EGFR amplification and deletion in 1p and

19q in gliomas (Idbaih et al., 2007), or amplifications of 1q,

8q24, 11q13, 17q21-q23, and 20q13 in breast cancer (Yao

et al., 2006). Moreover associations of specific alterations with

clinical outcome have been described in many pathologies (eg.,

Lastowska et al., 1997).

Recently array-based comparative genomic hybridization

(arrayCGH) has been developed as a technique allowing rapid

mapping of CNVs of a tumor sample at a genomic scale

(Pinkel et al., 1998). The technique was first based on arrays

using a few thousands of large insert clones (like BACs, and

with a Mb range resolution) to interrogate the genome, and

then improved with oligonucleotide based arrays consisting of

several hundreds of thousands features, taking the resolution

down to a few kb (Gershon, 2005). Many projects have since

been launched to systematically detect genomic aberrations in

cancer cells (van Beers and Nederlof, 2006; Chin et al., 2006;

Shing et al., 2003).

The etiology of cancer and the advent of arrayCGH make

it natural to envisage building classifiers for prognosis or

diagnosis based on the genomic profiles of tumors. Building

classifiers based on expression profiles is an active field of

research, but little attention has been paid yet to genome-

based classification. Chin et al. (2006) select a small subset of

genes and apply a k-nearest neighbor classifier to discriminate

between estrogen-positive and estrogen-negative patients,

between high-grade patients and low-grade patients and

between bad prognosis and good prognosis for breast cancer.
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Jones et al. (2004) reduce the DNA copy number estimates

to “gains” and “losses” at the chromosomal arm resolution,

before using a nearest centroid method for classifying breast

tumors according to their grade. As underlined in Chin et al.

(2006), the classification accuracy reported in Jones et al.

(2004) is better than the one reported in Chin et al. (2006),

but still remains at a fairly high level with as much as 24%

of misclassified samples in the balanced problem. This may

be related to the higher resolution of the arrays produced by

Jones et al. (2004). Moreover, the approach used by Jones et al.

(2004) produces a classifier difficult to interpret as it is unable

to detect any deletion or amplification that occur at the local

level. O’Hagan et al. (2003) used a support vector machine

(SVM) classifier using as variables all BAC ratios without any

missing values. They were able to identify key CNAs.

The methods developed so far either ignore the particularities

of arrayCGH and the inherent correlation structure of the data

(O’Hagan et al., 2003), or drastically reduce the complexity of

the data at the risk of filtering out useful information (Jones

et al., 2004; Chin et al., 2006). In all cases, a reduction of the

complexity of the data or a control of the complexity of the

predictor estimated is needed to overcome the risk of overfitting

the training data, given that the number of probes that form

the profile is often several orders of magnitude larger than the

number of samples available to train the classifier.

In this paper we propose a new method for supervised

classification, specifically designed for the processing of

arrayCGH profiles. In order not to miss potentially relevant

information that may be lost if the profiles are first processed

and reduced to a small number of homogeneous regions, we

estimate directly a linear classifier at the level of individual

probes. Yet, in order to control the risk of overfitting, we

define a prior on the linear classifier to be estimated. This prior

encodes the hypothesis that (i) many regions of the genome

should not contribute to the classification rule (sparsity of the

classifier), and (ii) probes that contribute to the classifier should

be grouped in regions on the chromosomes, and be given the

same weight within a region. This a priori information helps

reducing the search space and produces a classification rule

that is easier to interpret. This technique can be seen as an

extension of SVM where the complexity of the classifier is

controlled by a penalty function similar to the one used in the

fused lasso method to enforce sparsity and similarity between

successive features (Tibshirani et al., 2005). We therefore call

the method a fused SVM. It produces a linear classifier that is

piecewise constant on the chromosomes, and only involves a

small number of loci without any a priori regularisation of the

data. From a biological point of view, it avoids the prior choice

of recurrent regions of alterations, but produces a posteriori a

selection of discriminant regions which are then amenable to

further investigations.

We test the fused SVM on several public datasets involving

diagnosis and prognosis applications in bladder and uveal

cancer, and compare it with a more classical method

involving feature selection without prior information about the

organization of probes on the genome. In a cross-validation

setting, we show that the classification rules obtained with the

fused SVM are systematically more accurate than the rules

obtained with the classical method, and that they are also more

easily interpretable.

2 METHODS

In this section we present an algorithm for the supervised classification

of arrayCGH data. This algorithm, which we call fused SVM, is

motivated by the linear ordering of the features along the genome

and the high dependancy in behaviour of neighbouring features. The

algorithm itself estimates a linear predictor by borrowing ideas from

recent methods in regression, in particular the fused lasso (Tibshirani

et al., 2005). We start by a rapid description of the arrayCGH

technology and data, before presenting the fused SVM in the context

of regularized linear classification algorithms.

2.1 ArrayCGH data

ArrayCGH is a microarray-based technology that allows the

quantification of the DNA copy number of a sample at many positions

along the genome in a single experiment. The array contains thousands

to millions of spots, each of them consisting of the amplified or

synthesized DNA of a particular region of the genome. The array is

hybridized with the DNA extracted from a sample of interest, and in

most cases with (healthy) reference DNA. Both samples have first been

labelled with two different fluorochromes, and the ratio of fluorescence

of both fluorochromes is expected to reveal the ratio of DNA copy

number at each position of the genome. The log-ratio profiles can then

be used to detect the regions with abnormalities (log-ratio significantly

different of 0), corresponding to gains (if the log-ratio is significantly

superior to 0) or losses (if it is significantly inferior to 0).

The typical density of arrayCGH ranges from 2400 BAC features

in the pioneering efforts, corresponding to one approximately 100

kb probe every Mb (Pinkel et al., 1998), up to millions today,

corresponding to one 25 to 70bp oligonucleotide probe every few kb,

or even tiling arrays (Gershon, 2005).

There are two principal ways to represent arrayCGH data: as a log-

ratio collection, or as a collection of status (lost, normal or gained,

usually represented as -1, 0 and 1 which correspond to the sign of the

log ratio). The status representation has strong advantages over the log-

ratio as it reduces the complexity of the data, provides the scientist with

a direct identification of abormalities and allows the straightforwad

detection of recurrent alterations. However, converting ratios into status

is not always obvious and often implies a loss of information which can

be detrimental to the study: for several reasons such as heterogeneity

of the sample or contamination with healthy tissue (which both result

in cells with different copy numbers in the sample), the status may

be difficult to infer from the data, whereas the use of the ratio values

avoids this problem. Another problem is the low subtelty of statuses. In

particular, if we want to use arrayCGH for discriminating between two

subtypes of tumors or between tumors with different future evolution,

all tumors may share the same important genomic alterations that are

easily captured by the status assignment while differences between

the types of tumors may be characterized by more subtle signals that

would disappear should we transform the log ratio values into statuses.

Therefore, we consider below an arrayCGH profile as a vector of

log-ratios for all probes in the array.

2.2 Classification of arrayCGH data

While much effort has been devoted to the analysis of single arrayCGH

profiles, or populations of arrayCGH profiles in order to detect genomic

alterations shared by the samples in the population, we focus on the

supervised classification of arrayCGH. The typical problem we want

to solve is, given two populations of arrayCGH data corresponding to

two populations of samples, to design a classifier that is able to predict
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which population any new sample belongs to. This paradigm can be

applied for diagnosis or prognosis applications, where the populations

are respectively samples of different tumor types, or with different

evolution. Although we only focus here on binary classification, the

techniques can be easily extended to problems involving more than

two classes using, for example, a series of binary classifiers trained

to discriminate each class against all others.

While accuracy is certainly the first quality we want the classifier to

have in real diagnosis and prognosis application, it is also important

to be able to interpret it and understand what the classification is

based on. Therefore we focus on linear classifiers, which associate

a weight to each probe and produce a rule that is based on a linear

combination of the probe log-ratios. The weight of a probe roughly

corresponds to its contribution in the final classification rule, and

therefore provides evidence about its importance as a marker to

discriminate the populations. It should be pointed out, however, that

when correlated features are present, the weight of a feature is not

directly related to the individual correlation of the feature with the

classification, hence some care should be taken for the interpretation

of linear classifier.

In most applications of arrayCGH classification, it can be expected

that only a limited number of regions on the genome should contribute

to the classification, because most parts of the genome may not differ

between populations. Moreover, the notion of discriminative regions

suggest that a good classifier should detect these regions, and typically

be piecewise constant over them. We show below how to introduce

these prior hypotheses into the linear classification algorithm.

2.3 Linear supervised classification

Let us denote by p the number of probes hybridized on the arrayCGH.

The result of an arrayCGH competitive hybridization is then a vector

of p log-ratios, which we represent by a vector x in the vector space

X = R
p of possible arrayCGH profiles. We assume that the samples

to be hybridized can belong to two classes, which we represent by

the labels −1 and +1. The classes typically correspond to the disease

status or the prognosis of the samples. The aim of binary classification

is to find a decision function that can predict the class y ∈ {−1, +1}
of a data sample x ∈ X . Supervised classification uses a database of

samples x1, ..., xn ∈ X for which the labels y1, ..., yn ∈ {−1, +1}
are known in order to construct the prediction function. We focus on

linear decision functions, which are defined by functions of the form

f(x) = w⊤x where w⊤ is the transpose of a vector w ∈ R
d. The

class prediction for a profile x is then +1 if f(x) ≥ 0, and −1
otherwise. Training a linear classifier amounts to estimating a vector

w ∈ R
d from prior knowledge and the observation of the labeled

training set.

The training set can be used to assess whether a candidate vector

w can correctly predict the labels on the training set; one may expect

such a w to correctly predict the classes of unlabeled samples as

well. This induction principle, sometimes referred to as empirical

risk minimization, is however likely to fail in our situation where the

dimension of the samples (the number of probes) is typically larger

than the number of training points. In such a case, many vectors w can

indeed perfectly explain the labels of the training set, without capturing

any biological information. These vectors are likely to poorly predict

the classes of new samples. A well-known strategy to overcome this

overfitting issue, in particular when the dimension of the data is large

compared to the number of training points available, is to look for

large-margin classifiers constrained by regularization (Vapnik, 1998).

A large-margin classifier is a prediction function f(x) that not only

tends to produce the correct sign (positive for labels +1, negative for

class −1), but also tends to produce large absolute values. This can

be formalized by the notion of margin, defined as yf(x): large-margin

classifiers try to predict the class of a sample with large margin. Note

that the prediction is correct if the margin is positive. The margin can

be thought of as a measure of confidence in the prediction given by the

sign of f , so a large margin is synonymous with a large confidence.

Training a large-margin classifier means estimating a function f that

takes large margin values on the training set. However, just like for

the sign of f , if p > n then it is possible to find vectors w that

lead to arbitrarily large margin on all points of the training set. In

order to control this overfitting, large-margin classifiers try to maximize

the margin of the classifier on the training set under some additional

constraint on the classifier f , typically that w is not too “large”. In

summary, large-margin classifiers find a trade-off between the objective

to ensure large margin values on the training set, on the one hand, and

that of controlling the complexity of the classifier, on the other hand.

The balance in this trade-off is typically controlled by a parameter of

the algorithm.

More formally, large-margin classifiers typically require the

definition of two ingredients:

• A loss function l(t) that is “small” when t ∈ R is “large”.

From the loss function one can deduce the empirical risk of a

candidate vector w, given by the average loss function applied to

the margins of w on the training set:

Remp(w) =
1

n

n
X

i=1

l(yiw
⊤
i x) . (1)

The smaller the empirical risk, the better w fits the training set

in the sense of having a large margin. Typical loss functions are

the hinge loss l(t) = max(0, 1 − t) and the logit loss l(t) =

log
`

1 + e−t
´

.

• A penalty function Ω(w) that measures how “large” or how

“complex” w is. Typical penalty functions are the L1 and L2

norms of w, defined respectively by ||w||1 =
Pp

i=1
|wi| and

||w||2 =
`

Pp
i=1

w2
i

´

1

2 .

Given a loss function l and a penalty function Ω, large-margin

classifiers can then be trained on a given training set by solving the

following constrained optimization problem:

min
w∈Rp

Remp(w) subject to Ω(w) ≤ µ , (2)

where µ is a parameter that controls the trade-off between fitting

the data, i.e., minimizing Remp(f), and monitoring the regularity

of the classifier, i.e., monitoring Ω(w). Examples of large-margin

classifiers include the support vector machine (SVM) and kernel

logistic regression (KLR) obtained by combining respectively the hinge

and logit losses with the L2 norm penalization function (Cortes and

Vapnik, 1995; Boser et al., 1992; Vapnik, 1998), or the 1-norm SVM

when the hinge loss is combined with the L1 loss .

The final classifier depends on both the loss function and the penalty

function. In particular, the penalty function is useful to include prior

knowledge or intuition about the classifier one expects. For example,

the L1 penalty function is widely used because it tends to produce

sparse vectors w, therefore performing an automatic selection of

features. This property has been successfully used in the context of

regression (Tibshirani, 1996), signal representation (Chen et al., 1998),

survival analysis (Tibshirani, 1997), logistic regression (Genkin et al.,

2007; Krishnapuram et al., 2004), or multinomial logistic regression

(Krishnapuram et al., 2005), where one expects to estimate a sparse

vector.

2.4 Fused lasso

Some authors have proposed to design specific penalty functions as a

means to encode specific prior informations about the expected form

of the final classifier. In the context of regression applied to signal
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processing, when the data is a time series, Land and Friedman (1996)

propose to encode the expected positive correlation between successive

variables by choosing a regularisation term that forces successive

variables of the classifier to have similar weights. More precisely,

assuming that the variables w1, w2, . . . , wp are sorted in a natural

order where many pairs of successive values are expected to have the

same weight, they propose the variable fusion penalty function:

Ωfusion(w) =

n−1
X

i=1

|wi − wi+1| . (3)

Plugging this penalty function in the general algorithm (2) enforces

a solution w with many successive values equal to each others, that

is, tends to produce a piecewise constant weight vector. In order to

combine this interesting property with a requirement of sparseness of

the solution, Tibshirani et al. (2005) proposed to combine the lasso

penalty and the variable fusion penalty into a single optimization

problem with two constraints, namely:

min
w∈Rn

Remp(w)

under the constraints

n−1
X

i=1

|wi − wi+1| ≤ µ

‖w‖1 ≤ λ ,

(4)

where λ and µ are two parameters that control the relative trade-offs

between fitting the training data (small Remp), enforcing sparsity

of the solution (small λ) and enforcing the solution to be piecewise

constant (small µ). When the empirical loss is the mean square error in

regression, the resulting algorithm is called fused lasso. This method

was illustrated in Tibshirani et al. (2005) with examples taken from

gene expression datasets and mass spectrometry. Later, Tibshirani and

Wang (2007) proposed a tweak of the fused lasso for the purpose of

signal smoothing, and illustrated it for the problem of discretising noisy

CGH profiles.

2.5 Fused SVM

Remembering from Section 2.2 that for arrayCGH data classification

one typically expects the “true” classifier to be sparse and piecewise

constant along the genome, we propose to extend the fused lasso to

the context of classification and adapt it to the chromosome structure

for arrayCGH data classification. The extension of fused lasso from

regression to large-margin classification is obtained simply by plugging

the fused lasso penaly constraints into a large-margin empirical risk

in (4). In what follows we focus on the empirical risk (1) obtained

from the hinge loss, which leads to a simple implementation as a

linear program (see Section 2.6 below). The extension to other convex

loss functions, in particular the logit loss function, results in convex

optimization problems with linear constraints that can be solved with

general convex optimization solvers (Boyd and Vandenberghe, 2004).

In the case of arrayCGH data, a minor modification to the variable

fusion penalty (3) is necessary to take into account the structure of the

genome in chromosomes. Indeed, two successive spots on the same

chromosome are prone to be subject to the same amplification and

are therefore likely to have similar weights on the classifier; however,

this positive correlation is not expected across different chromosomes.

Therefore we restrict the pairs of successive features appearing in

the function constraint (3) to be consecutive probes on the same

chromosome.

We call the resulting algorithm a fused SVM, which can be formally

written as the solution of the following problem:

min
w∈Rp

n
X

i=1

max(0, 1 − yiw
⊤xi)

under the constraints
X

i∼j

|wi − wj | ≤ µ

X

i=1

|wi| ≤ λ ,

(5)

where i ∼ j if i and j are the indices of succesive spots of the

same chromosome. As with fused lasso, this optimisation problem

tends to produce classifiers w with similar weights for consecutive

features, while maintaining its sparseness. This algorithm depends on

two paramters, λ and µ, which are typically chosen via cross-validation

on the training set. Decreasing λ tends to increase the sparsity of w,

while decreasing µ tends to enforce successive spots to have the same

weight.

This classification algorithm can be applied to CGH profiles, taking

the ratios as features. Due to the effect of both regularisation terms, we

obtain a sparse classification function that attributes similar weights to

successive spots.

2.6 Implementation of the fused SVM

Introducing slack variables, the problem described in (5) is equivalent

to the following linear program :

min
w,α,β,γ

n
X

i=1

αi under the following constraints :

∀i = 1, ..., n αi ≥ 0

∀i = 1, ..., n αi ≥ 1 − w⊤xiyi

n
X

i=1

βi ≤ λ

∀i = 1, ..., p βi ≥ wi

∀i = 1, ..., p βi ≥ −wi

q
X

k=1

γk ≤ µ

∀i, j such that i ∼ j γk ≥ wi − wj

∀i, j such that i ∼ j γk ≥ wj − wi

(6)

In our experiments, we implemented and solved this problem using

Matlab and the SeDuMi 1.1R3 optimisation toolbox (Sturm, 1999).

3 DATA

We consider two publicly available arrayCGH datasets for

cancer research, from which we deduce three problems of

diagnosis and prognosis to test our method.

The first dataset contains arrayCGH profiles of 57 bladder

tumor samples (Stransky et al., 2006). Each profile gives the

relative quantity of DNA for 2215 spots. We removed the

probes corresponding to sexual chromosomes, because the sex

mismatch between some patients and the reference used makes

the computation of copy number less reliable, giving us a

final list of 2143 spots. We considered two types of tumor

classification: either by grade, with 12 tumors of grade 1 and
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45 tumors of higher grades (2 or 3) or by stage, with 16

tumors of stage Ta and 32 tumors of stage T2+. In the case of

stage classification, 9 tumors with intermediary stage T1 were

excluded from the classification.

The second dataset contains arrayCGH profiles for 78

melanoma tumors that have been arrayed on 3750 spots (Trolet

et al., 2008). As for the bladder cancer dataset, we excluded the

sexual chromosomes from the analysis, resulting in a total of

3649 spots. 35 of these tumors lead to the development of liver

metastases within 24 months, while 43 did not. We therefore

consider the problem of predicting, from an arrayCGH profile,

whether or not the tumor will metastasize within 24 months.

In both datasets, we replaced the missing spots log-ratios

by 0. In order to assess the performance of a classification

method, we performed a cross-validation for each of the three

classification problems, following a leave-one-out procedure

for the bladder dataset and a 10-fold procedure for the

melanoma dataset. We measure the number of misclassified

samples for different values of parameters λ and µ.

4 RESULTS

In this section, we present the results obtained with the fused

SVM on the datasets described in the previous section. As

a baseline method, we consider a L1-SVM which minimizes

the mean empirical hinge loss suject to a constraint on the L1

norm of the classifier in (2). The L1-SVM performs automatic

feature selection, and a regularization parameter λ controls the

amount of regularization. It has been shown to be a competitive

classification method for high-dimensional data, such as gene

expression data (Zhu et al., 2004). In fact the L1-SVM is a

particular case of our fused SVM, when the µ parameter is

chosen large enough to relax the variable fusion constraint (3),

typically by taking µ > 2λ. Hence by varying µ from a large

value to 0, we can see the effect of the variable fusion penalty

on the classical L1-SVM.

4.1 Bladder tumors

The upper plot of Figure 1 show the estimated accuracy (by

Leave One Out (LOO)) of the fused SVM as a function of

the regularization parameters λ and µ, for the classification

by grade of the bladder tumors. The middle plot of Figure

1 represents the best linear classifier found by the L1-SVM

(corresponding to λ = 256), while the lower plot shows the

linear classifier estimated from all samples by the fused SVM

when λ and µ are set to values that minimise the LOO error,

namely λ = 32 and µ = 1. Similarly, Figure 2 shows the same

results (LOO accuracy, L1-SVM and fused SVM classifiers)

for the classification of bladder tumors according to their stage.

In both cases, when µ is large enough to make the

variable fusion inactive in (5), then the classifier only finds a

compromise between the empirical risk and the L1 norm of

the classifier. In other words, we recover the classical L1 SVM

with parameter λ. Graphically, the performance of the L1 SVM

for varying λ can be seen on the upper side of each plot of the

LOO accuracy in Figures 1 and 2. Interestingly, in both cases

we observe that the best performance obtained when both λ and

µ can be adjusted is much better than the best performance of

the L1 SVM, when only λ can be adjusted. In the case of grade

classification, the number of misclassified samples drops from

12 (21%) to 7 (12%), while in the case of stage classification

it drops from 13 (28%) to 7 (15%). This suggests that the

additional constraint that translates our prior knowlege about

the structure of the spot positions on the genome is beneficial

in terms of classifier accuracy.

As expected, there are also important differences in the

visual aspects of the classifiers estimated by the L1-SVM and

the fused SVM. The fused SVM produces sparse and piecewise

constant classifiers, amenable to further investigations, while

it is more difficult to isolate from the L1-SVM profiles the

key features used in the classification, apart from a few strong

peaks.

As we can see by looking at the shape of the fused SVM

classifier in Figure 1, the grade classification function is

characterised by non-null constant values over a few small

chromosomal regions and numerous larger regions. Of these

regions, a few are already known as being altered in bladder

tumors, such as the gain on region 1q (Corson et al., 2005).

Moreover some of them have already been shown to be

correlated with grade, such as chromosome 7 (Waldman et al.,

1991).

On the contrary, the stage classifier is characterised by only

a few regions with most of them involving large portions of

chromosomes. They concern mainly chromosome 4, 7, 8q,

11p, 14, 15, 17, 20, 21 and 22, with in particular a strong

contribution from chromosomes 4, 7 and 20. These results

on chromosomes 7, 8q, 11p and 20 are in good agreement

with Blaveri et al. (2005) who identified the most common

alterations according to tumor stage on a set of 98 bladder

tumors.

4.2 Melanoma tumors

Similarly to Figures 1 and 2, the three plots in Figure 3

show respectively the accuracy, estimated by 10-fold cross-

validation, of the fused SVM as a function of the regularisation

parameters λ and µ, the linear classifier estimated by the L1-

SVM when λ is set to the value that minimizes the estimated

error (λ = 4), and the linear classifier estimated by a fused

SVM on all samples when λ and µ are set to values that

minimise the 10-fold error, namely λ = 64 and µ = 0.5.

Similarly to the bladder study, the performance of the

L1-SVM without the fusion constraint can be retrieved by

looking at the upper part of the plot of Figure 3. The fused

classifier offers a slightly improved performance compared

to the standard L1-SVM (17 errors (22%) versus 19 errors

(24%)), even though the amelioration seems more marginal

compared to the improvement made with bladder tumors and

the misclassification rate remains fairly high.

As for the bladder datasets, the L1-SVM and fused SVM

classifiers are markedly different. The L1-SVM classifier is

based only on a few BAC concentrated on chromosome 8,

with positive weights on the 8p arm and negative weights

on the 8q arm. These features are biologically relevant, and

correspond to a known genomic alterations (loss of 8p and gain

of 8q in metastatic tumors). The presence of a strong signal

concentrated on chromosome 8 for the prediction of metastasis
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4
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1024

1024

µ

7 19

λ

Fig. 1. The figure on the upper side represents the number of

misclassified samples in a leave-one-out error loop on the bladder

cancer dataset with the grade labelling, with its color scale for different

values of the parameters λ and µ which vary logarithmically along the

axes. The weights of the best classifier, for classical L1-SVM (middle)

and for fused SVM (lower part) are ordered and represented in a blue

line, annotated with the chromosome separation (red line).

0.5

0.0078

1024

1024

µ

7 20

λ

Fig. 2. The figure on the upper side represents the number of

misclassified samples in a leave-one-out error loop on the bladder

cancer dataset with the stage labelling, with its color scale, for different

values of the parameters λ and µ which vary logarithmically along the

axes. The weights of the best classifier, for classical L1-SVM (middle)

and for fused-SVM (lower part) are ordered and represented in a blue

line, annotated with the chromosome separation (red line).
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1

0.0625

1024

1024

µ

17 38

λ

Fig. 3. The figure on the upper part represents the number of

misclassified samples in a ten-fold error loop on the melanoma dataset.

The weights of the best classifier, for classical L1-SVM (middle) and

for fused SVM (lower part) are ordered and represented in a blue line,

annotated with the chromosome separation (red line).

is in this case correctly captured by the sparse L1-SVM, which

explains its relatively good performance.

To the contrary, the fused SVM classifier is characterised

by many CNAs, most of them involving large regions of

chromosomes. Interestingly, we retrieve the regions whose

alteration was already reported as recurrent events of uveal

melanoma: chromosomes 3, 1p, 6q, 8p, 8q, 16q. As expected

the contributions of 8p and 8q are of opposite sign, in

agreement with the common alterations of these regions: loss

of 8p and gain of 8q in etastatic tumors. Interestingly the

contribution of chromosome 3 is limited to a small region

of 3p, and does not involve the whole chromosome as the

frequency of chromosome 3 monosomy would have suggested.

Note that this is consistent with works by Parrella et al. (2003)

and Tschentscher et al. (2001) who delimited small 3p regions

from partial chromosome 3 deletion patients. On the other hand

we also observe that large portions of other chromosomes have

been assigned significant positive or negative weights, such as

chromosomes 1p, 2p, 4, 5, 9q, 11p, 12q, 13, 14, 20, 21. To our

knowledge, they do not correspond to previous observations,

and may therefore provide interesting starting points for further

investigations.

5 DISCUSSION

We have proposed a new method for the supervised

classification of arrayCGH data. Thanks to the use of

a particular regularization term that translates our prior

assumptions into constraints on the classifier, we estimate

a linear classifier that is based on a restricted number of

spots, and gives as much as possible equal weights to

spots located near each other on a chromosome. Results on

real data sets show that this classification method is able

to discriminate between the different classes with a better

performance than classical techniques that do not take into

account the specificities of arrayCGH data. Moreover, the

learned classifier is piecewise constant and therefore lends

itself particularly well to further interpretation, highlighting

in particular selected chromosomal regions with particularly

highly positive or negative weights.

From the methodological point of view, the use of

regularized large-scale classifiers is nowadays widely spread,

especially in the SVM form. Regularization is particularly

important for “small n large p” problems, i.e., when the number

of samples is small compared to the number of dimensions.

An alternative interpretation of such classifiers is that they

correspond to maximum a posteriori classifiers in a Bayesian

framework, where the prior over classifier is encoded in our

penalty function. It is not surprising, then, that encoding prior

knowledge in the penalty function is a mathematically sound

strategy that can be strongly beneficial in terms of classifier

accuracy, in particular when few training samples are available.

The accuracy improvements we observe on all classification

datasets confirm this intuition. Besides the particular penalty

function investigated in this paper, we believe our results

support the general idea that engineering relevant priors for a

particular problem can have important effects on the quality of

the function estimated and paves the way for further research

7
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on the engineering of such priors in combination with large-

margin classifiers. As for the implementation, we solved a

linear program for each value couple of the regularization

parameters λ and µ, but it would be interesting to generalize

the recent works on path following algorithms to be able to

follow the solution of the optimization problem when λ and µ

vary (Efron et al., 2004).

Another interesting direction of future research concerns the

combination of heterogeneous data, in particular of arrayCGH

and gene expression data. Gene expression variations contain

indeed information complementary to CNV for the genetic

aberrations of the dysfunctioning cell (Stransky et al., 2006),

and their combination is therefore likely to both improve the

accuracy of the classification methods and shed new light on

biological phenomena that are characteristic of each class. A

possible strategy to combine such datasets would be to train a

large-margin classifier with a particular regularization term that

should be adequately designed.
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