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ABSTRACT

The control of mRNA stability is an important process
that allows cells to not only limit, but also rapidly
adjust, the expression of regulatory factors whose
over expression may be detrimental to the host organ-
ism. Sequence elements rich in A and U nucleotides or
AU-rich elements (AREs) have been known for many
years to target mRNAs for rapid degradation. In this
survey, after briefly summarizing the data on the
sequence characteristics of AREs, we present an ana-
lysis of the known ARE-binding proteins (ARE-BP)
with respect to their mRNA targets and the con-
sequences of their binding to the mRNA. In this ana-
lysis, both the changes in mRNA stability and the
lesser studied effects on translation are considered.
This analysis highlights the multitude of mRNAs
bound by one ARE-BP and conversely the large num-
ber of ARE-BP that associate with any particular ARE-
containing mRNA. This situation is discussed with
respect to functional redundancies or antagonisms.
The potential relationship between mRNA stability
and translation is also discussed. Finally, we present
several hypotheses that could unify the published
data and suggest avenues for future research.

INTRODUCTION

The regulation of mRNA stability and translation are essential
in the control of gene expression [reviewed in (1,2–4)] and
regulation of these two processes allows a cell to rapidly
respond to changes in intracellular and extracellular stimuli.
A number of sequence elements control the half-life of a
mRNA either by stimulating or inhibiting degradation. In
mammalian cells the sequence elements rich in adenosine
and uridine, called AU-rich elements (AREs), were identified

by their ability to target host mRNAs towards rapid degrada-
tion. In general, these mRNAs encode proteins that regulate
either cell growth or the response of an organism to external
factors such as micro-organisms, inflammatory stimuli and
environmental factors. Such genes require a very precise con-
trol of their spatial and temporal expression patterns which is
achieved, in addition to a transcriptional control, by a regu-
lation of the translation and the stability of the mRNA (5–8). In
resting or unstimulated cells the ARE-dependent degradation
mechanism ensures a very low level of expression of these
potent proteins. The importance of this repression in the
resting state is testified by the observation that pathological
states (cancers, chronic inflammations and auto-immune
pathologies) are associated with a deregulation of the stability
of ARE-containing mRNAs [(9–20), reviewed in (21,22)].

The sequence motifs that form an ARE were first identified
within the 30-untranslated regions (30-UTR) of mRNAs encod-
ing several cytokines or lymphokines (23) and, since, the list of
mRNAs that contain such motifs has considerably lengthened.
It has been estimated that 5–8% of human genes code for
ARE-containing mRNAs; the corresponding proteins perform
a variety of functions implicated in numerous transient
biological processes (24,25). This gene-based analysis
underscores the importance of AREs in the regulation of
gene expression as only a subclass of AREs were taken
into account.

DISCOVERY OF AREs AND SEQUENCE MOTIFS

AREs as mRNA destabilizing elements

AREs are sequence elements of 50–150 nt that are rich in
adenosine and uridine bases. They are located in the 30-
UTRs of many but not all mRNAs that have a short half-
life and have been identified by their capacity to provoke
degradation of the host mRNA by a mechanism dependent
on deadenylation [shortening of the poly(A) tail] [reviewed in
(26,27)]. However, depending on the cellular context and the
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precise stimulus, the presence of an ARE can also lead to the
stabilization of a mRNA (see below). For historical reasons it
is generally considered that the term ARE is reserved for
sequence elements that confer instability and/or contain
AUUUA motifs. Consequently, there are regulatory RNA
elements, rich in A and U nucleotides, that are not called
AREs. The first functional demonstration of ARE-
dependent mRNA degradation was obtained by studying, in
transfected cells, the stability of a globin mRNA into which the
ARE from the granulocyte-macrophage colony stimulating
factor (GM–CSF) mRNA had been inserted (28). Since, insert-
ing a putative ARE into the 30-UTR of an otherwise stable
reporter RNA has become the classical experimental approach
to study cellular or artificial AREs. Many of these studies used
Actinomycin D or 5,6-dichloro-1-b-D-ribofuranosyl-benzimi-
dazole (DRB) to block transcription and thereby allow
degradation rates to be measured. However, these drugs can
cause a number of artefacts and even stabilize the mRNA (29).
Wilson and Treisman (30) and Shyu et al. (31) have circum-
vented this problem by using the c-fos promoter to drive
transient transcription of a reporter gene in transfected cells
after serum stimulation. The use of the c-fos promoter to drive
transient expression is however not amenable to all experi-
mental situations. This led Xu et al. (32) to develop a protocol
using the tetracycline-regulatory promoter system to produce a
pulsed synthesis of the mRNA under study.

ARE sequence features

The first AREs identified highlighted the presence of AUUUA
pentamers, often overlapping, and frequently found within
U-rich regions of the 30-UTR [reviewed in (26)]. Many studies
have since shown that the AUUUA motif and a certain uridine
enrichment are two important characteristics of an ARE, but
also, that they cannot fully explain the destabilizing activity of
an ARE (33–37). The minimal sequence motif necessary to
increase the turnover of chimeric mRNAs is the nonamer
UUAUUUA(U/A)(U/A) (36,37), but only a modest effect
on the stability of a reporter mRNA is produced by the inser-
tion of a single nonamer in the 30-UTR (36,37). Systematic
mutagenesis of the UUAUUUAUU motif in GM–CSF ARE
confirmed that two or four copies of the nonamer motif were
more efficient in promoting deadenylation and instability than
a single copy of this motif (38). However, mutagenesis of the
single UUAUUUAUU present in the c-fos ARE does not
significantly decrease its ability to destabilize a mRNA (33)
suggesting that the UUAUUUA(U/A)(U/A) motif may be
essential for only a subset of AREs. This notion is reinforced
by the observation that a consensus recognition sequence for
the ARE-binding proteins (ARE-BPs) HuR and TIA-1, derived
from large scale screens of the endogenous targets, although
U-rich did not contain a UUAUUUAUU motif (39,40).

Classification of AREs

Based on the number and the distribution of AUUUA penta-
mers, AREs have been grouped into three classes (26). A
number of these are listed in Table 1 and are grouped accord-
ing to the two classification methods that have been proposed
(24,26). Class I AREs contain several dispersed copies of
the AUUUA motif within U-rich regions. Class II AREs pos-
sess at least 2 overlapping UUAUUUA(U/A)(U/A) nonamers.

Bakheet et al. (24,25) have constructed a database of mRNAs
containing class II AREs and these regulatory elements were
divided into five groups, three of which are presented in
Table 1. The classification in this ARE database (http://rc.
kfshrc.edu.sa/ared/) is based on the repetition pattern of the
AUUUA pentamer.

Class III AREs are much less well defined, they are U-rich
regions but contain no AUUUA motif. The best documented
example of a type III ARE is that situated within the 30-UTR of
c-jun mRNA (35,41,42).

It is necessary to note that no real consensus sequence has
yet been precisely defined for any class of ARE and, further-
more, these ARE classifications are based neither on the asso-
ciated proteins nor on biological functions. However, it is
interesting to note that most of the mRNAs containing class
II AREs encode cytokines whereas mRNAs encoding tran-
scription factors and cell cycle regulatory proteins mostly
contain class I and occasionally class III AREs (Table 1).
Also inhibition of transcription with Actinomycin D or
DRB stabilized mRNAs containing class I or II AREs (29)
but had only a modest effect on the decay kinetics of a mRNA
with a class III ARE (41). Therefore, although the initial
classification was not based on biological function it could
be that they group together mRNAs controlled by similar
pathways or encoding proteins with associated functions.

ROLE OF ARE-BPs IN RNA DEGRADATION

A great deal of attention has been given to cellular proteins that
bind to AREs as regulators of mRNA stability. Identification
of ARE-BPs and analysis of their contributions to the ARE-
dependent degradation of targeted mRNAs started �15 years
ago and is still continuing [reviewed in (27,43,44)]. As would
be expected for proteins involved in controlling the stability of
proto-oncogenes or cytokines, changes in the expression level
of certain ARE-BPs have been implicated in the development
of cancers [reviewed in (22)].

Although the AREs present in the many individual mRNAs
listed in Table 1 are different in sequence, it is obvious from
the summarized data that most are able to bind more than one
ARE-BP. In some instances [e.g. c-myc, c-fos, GM–CSF,
tumour necrosis factor a (TNF-a) and cyclooxygenase 2
(Cox-2)] the same ARE-containing mRNA can bind to
many of the known ARE-BPs. Furthermore, many of the
ARE-BPs have been observed to bind to multiple mRNAs
and this binding crosses the ARE classification limits. There-
fore, at present no clear segregation of certain ARE-BPs or
structurally related ARE-BPs with specific types of AREs
appears possible. It should also be noted that in many cases
listed in Table 1 where an association between an ARE-BP and
multiple mRNAs has been reported, these demonstrations
depended principally on in vitro analyses such as UV-
crosslinking or electrophoretic mobility shift assays
(EMSA) (see table in Supplementary Data). Only a few studies
have analysed associations between endogenous mRNAs and
proteins (indicated by an asterisk in Table 1). Despite this
reserve, the multiplicity of possible associations between
ARE-BPs and AREs brings forward the question of binding
specificity and functional redundancy/additivity or antagon-
ism that is discussed latter in this survey.
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In a number of cases, the consequences of ARE-BP binding
to a particular mRNA have been studied either with respect to
the changes in mRNA stability or translation, (Table 2). For a
small proportion of the ARE-BPs the effects on mRNA sta-
bility and translation have been investigated simultaneously.
The results from these studies are summarized below for
AUF1, the Hu family, in particular HuR, and Tristetraprolin
(TTP) that have been the most extensively studied.

AUF1

This protein was the first ARE-BP to be isolated and for which
a role in controlling mRNA stability was demonstrated
(45–47). AUF1, also named hnRNPD (heterogeneous nuclear
ribonucleoprotein D), is essentially nuclear (47,48), but it can

shuttle between the nuclear and cytoplasmic compartments
(49–52). It binds to both class I and II AREs but no example
of a class III ARE associated with AUF1 has been reported
(Table 1).

The causality of the correlation between AUF1-binding and
decreased mRNA stability has been demonstrated by experi-
ments using either over expression (53,54) or depletion (by
siRNAs) (48,55) of AUF1 in cells or modulation of the AUF1
content in cytoplasmic extracts (46) (Table 2). In one study
(55) the increased stability of IL-3 mRNA caused by a siRNA
knock-down of AUF1 led to an increased expression of the
encoded protein. This is coherent with AUF1 targeting these
mRNAs for degradation and consequently decreasing the
expression of the encoded proteins. However, AUF1-
binding has also been associated with increased mRNA

Table 2. Effect of ARE-BPs on the stability and translation of ARE-containing mRNAs

ARE-BPs mRNA stability Protein expression
Translational efficiency Abundance

Increase Decrease Increase Decrease Up regulated Down regulated

AUF1 c-myc (42) c-myc (46) GM–CSF (55)
c-fos (42,67) c-fos (53) IL-3 (55)
PTH (56) p21 (48)
GM–CSF (42) Cyclin D1 (48)
TNF-alpha (42) GM–CSF (53,54)

IL-3 (55)
HuR c-fos (59,63,67) p53 (99,137) TNF-alpha (139) p21 (69) TNF-alpha (139)

MyoD (68) Cox-2 (139) Cyclin A (70)
p21 (48,68,69) Cyclin B1 (70)
Cyclin A (70) NOS II/iNOS (64)
Cyclin B1 (70) GM–CSF (55)
Cyclin D1 (48) Cox-2 (71,173)
NOS II/iNOS (64) IL-3 (55)
GM–CSF (59) VEGF (173)
TNF-alpha (65,74,139) p53 (99,137)
Cox-2 (71,139)
IL-3 (55,66)
VEGF (62)
Myogenin (68)

Hel-N1 TNF-alpha (74) NF-M (73) NF-M (73)
GLUT1 (72) GLUT1 (72) GLUT1 (72)

HuD GAP-43 (75–77) GAP-43 (75,76)
TTP c-fos (90) GM–CSF (81)

GM–CSF (18, 81,83–85, 91) TNF-alpha (80)
TNF-alpha (18,81,83–86,89,90) IL-2 (82)
Cox-2 (87) IL-3 (88)
IL-2 (82,90)
IL-3 (18, 66, 83,84, 88)

BRF1 TNF-alpha (89,93) GM–CSF (55)
IL-3 (55,92,93) IL-3 (55)

TIA-1 TNF-alpha (120) TNF-alpha (120)
Cox-2 (121) Cox-2 (121)

KSRP c-fos (90,93) NOS II/iNOS (102)
NOS II/iNOS (102)
TNF-alpha (90,93)
IL-2 (90,93)
c-jun (93)

CUG-BP2 Cox-2 (150) Cox-2 (150) Cox-2 (150)
Nucleolin bcl-2 (175)
TINO bcl-2 (176)
PAIP2 VEGF (177) VEGF (177)

The listed ARE-BPs correspond to those in Table 1 for which effects on mRNA stability and protein expression levels (translational efficiency or steady-state
abundance) have been reported. The mRNAs whose stability is increased (stabilized) or decreased (degraded) are indicated for each ARE-BP. The stability of TNF-a
and Cox-2 mRNA or NF-M mRNA were not modified by TIA-1 or Hel-N1, respectively. The several mRNAs for which increased or decreased expression of the
encoded protein has been reported are similarly indicated. Increased or decreased translational efficiency was measured either by polysome analysis or methionine
incorporation. Changes in protein expression classified as abundance were determined on steady-state levels either by western analysis or measurement of associated
enzymatic activities. Numbers correspond to listed references.
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stability (Table 2). In the case of Parathyroid hormone mRNA
(56), which contains a class I ARE (Table 1), the effect is seen
in a particular situation, cytoplasmic extracts of rat parathy-
roid. In the study by Xu et al. (42), the stabilizing effect of
AUF1 over expression (all isoforms) in NIH-3T3 cells was
most evident for class II AREs (TNF-a and GM–CSF), less
pronounced for the class I AREs (c-myc and c-fos) and absent
for class III ARE (c-jun and a synthetic non-AUUUA ARE).
As indicated by Xu et al. (42) the effect of AUF1 on mRNA
stability may be cell type specific: destabilizing in K562 pro-
erythroblast cells (46,53) and stabilizing in NIH-3T3 fibroblast
cells (42). However, Sarkar et al. (54) reported that over
expression of the p37 isoform of AUF1 did not stabilize
reporter mRNAs containing the GM–CSF ARE in a variety
of cell type including NIH-3T3 cells. At present there is no
clear explanation for this discrepancy.

Hu family

The mammalian genome encodes four closely related proteins
(HuR/HuA, Hel-N1, HuC and HuD) that are part of a super
family of elav-related proteins (57). HuR, which is expressed
ubiquitously, has been the most extensively studied. The
expression of the other Hu proteins is restricted to neurons
except for Hel-N1 that is also expressed in gonads [reviewed in
(58)]. HuR, like AUF1, has a predominantly nuclear localiza-
tion and can shuttle between nucleus and cytoplasm (59,60).
This shuttling may have a functional role as HuR has been
shown to serve as an adaptor for the nuclear export of a class I
ARE mRNA, c-fos (61).

HuR has been observed to bind to a large number of RNAs
of all three ARE classes (Table 1). For a number of these
mRNAs, the effect on their stability has been studied by modu-
lating intracellular HuR either by ectopically expressing or
over expressing HuR (59,62–68) or by siRNA or anti-sense
RNA knock-down (48,55,62,64,69–71) (Table 2). In all these
cases the data show that HuR-binding and increased mRNA
stability are causally related.

Over expression of both Hel-N1 (72–74) and HuD (75–77)
have also been correlated with an increased stability of the
target mRNA and expression of the encoded protein (Table 2).
The binding of HuC to c-myc and VEGF mRNAs was not
correlated with a functional change to the mRNA (78).

TTP

In contrast to AUF1 and HuD the binding specificity of TTP
appears to be restricted to mRNAs containing class II AREs
(Table 1). Another difference is that TTP is predominantly
cytoplasmic (18,79). The demonstration that TTP-binding can
cause degradation of the target mRNA has been greatly helped
by the use of TTP knockout mice. In TTP deficient mice
increased protein production and/or mRNA was observed
for TNF-a in foetal liver derived macrophages (80), for
TNF-a and GM–CSF in bone marrow precursor cells and
macrophages (18,80,81) and for IL-2 in splenocytes and T-
cells (82). Further in vitro studies from several laboratories
showed that the degradation of mRNAs encoding GM–CSF
(18,83–85), TNF-a (18,83,86), Cox-2 (87) and IL-3
(18,66,83,88) was dependent on the amount of TTP expressed.
Experiments using cell free extracts confirmed (83–85,89,90)
and extended these observations to c-fos (90) mRNAs. TTP

mutants that do not bind to the target mRNA are ineffective in
stimulating degradation (84,85) whereas tethering the domain
of TTP required to activate degradation to a mRNA enhances
the degradation of an otherwise stable reporter mRNA (91). By
a systematic mutation of TTP-binding sites in GM–CSF ARE,
Lai et al. (38) showed that maximum deadenylation and
degradation rates requires the binding of two TTP molecules
to the mRNA.

FUNCTIONAL RELATIONSHIPS BETWEEN
ARE-BPs

Redundant or additive effects

As indicated in Table 2, most of the identified ARE-BPs, with
the exception of the Elav-like proteins (HuR, Hel-N1 and
HuD), CUG-BP2, Nucleolin and PAIP2, have been implicated
in the degradation of mRNAs containing AREs. Some of these
factors are co-expressed in the same cells and show overlap-
ping binding affinities [reviewed in (27,44)]. However, the
depletion of specific ARE-BPs can cause the stabilization
of sub-populations of ARE-containing mRNAs in certain
cell types (18,81,92,93). Nevertheless, it is not clear whether
these proteins are functionally redundant or if each protein
targets specific sub-populations of ARE-containing mRNAs
for degradation. One possible example of a partial functional
redundancy between two ARE-BPs is that of KSRP and BRF1.
In vitro and in vivo studies have shown that a loss of either
KSRP or BRF1 proteins from HT1080 or HeLa cells leads to a
partial stabilization of a reporter mRNA containing an ARE.
However, the simultaneous decrease of both proteins
increases, additively, the stability of the reporter mRNA
(93) indicating that the effect may be more additive than
redundant. However, the relative importance of the two
proteins, with respect to controlling mRNA stability, was
cell type specific suggestive of a complex interplay with
other factors.

Functional cooperation is also a possibility that needs to be
taken into account. For example, the transition between a
condensed and an open conformation of the RNA associated
with AUF1 is dependent on the phosphorylation state of AUF1
(94). Potentially, this structural transition could affect the
binding properties of other ARE-BPs.

Antagonistic effects

A study of the tissue specific expression of several ARE-BPs
in the mouse showed that high levels of expression of AUF1
and HuR occurred in the same tissues (95). Some ARE-
containing mRNAs, such as those encoding c-fos,
GM–CSF, the cyclin dependent kinase inhibitor p21, IL-3
and cyclin D1 are destabilized in the presence of AUF1 and
stabilized by HuR (Table 2). Consequently, it is possible that
the relative cytoplasmic concentrations of functionally antag-
onistic ARE-BPs define the stability of a particular mRNA.
Supporting this hypothesis is a RNA interference (RNAi)
study in which the decreased half-life of IL-3 mRNA caused
by HuR depletion is neutralized by co-depletion of another
ARE-BP, BRF1, that is known to mediate the rapid degrada-
tion of several cytokines (55). Similarly, the increased expres-
sion of endogenous GM–CSF associated with the RNAi
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mediated knock-down of BRF1 or certain isoforms of AUF1 is
partially repressed by the co-transfection of siRNAs directed
against HuR (55). Lal et al. (48) have directly investigated if
functional interactions can exist between AUF1 and HuR.
Using a micro-array based screen they showed that these
two proteins can co-exist on the same mRNA when it is in
the nuclear compartment. However, this association is no
longer observed when the mRNA has been exported into
the cytoplasm. HuR is found associated with mRNAs in poly-
somes and AUF1 is only found in polysome free fractions.
This confirms earlier studies showing that HuR and AUF1
partition differently between polysomes and polysome free
fractions (96,97). When the association of these two proteins
with cyclin D1 and p21 mRNAs were studied both in vitro and
in vivo (48), the binding sites were found to be distinct and
non-overlapping which renders possible the simultaneous
binding of these two proteins to the same mRNA. However,
the depletion of either AUF1 or HuR caused a reciprocal
increase in the association of the other protein with the
mRNA, by binding to the site of the depleted factor.

Therefore, the degradation rate of a mRNA could be
determined, at least in part or for certain mRNAs, by an equi-
librium or a balance between stabilizing and destabilizing
factors in the cytoplasm. This balance would be modulated
by physiological stimuli that could, for instance, affect the
nuclear/cytoplasmic distribution of the factors. In many cell
types the majority of HuR is localized in the nucleus but it is
observed to translocate to the cytoplasm in a cell cycle depend-
ent manner (70,98) or after stimulation of the cells
(69,71,99,100) and during skeletal myogenesis (68). AUF1
is also a predominantly nuclear protein and can shuttle
between the nucleus and the cytoplasm (49,51,52). The sub-
cellular localization of AUF1 is influenced by heat shock (50).

AUF1 and HuR are not the only factors whose relative
amounts may be important. In the case of T-lymphocytes,
after activation both HuR and TTP appear in the cytoplasm
(101). According to a number of in vitro studies, these two
proteins, that have opposing effects on ARE-dependent
mRNA degradation (Table 2), present binding specificities
that are distinct but overlapping, notably for GM–CSF,
TNF-a, IL-2 and COX-2 mRNAs (Table 1). Furthermore,
by co-transfection of NIH-3T3 cells with expression plasmids
for TTP and HuR, Ming et al. (66) showed that TTP antag-
onises the HuR induced stabilisation of a reporter mRNA
containing the IL-3 ARE.

Finally, a complex antagonistic interplay between KSRP,
TTP and HuR has recently been reported by Linker et al.
(102). They showed that KSRP targets the human inducible
nitric oxide synthase (iNOS), also called nitric oxide synthase
II (NOS II), mRNA for rapid degradation by binding to an
ARE that is also recognized by HuR (64) and a competition
between these two proteins for the ARE in the iNOS mRNA
was demonstrated. Cytokine stimulation of DLD-1 cells, that
increases the stability of iNOS mRNA, reduced KSRP-binding
while HuR-binding increased. TTP is also an actor in this
scenario. Contrary to the general picture, the over expression
of TTP in DLD-1 cells stabilizes the iNOS mRNA (103).
However, in this case TTP does not bind to iNOS mRNA
but participates in the RNA–protein complex via an interaction
with KSRP that appears to inhibit KSRP directed degradation
of iNOS mRNA. Comparing the data in Tables 1 and 2 brings

to light several other ARE-BPs reported to regulate the
stability of a mRNA but to which binding has not been demon-
strated (AUF1/IL-3, Hel-N1/TNF-a, TTP/IL-3, BRF1/GM–
CSF and KSRP/IL-2). This suggests that a re-evaluation of
whether the observed ARE-BP induced changes are direct
effects or due to the interaction with another ARE-BP is
required.

Hence, there are significant data to support the notion that
variations in the relative amounts and potentially the binding
affinities of AUF1, KSRP, BRF1, TTP and HuR could deter-
mine both the identity of the targeted mRNAs and their cyto-
plasmic fate. By including the association with common or
distinct co-factors, this regulation could be further fine tuned.
We propose that the same scenario also applies to other com-
binations of ARE-BPs. The corollary to this is that understand-
ing how a cell differentially regulates the stability of diverse
ARE-containing mRNAs has become a question of how the
relative cytoplasmic expression levels of the different ARE-
BPs are controlled.

MECHANISMS AND PATHWAYS OF ARE-
DEPENDENT DEGRADATION

Rapid deadenylation is a prelude to ARE-dependent
degradation

In yeast, deadenylation [shortening of the 30 poly(A) tail] is
followed by decapping (removal of the 50 cap structure) and
degradation by 50-30 exonucleases [reviewed in (2,43,104)]. In
mammals, deadenylation is also the first and rate-limiting step
in the degradation of many ARE-containing mRNAs both
in vivo (30,105–108) and in vitro (109) and decapping can
follow this initial event (110). Several in vitro studies have
shown that the kinetics with which a mRNA is deadenylated
varies between the ARE classes. Reporter mRNAs containing
class I and III AREs are deadenylated in a synchronous man-
ner, whereas for mRNAs containing class II AREs the poly(A)
tails are shortened asynchronously (29,33,35). It is not clear at
present what the biological significance of these differences
may be as the overall stability of the mRNA does not appear to
be affected.

Following deadenylation two separate cellular entities have
been implicated in mRNA degradation, the exosome and GW
or processing bodies (P-bodies). In vitro the degradation of the
decapped mRNA occurs principally by the exosome associ-
ated 30–50 exonucleases (111). However, the presence of the
50–30 exonuclease Xrn1 in P-bodies implies that this route is
also active in mammalian cells (112).

Exosome

The study of mRNA degradation using in vitro systems has
shown that 30-50 degradation of mRNAs, including those con-
taining AREs, requires a large multi-protein complex called
the exosome [reviewed in (113)]. Mukherjee et al. (111) sug-
gested that certain subunits of the human exosome specifically
bind to AREs causing an ARE-dependent degradation of
mRNAs. Other studies have shown that several ARE-BPs,
for instance TTP and KSRP, are physically associated
in vitro with the exosome and are required so that the exosome
can preferentially degrade ARE-containing mRNAs (90,93).
Also TTP can stimulate the deadenylase [poly(A)
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ribonuclease] (PARN) in cell extracts and this confers a spe-
cificity towards ARE-containing mRNAs (85). In cytoplasmic
extracts, the ARE-BP KSRP simultaneously associates with
PARN and the exosome (93). These results imply that both
TTP and KSRP can recruit to a mRNA the cellular factors
necessary for both deadenylation and degradation via the exo-
some, thereby ensuring a rapid and preferential elimination of
the transcript.

P-bodies

P-bodies, first identified in yeast (114), contain mRNA decap-
ping (Dcp1 and Dcp2) and degradation (Xrn1) factors. In
mammalian cells, these same factors are found in GW bodies
(112,115–117). It has been recently shown that, in mammalian
cells, stress granules and P-bodies are dynamically linked and
that mRNAs can be transferred between these two entities
(112,118). Stress granules, that accumulate in response to
particular physiological signals sequester untranslated
mRNAs [reviewed in (119)] but they do not contain decapping
factors (112). Therefore, stress granules act as an anti-chamber
to P-bodies and hold mRNA in a translationally repressed state
awaiting the decision to either recycle the mRNA towards
polysomes or direct it to P-bodies for degradation
(112,118). Several ARE-BPs are associated with either stress
granules or P-bodies. TIA-1 and TIAR are an integral part of
stress granules and HuR and TTP can be recruited to both
[reviewed in (119)]. Interestingly, the translational repression
of TNF-a and Cox-2 mRNAs has been correlated with TIA-1
expression (Table 2) (120,121). Furthermore, in HeLa cell
extracts, the presence of an ARE in the mRNA stimulates
decapping (122) and the proteins TTP and BRF1 are associ-
ated with decapping enzymes (91).

Coupling of ARE-dependent degradation and
translation

The question of whether ARE-dependent degradation of
mRNAs and translation are coupled is still controversial. Evid-
ence both for and against this coupling have been reported for a
number of cellular models. In some cases inhibiting translation
of reporter RNAs containing the GM–CSF or c-fos ARE either
pharmacologically [(28,123), reviewed in (124)] or
by mutating the initiation codons (125) or inserting stable
secondary structures (123,126,127), stabilized the mRNA.
Also the deadenylation kinetics conferred by c-fos ARE was
modified by blocking translation with a stable stem–loop struc-
ture (29). In contrast, in other studies inhibiting the translation
of mRNAs containing c-fos, GM–CSF or c-jun AREs by intro-
ducing a stem–loop structure or an Iron Responsive Element in
the 50-UTR did not stabilize the mRNA (29,41,128). In addi-
tion to mRNAs, snRNA can also be targeted for rapid
deadenylation by an ARE-dependent process (129), which
implicitly supports the model that ARE-dependent deadenyla-
tion and decay does not require translation of the host mRNA.

It is now known that stress granules and P-bodies are affec-
ted by drugs that inhibit translation; cycloheximide and emet-
ine that ‘freeze’ polysomes cause disassembly of stress
granules and P-bodies whereas puromycin that dismantles
polysomes promotes the assembly of stress granules
(112,130). This indicates a need to re-evaluate at least
some of the earlier data using drugs to inhibit translation.

TRANSLATIONAL REGULATION BY AREs AND
ARE-BPs

In addition to a reduction in protein synthesis consequential to
mRNA degradation, AREs can also repress the translation of
host mRNA (Table 2). The 30-UTR of Interferon-b, that con-
tains an ARE, strongly inhibits the translation not only of the
endogenous mRNA but also of reporter mRNAs containing
this region in both rabbit reticulocyte lysates and in Xenopus
oocytes (131,132). Injection of mRNAs into Xenopus oocytes,
a biological model in which mRNAs are particularly stable,
was also used to show that the AREs of GM–CSF and c-fos
mRNAs inhibit the translation of the host mRNA in the
absence of mRNA degradation (133). Another example of
an ARE-containing mRNA that is regulated by many pro-
cesses (stability, deadenylation and translational initiation)
is that of TNF-a (134–136). In resting macrophages TNF-a
mRNA is in a translationally inactive form (136). In response
to endotoxins, the translational repression of a reporter mRNA
containing the TNF-a 30-UTR is relieved and expression of the
reporter protein increases importantly; this is not due to an
increase in the cytoplasmic concentration of the mRNA (135).
Similarly, the translational repression conferred on a reporter
mRNA by the AU-rich 30-UTR of p53 mRNA is relieved by
UV-irradiation (137). Finally, Grosset et al. (138) showed,
also by using a reporter mRNA, that the ARE of GM–CSF
mRNA can repress translation independently of the effect of
this element on mRNA stability.

Among the various studies of ARE-BPs only a few have
addressed the question of their role in the translational regu-
lation of ARE-containing mRNAs (Table 2). The protein TIA-
1 has been described as a translational inhibitor of some labile
mRNAs such as TNF-a and Cox-2 (120,121). Using mRNAs
identified in a large scale screen for TIA-1 associated mRNA,
Lopez de Silanes et al. (40) extended this role for TIA-1 as a
translational repressor to a large number of mRNAs. However,
in this study the TIA-1-binding sites within the target mRNAs
did not contain AUUUA motifs.

In contrast, Hel-N1 has been shown to activate translation of
GLUT1 and NF-M mRNAs in 3T3L1 and hNT2 cells, respect-
ively (72,73). Recently, HuR was reported to act as both a
positive and a negative translational regulator. In carcinoma
cells UV-irradiation (137) or expression of the tumour sup-
pressor Von Hippel–Lindau (VHL) gene (99) causes an
increase in HuR expression and binding to the 30-UTR that
are positively correlated with an increased translation (poly-
some recruitment or pulse-chase assay) of p53 mRNA. In
contrast, over expression of HuR in stressed macrophages
inhibited the polysome recruitment of TNF-a and Cox-2
(139) (Table 2). Interestingly, HuR induced changes in the
expression of p53 (99,137) occurred in the absence of any
change in the abundance of the corresponding mRNA whereas
for TNF-a and Cox-2 mRNAs opposing changes in mRNA
stability and translation were observed (139). It should be
noted that in all these studies particular experimental condi-
tions were used: UV-induced stress (137); over expression of
the von Hippel–Lindau tumour suppressor protein (99);
induced inflammatory response in macrophages (139).

The inhibitory effects of ARE-BPs on mRNA translation
could be mediated by two mechanisms. In oocytes and early
embryos a direct correlation has been established between the
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adenylation status of a mRNA and its presence in polysomes;
the polyadenylated mRNAs being translated more efficiently
[reviewed in (140)]. This relationship has also been observed
in many lower and higher eukaryotes [reviewed in (141)]. Cap-
dependent recruitment of ribosomes is mediated by the trans-
lation initiation complex eIF4F composed of several proteins
including eIF4E and eIF4G. The cap structure (m7GpppX),
present at the 50 end of eukaryotic cellular mRNAs is recog-
nised by eIF4E. eIF4G acts as a scaffold protein that binds both
eIF4E, at the 50 extremity of the mRNA, and the poly(A)
binding protein1 (PABP1) associated with the 30 poly(A)
tail [reviewed in (142)]. The association between eIF4E/
eIF4G and the 50 cap is stabilized when eIF4G also binds
to PABP1 (143,144). Therefore, ARE-dependent inhibition
of translation could ensue from the deadenylation of the target
mRNA leading to a loss of PABP1 bound to the mRNA which,
in turn, would destabilise the eIF4E-cap interaction. A variant
of this model would be that the ARE-BP binds to eIF4E,
competitively inhibiting the interaction of eIF4E with
eIF4G. Such mechanisms have been discussed for Xenopus
maskin and Drosophila Cup [reviewed in (145)], two proteins
that are indirectly recruited to the 30-UTR of specific mRNAs.
Although no direct interaction between an ARE-BP and eIF4E
has been reported to date, it is intriguing that AUF1 is part of a
multimeric complex containing eIF4G (50).

An alternative mechanism brings into play stress granules.
As described above stress granules contain untranslated
mRNAs and are associated with several ARE-BPs. This sug-
gests a route for translational arrest by an ARE-BP mediated
targeting of specific mRNAs into stress granules. However, in
the examples given above translation is repressed in the resting
state and activated after a cellular stimulus that can be assim-
ilated to an environmental stress. Therefore, it is necessary to
posit that at least some ARE-containing mRNAs would be
constitutively targeted to stress granules. Relief of TNF-a
(135) or p53 (137) translational arrest by endotoxins or
UV-irradiation, respectively would then correspond to an
export of these mRNAs out of the stress granules. In this
context it is interesting to note that stress-induced nascent
transcripts are excluded from stress granules in both plants
(146) and mammalian cells (119).

ARE THERE UNIFYING PRINCIPLES?

Despite the large amount of published work on AREs and
ARE-BPs since the initial description of AREs in 1986
(23), we are still largely in the dark as to the precise molecular
pathways to which these cis-acting sequence elements target
mRNAs for degradation and/or translational arrest. This is not
particular to ARE-dependent degradation and we would posit
that part of the difficulty in describing these molecular
machines is inherent in their nature. It is only recently that
molecular data on the characteristics of localised factories
implicated in the regulation of gene expression have been
obtained. This is true for both cytoplasmic and nuclear pro-
cesses. The co-localization of transcribed genes in the nucleus
is now being documented (147) and the nuclear processing
(capping, splicing and polyadenylation) of pre-mRNAs is also
coordinated within particles [reviewed in (148,149)]. We have
already described the cytoplasmic stress granules and P-bodies

that respectively sequester mRNAs in response to particular
physiological signals or achieve particular processing events.
Several ARE-BPs are associated with the exosome, stress
granules and P-bodies (see above).

One very plausible role for ARE-BPs is to act as traffic
markers that channel targeted mRNAs into specific pathways.
This is easy to envisage for ARE-BPs implicated in enhancing
the degradation or imposing a translational arrest on an
mRNA. These observed effects could be two steps in the
same pathway, first sequestering the mRNA away from the
translation machinery and then shuttling it into a degradation
pathway. The transfer of mRNAs into stress granules and then
to P-bodies is precisely such a pathway. If control was exerted
between these two steps then some mRNAs could be transla-
tionally arrested but not degraded. Cox-2 mRNA is an
example of this (150).

Several models by which an ARE-BP could enhance protein
expression can also be envisaged. Evidently, if the binding of
the ARE-BP stabilizes the target mRNA then an increase in the
synthesis of the encoded protein will probably ensue.
Enhanced translation could also result from relieving repres-
sion. Consider a mRNA that is translationally repressed but not
degraded. If following a particular cellular stimulus the mRNA
leaves the inhibitory complex and enters into polysomes,
translation will increase. For some mRNAs stress granules
can achieve this task (112).

The functional analyses of ARE-BPs both in vitro and
in vivo have led to the identification of a large number of
target mRNAs (Tables 1 and 2). Many of the in vitro experi-
ments are performed using the same cellular models. Hence
the large number of ARE-BPs binding to the same mRNA
suggests that many redundant factors have evolved which,
although not impossible, is rather surprising. We favour an
alternative hypothesis that, in fact, these proteins are not
redundant but only appear to be so due the experimental
design(s) that are feasible at present. As mentioned above,
ARE-BPs are probably integral components of large func-
tional complexes. In such complexes they will interact with
some but probably not all of the other components. The func-
tions of many regulatory proteins have been studied by either
over expressing or depleting the factor(s) of interest, both of
which can cause several ‘unnatural’ consequences. For
instance, certain proteins when over expressed act as dominant
negative mutants. However, such considerations should not be
taken to exclude the possibility that in a physiological normal
situation any one ARE-containing mRNA can associate with
more than one ARE-BP. Indeed, several examples have
already been discussed. Furthermore, the association of an
ARE with several ARE-BP with either complementary or
antagonistic consequences would allow targeting of these
mRNA into different processing pathways. Furthermore, sev-
eral ARE-BPs could combine together in a single complex and
cooperatively define the functional outcome for a mRNA.

FUTURE DIRECTIONS

It is now obvious that further characterization of ARE-BPs and
their functions will require a description of the cellular com-
plexes in which they are normally found. Furthermore, the
composition of these RNA-containing complexes is probably
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not static but may be cell cycle dependent, change with loc-
alization of the associated mRNA or as a function of external
stimuli. This adds a temporal aspect to ARE-dependent
regulation. Accordingly, a first necessary step towards under-
standing ARE-dependent regulation is the isolation of ribo-
nucleoprotein complexes containing ARE-BPs from
unmodified cells. One interesting study in this vein is that
of Lal et al. (48) who showed that HuR and AUF1 can sim-
ultaneously bind to many mRNAs in the nucleus but that they
are associated with distinct mRNA populations in the cyto-
plasm. This brings to light a second facet of ARE-BPs that has
not been systematically considered; the intracellular localiza-
tion of these proteins. For the majority of ARE-BPs whose
localization has been studied, this is predominantly nuclear.
This is the case for HuR and AUF1 whose most well described
functions are, respectively, to stabilize and destabilize
mRNAs, presumably in the cytoplasm. In unperturbed cells
how is this achieved? Do these ARE-BPs piggy–back on
targeted mRNAs that are predestined to be stable or rapidly
degraded and how is this destiny defined in the nucleus?
Intriguingly, a ‘nuclear history’ is required for one of the
AUF1 isoforms to exert its cytoplasmic function (151). Loc-
alization of ARE-BPs within the cytoplasm should also be
high on the priority list for future research. HuR, TIA-1,
TIAR and TTP are already identified as components of stress
granules (112,152) and the interaction between stress granules
and P-bodies is promoted by TTP and BRF1 (112). A complete
study of stress granule and P-body dynamics, associated with
precise measurements of ARE-dependent mRNA translation,
deadenylation and decay and the localization of the related
ARE-BPs is now possible and should yield results of high
interest.

From this survey it is apparent that many questions remain
to be answered and, as indicated above, light will probably
only start to be shed by the conjunction of complementary
approaches. For instance, highly specific biochemical analyses
of the composition of ribonucleoprotein complexes containing
ARE-BPs and analysis of the binding affinities of ARE-BPs
for the various target AREs would certainly yield data on any
redundant, antagonistic or cooperative binding between ARE
and BPs. Finally, in situ localization methods coupled with the
biochemical data on the composition of ARE-BP complexes
and micro-array profiling of expressed and translated mRNAs
would provide the data to develop a more overall functional
map of the pathways into which AREs and the associated
ARE-BPs direct specific mRNAs either constitutively or in
response to particular cellular events or external stimuli.
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