
HAL Id: inserm-00291198
https://inserm.hal.science/inserm-00291198

Submitted on 22 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Moment-based approaches in imaging part 2: invariance.
Huazhong Shu, Limin M. Luo, Jean-Louis Coatrieux

To cite this version:
Huazhong Shu, Limin M. Luo, Jean-Louis Coatrieux. Moment-based approaches in imaging part
2: invariance.. IEEE Engineering in Medicine and Biology Magazine, 2008, 27 (1), pp.81-3.
�10.1109/MEMB.2007.911462�. �inserm-00291198�

https://inserm.hal.science/inserm-00291198
https://hal.archives-ouvertes.fr


Moment-based Approaches in Image.  

Part 2: Invariance 

 

Huazhong Shu, Limin Luo, Jean Louis Coatrieux 
 
 
The several moment families have been reviewed in a first paper [1]. A classification 
was proposed in order to get a better understanding of their relations. More attention 
was given to orthogonal moments (in particular Legendre, Zernike, Tchebichef, 
Krawtchouk, Racah, dual Hahn). Important properties for computer vision 
applications were just sketched, among which invariance and robustness to noise. 
These properties may drive the choice of moments when addressing a specific 
problem. A short, thus non-exhaustive, review of the literature on these issues is 
proposed in this second paper.  
 

Geometric Invariants 
 

Theses invariants are perhaps the most critical for many applications, and 
certainly in medical imaging, when the objects are observed at different time instants 
and/or from different viewpoints. Translation, rotation and scaling of rigid objects are 
first of concern. If in some cases they are applied to 2-D images, i.e. tomographic 
slices or projections, indexed or not by time, the capability to extend moment 
invariants to 3-D is highly relevant. Geometric invariance has also a major interest in 
multimodal registration for diagnosis purpose or computer assisted therapy. Another 
key problem consists to deal with deformable objects. Elastic transformations are then 
required to estimate and compensate deformations that may be small or large. 
Moments may not be able to offer a solution to all these problems but they can 
provide some answers. 

The pioneering impulse on the construction of moment invariants was given by 
Hu in the 1960s [2]. Based on the theories of invariant algebra, Hu derived seven 
moment invariants, computed from central moments through order three, that are 
independent to image scale, translation and rotation. Since then, many researchers 
have revisited his formulation and have proposed improvements and generalizations 
[3], [4]. Li [5] and Wong [6] reported moment invariants up to the orders nine and 
five, respectively. A general framework for constructing a large number of moment 
invariants was more recently proposed by Liu and Zhang [7]. Sadjadi and Hall [8] 
extended Hu’s moment invariants to 3-D objects, based on two absolute moment 
invariants, with respect to translation, rotation and scale. Moment invariants dealing 
with a projective geometry has also been described by Suk and Flusser [9]. 
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Rotation invariance has been extensively investigated in the past decades. Reddi 
[10] introduced the concept of rotational moments that are invariant under image 
rotation. Another set of rotation invariant moment functions, known as complex 
moments, was presented by Abu-Mostafa and Psaltis [11]. Teague [12] used the 
complex Zernike polynomials as the moment basis set to define Zernike moments. 
The separation of radial and angular dependence of Zernike polynomials makes them 
very attractive to extract the invariant features at random orientations. Moreover, the 
orthogonality property of Zernike polynomials avoids any redundancy between 
moments of different orders. Teh and Chin [13] presented a modification of Teague’s 
Zernike moments based on pseudo-Zernike polynomials with similar properties. 
Generalized pseudo-Zernike moments have been reported in [14] for image 
description. Using the discrete Tchebichef polynomials and circular harmonic 
function as kernel, Mukundan [15] derived a set of radial Tchebichef moments 
invariant to image rotation. Other kinds of orthogonal moments that are invariant to 
image rotation include Fourier-Mellin moments [16], Chebyshev-Fourier moments 
[17], and radial harmonic Fourier [18]. 

The problem of scale and translation invariance of the orthogonal moments has 
been recently addressed. Chong et al. [19] presented a method to establish a set of 
scale invariants of pseudo-Zernike moments. Their approach was then used to 
construct both translation and scale invariants of Legendre moments [20]. Translation 
invariance of Zernike moments was also investigated by the same research group 
[21]. Scale and translation invariants of Tchebichef moments have been constructed 
by Zhu et al. [22]. It was shown that the methods developed in [19]-[22] have better 
performance than traditional approaches such as image normalization method and 
indirect method. 

Some attention has been paid to the issue of completeness for moment invariants. 
Flusser et al. [23], [24] proposed a complete and independent set of rotation invariants 
by normalizing the complex moments. The construction of a complete set of 
similarity invariants (translation, rotation and scale) using linear combinations of 
complex moments has been studied by Ghorbel et al. [25]. It was shown that Flusser’s 
set of invariants corresponds to a particular case of the similarity invariants presented 
in [25]. 

 

Convolution invariance and robustness to noise 
 
   Although more relevant in computer vision with variable scene illuminations than 
in medical imaging, uniform changes of image intensity function, simple to deal with, 
must be considered. Maitra [27] made Hu’s invariants independent to contrast change. 
Wang and Healey [28] proposed illumination invariants that are particularly suitable 
for texture classification. However, the most important class of degradations is image 
blurring. Blurring may be caused by a number of factors, like out-of-focus cameras, 
small uncontrolled motions of the sensing device or the objects. If its impact remains 
low in medical imaging at large, it has nevertheless a high significance in optical 
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imaging, with major applications in small animal imaging and biology [29]. Assuming 
that the imaging system is linear and space invariant, blurring can be described by a 
convolution of the original image with a point spread function (PSF). Since in most 
practical situations the PSF is unknown, finding a set of invariants that are not 
affected by blurring is a key problem in image analysis. 

The pioneering work on this subject was performed by Flusser and Suk [30], [31] 
who derived moment invariants to convolution with any centrosymmetric PSF. Other 
sets of blur invariants were proposed for some particular kinds of PSF such as 
axisymmetric blur [32] and motion blur [33], [34]. 

If moment invariants based on the different moment types provide full invariance 
properties under noise-free condition, these properties may be affected in the presence 
of noise. Noise is of course inherent to any sensing devices and robustness to noise is 
highly desirable. However, multiple noise sources (i.e. sensing noise, reconstruction 
noise, etc.), with different features and non stationary properties, may corrupt the 
images. It was shown [13] that higher order moments are more sensitive to image 
noise than lower order moments, and that Zernike and pseudo-Zernike moments 
outperform the geometric moments and complex moments. Recent works [35], [36] 
have shown that the discrete orthogonal moments including Krawtchouk, Racah, and 
dual Hahn moments are very robust to noise when compared to the continuous 
orthogonal moments. 

Table 1 summarizes the invariance properties and robustness to noise of different 
kinds of moments. 

 

Combined invariants 
Another important problem to address is when the images are subject to geometric 

transforms, blurring and noise degradations. In other words, multiple invariances have 
to be dealt with. A solution consists to sequentially address these problems. Another, a 
more elegant way, aims at simultaneously handling them. A few attempts have been 
devoted to such invariants, among which the most important contributions have been 
brought by Flusser and his group. Although initially examined in 2-D only (blur-shift 
or blur-rotation invariants), they were more recently extended to 3-D. For instance, 
Suk and Flusser [26] proposed a solution to deal simultaneously with affine 
transformation and blur (with centrosymmetric PSF) for pattern recognition, template 
matching and image registration. Flusser and Zivotá [37] suggested a set of combined 
moments which are invariant to both rotation and blurring. Based on the complex 
moments, Liu and Zhang [38] derived a subset of moment features that are not 
affected by image blurring and geometric transformation such as translation, scale and 
rotation. All these works however point out the problems related to the number of 
invariants to be selected, the choice of the region of interest size where moments are 
computed and the dependence with object features (i.e. symmetry). 
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Conclusion 
 
This short survey of moment invariants points out that they bring interesting clues. 
Moments offer a sound theoretical framework for solving the generic problems 
encountered in many imaging applications. The diverse families of orthogonal 
moments provide the flexibility that may be required to face a particular target. They 
have however to satisfy the time computation constraints that are inherent to many 
applications. The next paper will show how moments can be approximated and their 
computation be accelerated. 
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   Property 

Type 

Translation 
invariance 

Rotation 
invariance 

Scale 
invariance 

Convolution 
Invariance 

Robustness 
to noise 

GM Direct Indirect Direct Direct Low 
CM Direct Direct Direct Direct Low 
RM Indirect Direct Direct Direct Low 
LM Direct Indirect Direct Indirect Low 
ZM Direct Direct Direct Indirect High 
PZM Indirect Direct Direct Indirect High 
CFM Indirect Direct Direct Indirect High 
GPZM Indirect Direct Indirect Indirect High 
TM Direct Indirect Direct Indirect High 
KM Direct Indirect Indirect Indirect Very high 
RAM Direct Indirect Indirect Indirect Very high 
DHM Direct Indirect Indirect Indirect Very high 

 
Table 1. A synthetic view on invariance and robustness to noise with [1]: 
GM: Geometric Moments; CM: Complex moments; RM: Rotational Moments; 
OM: Orthogonal Moments; LM: Legendre Moments; ZM: Zernike Moments; 
PZM: Pseudo-Zernike Moments; CFM: Chebyshev-Fourier Moments; 
GPZM: Generalized pseudo-Zernike Moments; TM: Tchebichef Moments; 
KM: Krawtchouk Moments; RAM: Racah Moments; DHM: Dual Hahn Moments 
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