
HAL Id: inserm-00291197
https://inserm.hal.science/inserm-00291197

Submitted on 22 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Moment-based approaches in imaging part 3:
computational considerations.

Huazhong Shu, Limin M. Luo, Jean-Louis Coatrieux

To cite this version:
Huazhong Shu, Limin M. Luo, Jean-Louis Coatrieux. Moment-based approaches in imaging part 3:
computational considerations.. IEEE Engineering in Medicine and Biology Magazine, 2008, 27 (3),
pp.89-91. �10.1109/MEMB.2008.918690�. �inserm-00291197�

https://inserm.hal.science/inserm-00291197
https://hal.archives-ouvertes.fr


Moment-based Approaches in Image.  

Part 3: Computational considerations 

Huazhong Shu, Limin Luo, Jean Louis Coatrieux 
 
Moment functions have been defined in [1] and important properties such as 
invariance and robustness to noise have been reviewed in the second paper [2]. Before 
addressing applications of moments, another feature has to be discussed, the 
computational load. The complexity of image analysis methods, in other words the 
number of operations they require to achieve a given task, iteratively or not, may lead 
to practical limitations when dealing with large data sets (2D or 3D image sequences) 
and time constraints. This issue is also of concern for moments in particular when 
high orders have to be computed. Special attention must therefore be paid to fast 
computation. The continuous-to-discrete transform may also affect the analytical 
properties we must preserve (i.e. invariance, orthogonality, etc.) by introducing 
numerical errors. The problem of accurate computation of moments should thus be 
addressed. These two aspects are examined in this third paper. 
 

Accurate computation 
Most of the moment functions are defined in continuous form. The double integration 
(refer to [1]) is usually approximated by a double summation. In order to increase the 
accuracy, Liao and Pawlak [3] proposed an improved version of the approximation 
formula for geometric and Legendre moments, further applied to Zernike moments 
[4]. More recently, Pawlak and his collaborators reported a novel scheme for high 
precision computation of Zernike moments in polar coordinate system [5]. Kotoulas 
and Andreadis [6] used a piecewise polynomial interpolation to get a more precise 
calculation of geometric moments. Jacob et al. [7] developed a method for the exact 
computation of geometric moments of a region bounded by a curve represented by 
smooth basis functions such as B-splines and other scaling functions. Sheynin and 
Tuzikov [8] proposed an algorithm for computing the geometric moments of a 2D 
object described by a spline curve boundary. In their method, the explicit formulae 
were derived. 
   It is worth noting that discrete moments such as Tchebichef, Krawtchouk, Racah 
and dual Hahn moments, do not suffer the problem of discrete approximation in their 
numerical implementation. 
 

Fast algorithms 
A significantly amount of computation is required to generate the moment values 
from images. Several options can be considered in order to accelerate the process by: 
(i) proposing new theoretical formulations; (ii) reducing the complexity; (iii) 
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designing innovative implementations. The first two will be mainly addressed in this 
paper. Because the problem of fast computation of the geometric moments has been 
extensively investigated, one way for efficiently computing other kinds of moments 
such as Legendre and Zernike moments is to express them as a linear combination of 
geometric moments. Such a strategy was adopted by several research groups [6], 
[9]-[11]. It should be noted that most of the fast algorithms were focused on the use of 
the polynomial properties. 
 
Fast computation of geometric moments 
 

Many algorithms have been reported in the literature, either generic enough to 
deal with all types of images and object descriptions, or specific to well-defined 
situations (binary data or piecewise boundaries for instance). In an early work, 
Hatamian [12] used a causal spatial filter only requiring O(N2) additions for 2-D 
images with size N×N. Zakaria et al. [13] proposed the so-called delta method for 
binary images. This method is suitable for images represented by y-lines, and was 
later improved by Dai et al. [14] and Li [15]. Note that Li’s algorithm needs only 
O(N) additions and multiplications for a convex object. Some fast algorithms make 
use of corner points of the object boundary [16]-[18]. Such approaches, limited to 
binary images, require O(K) additions and multiplications where K denotes the 
number of corner points. By extending Jiang’s algorithm, Li [19] suggested a fast 
algorithm for computing the 3-D image moments of polyhedra. Sheynin and Tuzikov 
[20] derived explicit formulae for this problem. Tuzikov et al. [21] presented a general 
and efficient approach for calculating surface moments of arbitrary-dimensional 
polytopes. 

Another class of fast algorithms is based on the use of Green’s theorem. Green’s 
theorem evaluates the double integral over a region by a single integration along the 
boundary of the region. Li and Shen [22] described a fast method which requires O(N) 
additions and multiplications. Their method, although efficient, relies on an 
approximation of Green’s theorem. Using a discrete version of Green’s theorem, 
Philips [23] suggested an exact calculation of image moments, less efficient however. 
Based on a new version of the discrete Green’s theorem, Yang and Albregtsen [24] 
proposed a novel and exact algorithm for binary and gray-level images. Their method 
was then extended to 3-D moment computation [25]. Spiliotis and Mertzios [26] 
developed an efficient solution for binary images represented by blocks, later 
improved by Flusser [27] and generalized for gray-level images by Chung and Chen 
[28]. Local geometric moment computation has been dealt with by Martinez and 
Thomas [29]. Chung et al. [30] proposed an efficient computation of geometric 
moments based on the discrete cosine transform. 

Most of the above mentioned algorithms were designed for cascade system 
(parallel implementation being addressed by Chen [31]). It should be pointed out that 
the solutions proposed by Chan et al. [32] and Liu et al. [33] only require additions for 
the fast computation of respectively 2-D and 3-D gray level image moments: they can 
also be implemented in a parallel mode. 
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Fast computation of orthogonal moments 
 

As mentioned before, one way for computing the orthogonal moments is to 
express them as a linear combination of the geometric moments, and then to benefit of 
the previous fast algorithms. Another approach relies on the properties of orthogonal 
polynomials. Mukundan and Ramakrishnan [34] first used a Green’s theorem, and 
then proposed a recursive scheme for computing the Legendre and Zernike 
polynomials. Shu et al. [35] derived an improved version for Legendre moments, later 
on extended to 3-D Legendre moments of polyhedra [36] in which the number of 
arithmetic operations depends only on I and J, where I and J represent respectively 
the boundary surface number and edge number of the polyhedra. Legendre moments 
of objects represented by y-lines have also been addressed by Zhou et al. [37]. Wang 
and Wang [38] described a recursive algorithm for the fast computation of the inverse 
Legendre moments. 

Zernike moments have been extensively investigated as well in the past decades. 
Mukundan and Ramakrishnan [34] proposed a square to circular image transformation 
to simplify their computation. Belkasim et al. [39] used the radial and angular 
expansions of Zernike polynomials to speed up the algorithm. A recursive property of 
Zernike polynomials, where higher order polynomials are expressed as function of 
lower order ones, allowed Gu et al. [40] suggesting an iterative method. The reader 
can refer to a recent comparative analysis provided by Chong et al. [41]. Additional 
contributions have been reported since then. Wee et al. [42] suggested a hybrid 
algorithm to derive the subset of Zernike moments. Using the symmetry or 
anti-symmetry property of Zernike basis functions, Hwang and Kim [43] proposed a 
fast and accurate method. Chong et al. [44] developed a p-recursive method which 
uses a combination of lower order polynomials to derive higher order polynomials 
with same repetition q to improve the computation efficiency. 

Recently, attention has also been paid to the fast computation of other orthogonal 
moments. Based on the symmetry property of Tchebichef polynomials, Mukundan 
[45] discussed the way to improve the computation of Tchebichef moments. Using 
Clenshaw’s recurrence formula, Wang and Wang [46] proposed a recursive algorithm 
for computing the Tchebichef moments suitable for VLSI implementation. Kotoulas 
and Andreadis [47] presented a novel architecture suited for Tchebichef moments. 
Nakagaki and Mukundan [48] developed an algorithm for the fast computation of 4×4 
discrete Tchebichef transform blocks. 

Conclusion 
An active research is devoted to improve both the accuracy and the efficiency of the 
computation of moments. The many situations to be handled according to the nature 
of the images, the object descriptions and the specific objectives that are pursued, 
make difficult to provide an exhaustive view and to precisely set the last 
achievements in terms of number of operations. As it has been shown, multiple 
options are explored for reducing their computational complexity and designing sound 
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architectures. There is no doubt that faster algorithms are still needed to address more 
and more demanding applications in real-time environment, applications that will be 
surveyed in the next paper of this series. 
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