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BMP signaling pathway plays multiple roles during gastrointestinal tract development
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The Bone Morphogenetic Protein (BMP) signaling pathway plays an essential role during gastrointestinal (GI) tract development in vertebrates. In the present study, we use an antibody that recognizes the phosphorylated and activated form of Smad1, 5 and 8 to examine (by immunohistochemistry) the endogenous patterns of BMP signaling pathway activation in the developing GI tract. We show that the endogenous BMP signaling pathway is activated in the mesoderm, the endoderm and the enteric nervous system (ENS) of the developing chick GI tract, and is more widespread than BMP ligand expression patterns. Using an avian specific retroviral misexpression technique to activate or inhibit BMP signaling pathway activity in the mesoderm of the gut, we show that BMP activity is required to the pattern, the development and the differentiation of all three tissue types of the gut: mesoderm (that forms the visceral smooth muscle), endoderm (that forms the epithelium), and ectoderm (that forms the ENS). These results demonstrate that BMP signaling is activated in all the tissue layers of the GI tract during the development and plays a role during interactions and reciprocal communications of these tissue layers.

INTRODUCTION

The gastrointestinal (GI) tract is a remarkably complex, three dimensional, specialized and vital organ system derived from a simple tubal structure. The vertebrate GI tract includes the lumenal digestive system of the esophagus, stomach, intestines, and colon (which we will designate as "gut") and the GI tract derivatives -thyroid, lungs, liver, and pancreas. The gut is composed of the three germ layers -mesoderm (which forms the visceral smooth muscle layer), endoderm (which forms the epithelial lining), and ectoderm (which includes the enteric nervous system). The basic function of the GI tract is to digest food, absorb nutriments and water and to eliminate processed lumenal contents. All these functions are assured by different levels and layers of the GI tract that for its need specific regionalization and specialization [START_REF] Roberts | Molecular mechanisms of development of the gastrointestinal tract[END_REF].

Originally, the gut develops from two invaginations at the anterior (anterior intestinal portal, AIP) and posterior (caudal intestinal portal, CIP) end of the embryo, which elongate and fuse to form a straight tube. The primitive gut tube is initially patterned into three broad domains along its anterior-posterior (AP) axis: the fore-, mid-and hindgut. As they develop, each region of the gut is characterized by unique mesodermal and endodermal morphology, which can easily be discerned by gross and microscopic examination (de Santa [START_REF] De | Development and differentiation of the intestinal epithelium[END_REF]. These tissues show regionally specific differentiation along the AP axis designating the pharynx, esophagus, and stomach (the foregut), small intestines (the midgut), and large intestines (hindgut). Stomach development illustrates this acquisition of highly specialized features. In the chick, the stomach is anatomically divided in 2 structures. The gizzard (muscular stomach) has a thick layer of smooth muscle that facilitates mechanical disruption of food. The proventriculus (glandular stomach), anterior to the gizzard, has a thick epithelial layer with specialized cells for chemical disruption of food, but a very thin smooth muscle layer [START_REF] Roberts | Molecular mechanisms of development of the gastrointestinal tract[END_REF]. The intestines are specialized in digestion and absorption and show modest development of visceral smooth muscle layer. This regionalization that is maintained throughout life is essential and necessary for the normal adult gut function (de Santa Barbara et al., 2002a).

The GI tract must move luminal contents through the gut via a process of propulsion termed peristalsis. This process requires innervation of the visceral smooth muscle layers, which is provided by a specialized set of neural tissue, the enteric nervous system (ENS). The ENS arises from the neural crest cells in the dorsal region of the neural tube [START_REF] Yntema | The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo[END_REF][START_REF] Douarin | The migration of neural crest cells to the wall of the digestive tract in avian embryo[END_REF]. Two specific regions of the neural tube provide the neural crest cells that colonize the vertebrate gut. The vagal neural crest originates from the dorsal neural tube between somite pairs 1-7 and colonizes the entire gut providing most of the ENS (Le [START_REF] Douarin | The migration of neural crest cells to the wall of the digestive tract in avian embryo[END_REF]. This region of neural crest colonizes the gut earliest in development in a craniocaudal gradient. The neural tube caudal to somite pair 28 provides neural crest cells that colonize only the post-umbilical gut (mid-midgut to anus/cloaca). This sacral neural crest colonizes the post-umbilical gut in a caudocranial direction [START_REF] Burns | Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia[END_REF][START_REF] Hearn | Lumbo-sacral neural crest contributes to the avian enteric nervous system independently of vagal neural crest[END_REF][START_REF] Kapur | Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model[END_REF]. After colonization, the ENS is patterned in two concentric rings of ganglia within the radial axis of the gut. The innermost ring is the submucosal plexus (or Meissner's plexus) and signals to the muscularis mucosa and specialized neuroendocrine cells of the epithelium [START_REF] Debas | Neuroendocrine design of the gut[END_REF][START_REF] Bjerknes | Modulation of specific intestinal epithelial progenitors by enteric neurons[END_REF]. The outermost ring, the myenteric plexus (or Auerbach's plexus), lies between the two smooth muscle layers of the gut (longitudinal and circular muscularis).

Finally, the neural crest cells differentiate into subsets of specialized cell types including ganglion cells and glia [START_REF] Young | Enteric neural crest-derived cells: origin, identification, migration, and differentiation[END_REF]. Interactions between visceral mesoderm and ENS are necessary to ensure normal development, but to date have been poorly studied.

Candidate factors for gut development include known pattern formation genes first identified in Drosophila. These include nuclear transcription factors (HOX and NKX factors) and secreted factors (BMP and Hedgehog) [START_REF] Roberts | Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut[END_REF][START_REF] Roberts | Epithelial-mesenchymal signaling during the regionalization of the chick gut[END_REF][START_REF] Smith | Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary[END_REF][START_REF] Ramalho-Santos | Hedgehog signals regulate multiple aspects of gastrointestinal development[END_REF]de Santa Barbara and Roberts, 2002b). Bone morphogenetic proteins (BMP) are secreted signaling molecules that belong to the transforming growth factor β (TGFβ) superfamily. BMP ligands were initially identified as regulators of bone formation [START_REF] Urist | Solubilized and insolubilized bone morphogenetic protein[END_REF], but subsequent analyses have demonstrated that these ligands regulate a spectrum of developmental processes throughout embryogenesis and organogenesis (reviewed [START_REF] Hogan | Bone morphogenetic proteins: multifunctional regulators of vertebrate development[END_REF][START_REF] De | Development and differentiation of the intestinal epithelium[END_REF]). Bmp4 is expressed in the mesoderm of the entire gut sparing the gizzard only [START_REF] Roberts | Epithelial-mesenchymal signaling during the regionalization of the chick gut[END_REF].

When overexpressed, Bmp4 causes a reduction in the thickness of the smooth muscle layer in the stomach demonstrating a regulatory role in gut muscular hypertrophy [START_REF] Roberts | Epithelial-mesenchymal signaling during the regionalization of the chick gut[END_REF]. The homeotic gene Bapx1 is only expressed in the chick gizzard mesoderm and acts as a repressor of Bmp4 expression therefore regulating gizzard smooth muscle growth [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF].

Functional implication of the BMP signaling pathway during gut development was supported by both examination of BMP ligand expression patterns and ectopic manipulation of the BMP pathway components (for review, see de Santa Barbara et al., 2002a). However, these studies did not address or analyze the endogenous BMP pathway activation during gut development. BMP signaling activity is controlled at many levels including ligand transcription, ligand-receptor interactions, and signal transduction [START_REF] Faure | Endogenous patterns of BMP signaling during early chick development[END_REF]. This complexity complicates the molecular dissection of the pathway and specific tissue patterning function. Intracellular mediators Smad1, 5 and 8 transduce BMP2, 4, and 7 signals and are specifically phosphorylated by the same BMP-type I receptors at the last two serine residues in the carboxy-terminal SSVS motif [START_REF] Kretzschmar | The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase[END_REF]. Anti-Phospho-Smad1 (anti-PSmad1) antibodies specifically detect phosphorylated and activated form of Smad1, 5 and 8 and constitute an important tool to measure endogenous cartography of BMP2, BMP4 and BMP7 activation in Xenopus [START_REF] Faure | Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development[END_REF] and chick [START_REF] Faure | Endogenous patterns of BMP signaling during early chick development[END_REF] embryos. The results often can not be predicted from the mRNA or protein expression pattern of the ligands and/or receptors alone [START_REF] Faure | Endogenous patterns of BMP signaling during early chick development[END_REF].

For this reason, we analyzed endogenous BMP pathway activation using the anti-PSmad1 antibodies during gut development and found activation and modulation of the BMP activity in all three tissues of the developing chick gut. Furthermore, using retroviral misexpression techniques, we showed that activation and inhibition of endogenous BMP activity result in multiple defects affecting mesenchyme-smooth muscle, epithelium and enteric nervous system of the gut. All these observations suggest that tightly regulated endogenous BMP activity is present and necessary to ensure normal gut development and differentiation.

RESULTS

Endogenous BMP signaling pathway activation in the chick developing gut

In order to examine BMP signaling activity during GI tract development in chick embryos, we used antibodies that specifically detected phosphorylated and active Smad1, 5 and 8 (referee as PSmad1). These antibodies, which constitute an unambiguous tool to measure activated BMP signaling pathway, were previously used to examine the endogenous pattern of BMP signaling during both Xenopus and chick embryo development [START_REF] Faure | Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development[END_REF][START_REF] Faure | Endogenous patterns of BMP signaling during early chick development[END_REF]. Immunohistochemistry analyses were performed to localize BMP-activated cells in the developing chick guts (Figs. 123). At E7, the chick GI tract is morphologically distinct in the AP axis but remains immature at the histological level. At E7 PSmad1 immunoreactivity was found in the glands of the chick proventriculus (black arrow, Fig. 1B), as well as in the mesoderm near the connection with the esophagus (black arrowhead, Fig. 1B) and in the subserosal ENS of the gizzard (red arrowheads, Fig. 1B; see also red arrowhead in the insert).

PSmad1 reactivity was not detected in the gizzard mesoderm or endoderm at this stage (large black arrows, Fig. 1B). At E7, PSmad1 was broadly localized in the midgut mesoderm that will give rise to the visceral smooth muscle layer (arrowhead, Fig. 1C) as well as in the undifferentiated endoderm (arrow, Fig. 1C). In the E7 hindgut, PSmad1 was detected in a restricted region within the mesoderm (red arrowhead, Fig. 1D), weakly in the presumptive lamina propria (black arrowhead, Fig. 1D) and in the Nerve of Remak (red arrow, Fig. 1D), but not in the endoderm (black arrow, Fig. 1D).

By E11, PSmad1 activity was present in the differentiating gut smooth muscles (red arrows, Fig. 2A,C,E,G). In addition, PSmad1 reactivity was now localized in the gizzard mesenchyme from E8 through to E18 (corresponding to decreased expression of Bapx1 [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF])) (red arrow, Fig. 2C). We also observed that PSmad1 immunoreactive cells were present in clusters of cells in the mesenchyme (black arrowheads, Fig. 2A,C,E,G) that colocalized with HNK-1 positive cells (black arrowheads, Fig. 2B,D,F,H). HNK-1 is an antibody that recognizes an epitope expressed on migratory and post-migratory neural crest cells and has been widely used to detect the ENS in chick tissues [START_REF] Luider | Characterization of HNK-1 antigens during the formation of the avian enteric nervous system[END_REF]. By E10, the ENS is fully patterned into the two plexi [START_REF] Doyle | Enteric nervous system patterning in the avian hindgut[END_REF]. The ENS at E11 is patterned in two concentric rings: inner ring (submucosal plexus) and outer ring (myenteric plexus) (Fig. 2F,H). The exception to this is the stomach, which normally does not contain a submucosal plexus (Fig. 2B,D). We observed that BMP activation was present in the ENS cells (Fig. 2A-H). By E11, PSmad1 immunoreactivity was present at all levels along the AP axis of the gut epithelia (black arrows, Fig. 2A,C,E,G).

Before hatching by E17.5, PSmad1 reactivity was no longer detected in the differentiated visceral smooth muscles, but was present in the lamina propria (red arrows, Fig. 3B,E), ENS cells (arrowheads, Fig. 3D) and intestinal epithelia (Fig. 3A,B,D,E). The PSmad1 staining in the luminal part of the epithelium localizes with the apoptosis process as shown by TUNEL detection (Fig. 3C,F). In agreement with these observations, recently, Haramis et al. demonstrate that autocrine inhibition of BMP signaling pathways in adult intestinal epithelium leads to ectopic crypt formation that could lead to neoplasia [START_REF] Haramis | De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine[END_REF].

These observations highlight the complexity and the dynamic pattern of endogenous BMP activation present in the developing and differentiating gut and suggest multiple roles for BMP signaling during gut development.

Perturbations of the BMP signaling pathway activity in the stomachal mesoderm alter both mesoderm and ENS development

To study the role of BMP signaling pathway during gut development, we took advantage of the naturally occurring spatial expression pattern of the Bmp4 and Bapx1 in the foregutmidgut region. Bapx1 is expressed in the developing gizzard from E2-E10 whereas Bmp4 is not [START_REF] Smith | Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary[END_REF][START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF]. In addition, misexpression techniques demonstrate that ectopic expression of Bapx1 in the gut induces a robust down-regulation of Bmp4 expression [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF]. In these studies, we found that BMP signaling pathway activation reflects these observations (Figs. 1,2). Using the avian specific retroviral expression system, ectopic expression of Bmp4 in the gizzard mesoderm causes abnormal development of the stomach [START_REF] Smith | Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary[END_REF]. The developing gizzard was infected at E1.5 and examined at E9 (Fig. 4). As we previously described and published, viral infection nearly infects only gut mesoderm (data not shown; [START_REF] Roberts | Epithelial-mesenchymal signaling during the regionalization of the chick gut[END_REF][START_REF] Smith | Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary[END_REF]de Santa Barbara and Roberts, 2002b;[START_REF] Moniot | SOX9 specifies the pyloric pyloric sphincter epithelium through mesenchymal-epithelial signals[END_REF]. With ectopic Bmp4 expression in the gizzard, the gizzard mesoderm develops abnormally with focally thin to absent smooth muscle (compare Fig. 4A with control Fig. 4H) and often ectopic cartilage structure is observed (black arrow, Fig. 4B). Using PSmad1 antibodies, we observed ectopic immunoreactivity in the mesenchyme around the metaplasic tissues, but weak activation of the BMP signaling pathway is found in the cartilage (Fig. 4C compare to control Fig. 4I). The normal gizzard ENS pattern at E9 shows small subserosal ganglia (black arrowhead, Fig. 4G).

With ectopic Bmp4 expression, this pattern is perturbed and giant ganglia are often ectopically positioned within the differentiating smooth muscle and submucosa (compare black arrows, Fig. 4D with control Fig. 4G). Using PSmad1 antibodies, we observed strong immunoreactivity in the ENS cells and in the mesenchyme around the ENS ganglia (compare Fig. 4F with control Fig. 4I).

To inhibit BMP activation, we chose to misexpress Bapx1 in the gut mesoderm.

Western-blot analyses using Bapx1-misexpressed proventriculus demonstrated strong downregulation of PSmad1 expression (data not shown). When Bapx1 is ectopically expressed in the developing gut mesoderm either anteriorly in the proventriculus [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF] or posteriorly in the duodenum (Fig. 5), these experiments result in a dramatic gut phenotype (black arrows, Fig. 5D,E). The Bapx1 misexpressed regions develop marked muscular hypertrophy resembling that seen in the gizzard associated with a duodenal stenosis (compare Fig. 5D,E with control Fig. 5A). We found that PSmad1 immunoreactivity was absent in mesoderm and ganglia, but weak endodermal staining was still observed (compare Fig. 5F with control Fig. 5B). The HNK-1 + ganglia are increased in number, abnormally positioned and the normal concentric ring pattern is totally disturbed (compare Fig. 5G with control Fig. 5C and Table 1).

These results show that activation (mediated by ectopic Bmp4 expression) and inhibition (mediated indirectly by ectopic Bapx1 expression) of the endogenous BMP signaling activity result in both mesoderm and ENS defects.

Perturbations of the BMP signaling pathway activity in hindgut mesoderm alter the development of all tissue layers

By E10, Bapx1 expression is also observed in the caudal hindgut mesoderm [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF]. Over-expression of Bapx1 in the developing hindgut earlier in development from E2 results in perturbations of the ENS (Fig. 6). By inhibiting BMP signaling pathway activation in the developing hindgut mesoderm and in the developing Nerve of Remak, we produced a marked reduction (or absence) of ENS ganglia in the hindgut as observed by HNK-1 immunostaining analyses (compare Fig. 6B with control Fig. 6A). This was associated with abnormal morphology of the Nerve of Remak, larger in size or in multiple bundles instead of the usual single bundle (arrows, Fig. 6B). These multiple bundles of the Nerve of Remak resemble that seen normally in the cloacal region [START_REF] Doyle | Enteric nervous system patterning in the avian hindgut[END_REF]. In addition to the neural phenotype, sustained Bapx1 expression in the mesoderm of the hindgut was associated with poor differentiation and proliferation of undifferentiated endoderm resulting in stenosis of the lumen (compare Fig. 6B,D with control Fig. 6A,C). We found that PSmad1 immunoreactivity was absent in mesenchyme and ganglia, but weak endodermal staining was still observed (compare Fig. 6D with control Fig. 6C).

Multiple attempts to directly overexpress Bmp4 in the developing midgut or hindgut resulted in embryonic lethality before E5, and therefore ENS development could not be studied (data not shown). Instead overexpression of Bmp4 was achieved indirectly, by expressing the reverse function of Bapx1 (Bapx1-VP16) that can act as an activator of Bapx1 repressor targets [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF]. We observed changes in epithelial differentiation, with the presence of broader colonic villi in the E14 Bapx1-VP16 expressing hindgut compared to control hindgut (arrows, Fig. 7A with control Fig. 7B). Older survivors (E17) obtained with Bapx1-VP16 expression in the hindgut showed viral infection in a patchy mesodermal distribution and often in the ENS (insert, Fig. 7C). The embryos strongly infected in the hindgut were lethal (as were the Bmp4 overexpressing hindguts, data not shown). The hindguts of these patchy Bapx1-VP16 expressing survivors show abnormalities in the mesoderm and ENS (Fig. 7). In highly expressing foci, the mesodermal cells appear histologically immature and show no smooth muscle differentiation, which should be easily morphologically identifiable by this time (compare Fig. 7C with control Fig. 7D). The Bapx1-VP16 expressing hindguts develop with a decrease in detectable ENS ganglia often showing only small individual cells in the lamina propria or abnormal ganglia in the serosa (Fig. 7C).

In addition, we found that PSmad1 immunoreactivity was present in the ectopic and isolated ENS cells (black arrows, Fig. 7E), and in the area of undifferentiated mesenchyme (red arrowhead, Fig. 7E). In conclusion, we observed that modulation of mesodermal BMP signaling pathway in the hindgut affected all tissues layers: mesenchyme-smooth muscle, ENS, and endoderm-epithelium.

DISCUSSION

Members of the BMP signaling pathway are known to be involved in different aspects of gut development: Bmp4 is critical for development of the gut [START_REF] Roberts | Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut[END_REF][START_REF] Roberts | Epithelial-mesenchymal signaling during the regionalization of the chick gut[END_REF][START_REF] Smith | BMP signalling specifies the pyloric sphincter[END_REF][START_REF] Smith | Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary[END_REF][START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF][START_REF] Moniot | SOX9 specifies the pyloric pyloric sphincter epithelium through mesenchymal-epithelial signals[END_REF], Bmp7 is involved in stomach gland formation [START_REF] Narita | BMPs are necessary for stomach gland formation in the chicken embryo: a study using virally induced BMP-2 and Noggin expression[END_REF], and Bmp2 is involved in the maturation of the enteric neuronal cells in vitro [START_REF] Lo | MASH1 maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells[END_REF][START_REF] Pisano | Postmigratory enteric and sympathetic neural precursors share common, developmentally regulated, responses to BMP2[END_REF]. In this study, we expand our understandings of the BMP signaling pathway role in gut development by detecting the endogenous BMP pathway activation. Our results showed that the BMP pathway is dynamically activated in the different tissue layers of the gut (mesodermmesenchyme, endoderm-epithelium, enteric nervous system) and plays active roles in gut layer interactions.

Role of BMP signaling pathway activity in the gut mesoderm and visceral smooth muscle layer

In this study, we show that activated BMP signaling is present in the all undifferentiated gut mesoderm with the exception of the gizzard mesoderm during the early gut development period (Fig. 1). Using retroviral misexpression techniques, we show that sustained activity via ectopic Bmp4 or indirectly via Bapx1-VP16 expression perturbed patterning and induced mesodermal grown and cell fate change (metaplasia) (Fig. 4, data not shown). We show that inhibiting the BMP signaling pathway activity via ectopic Bapx1 expression leads to hypertrophy of the duodenal mesoderm (Fig. 5).

BMP signaling activity is present during the differentiation of the gut mesoderm into visceral smooth muscle. We show for the first time activity is present in the mesenchyme of the gizzard (Fig. 2). After smooth muscle cell differentiation is complete a pronounced downregulation of BMP pathway activity occurs (Fig. 3). Sustained BMP signaling activity via Bmp4 or Bapx1-VP16 misexpression perturbed the differentiation leaving undifferentiated mesenchyme in place of smooth muscle (Figs. 4,7). These experiments demonstrate that down-regulation of BMP signaling activity may be required for differentiation of the visceral mesoderm into smooth muscle.

These results show that regulation of the BMP signaling pathway activity is required to control pattern formation and correct differentiation of gut mesoderm.

Function of BMP signaling pathway activation in tissue interactions during the gut development and differentiation

We show that BMP signaling pathway is activated in the undifferentiated midgut endoderm during gut development (Figs. 1,2). We also observed that BMP signaling pathway is not activated in the colon endoderm at E7, but is activated at E11 (Figs. 1,2). These findings were not expected given BMP ligand expression which is restricted to the mesoderm at these stages. Mesoderm to endoderm signaling leading to activation of the BMP receptor expressed in the gut endoderm must be occurring (data not shown). The colonic delay in PSmad1 expression can be explained by the presence of Bapx1. Bapx1 is expressed from E7-E10 in the mesoderm of the colon and after its expression is quickly down-regulated [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF]. We took advantages of the pattern expression of Bapx1 in the colon in order to perturb the BMP signaling pathway activity. Sustained Bapx1 expression in the hindgut mesoderm resulted in persistence of undifferentiated endoderm and stenosis of the hindgut lumen (Fig. 6). A similar stenosis phenotype was recently observed with the misexpression of a dominant negative form of LEF1 (DN-LEF1) in the cecal mesoderm [START_REF] Theodosiou | Wnt signaling during development of the gastrointestinal tract[END_REF].

These observations suggest a potential connection between BMP and WNT signaling pathways involving mesodermal-endodermal signaling. Activation of the BMP signaling pathway via Bapx1-VP16 expression in the hindgut mesoderm also affects crypt/villous formation resulting in broader colonic villi (Fig. 7). We show that mesodermal perturbations of BMP activity (with activation or inhibition) in the colon perturb both the mesoderm patterning and/or differentiation and the epithelial development and differentiation (Figs. 6,7). The enteric nervous system (ENS) is closely associated with gut mesoderm and their reciprocal interaction is needed to ensure normal ENS colonization of the gut (Newgreen and Young, 2002a;Newgreen and Young, 2002b). In this study, we observe the activation of the BMP signaling pathway in the developing ENS cells (Figs. 2,3). The morphogen BMP4 is the most likely early signal that can effect ENS pattern formation at migratory stages. Early in gut development, before colonization by the ENS precursors, Bmp4 is the only member of the BMP family expressed in the mesoderm of the gut [START_REF] Roberts | Epithelial-mesenchymal signaling during the regionalization of the chick gut[END_REF]. Bmp4 is expressed before ENS colonization and continues to be expressed in the mesoderm adjacent to the migrating neural crest ENS precursors throughout early ENS patterning (E1.5-10). At later stages (E5-E18), Bmp2 expression is detectable in the mesoderm and the ENS (data not shown), therefore BMP2 may be involved in other aspects of ENS development (differentiation or viability). In fact, BMP2 has been shown to function in the maturation process of enteric neurons in vitro [START_REF] Lo | MASH1 maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells[END_REF][START_REF] Pisano | Postmigratory enteric and sympathetic neural precursors share common, developmentally regulated, responses to BMP2[END_REF]. In addition, receptors for BMP ligands (BMPR Ia, BMPR Ib and BMPR II) are all expressed in the developing gut with expression early in the undifferentiated mesenchyme then, as they become identifiable, expression of at least one receptor is present in the ENS plexi, Nerve of Remak, and developing visceral smooth muscle (data not shown). Inhibition of the BMP signaling pathway activation in the mesoderm of the gut results in a prominent disorganization of the ENS pattern locally in the duodenum (Fig. 5) and distally in the hindgut, suggesting a block of ENS cell migration (data not shown). We also found that sustained expression of Bapx1 in the hindgut mesoderm impairs the colonization of the hindgut by the ENS (Fig. 6). Others have found that inhibition of Bmp4, using Noggin as a BMP inhibitor, results in alterations of the ENS [START_REF] Sukegawa | The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium[END_REF][START_REF] Goldstein | BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system[END_REF]. Chalazonitis et al. have also found aberrancies and increases in neuronal density in both myenteric and submucosal plexuses of the ENS of transgenic mice overexpressing Noggin directed by the neuron-specific enolase promoter [START_REF] Guha | Effects of transgenic overexpression of noggin or BMP-4 on the development and maintenance of cutaneous innervation[END_REF][START_REF] Chalazonitis | Bone morphogenetic protein-2 and -4 limit the number of enteric neurons but promote development of a TrkC-expressing neurotrophin-3-dependent subset[END_REF].

Our studies do not directly address the mechanism by which BMP activation effects ENS development. In the inhibition studies, the anterior pattern alterations of the ENS are always accompanied by muscular hypertrophy, thus the ENS alterations may be secondary to the muscular hypertrophy. It is known that migration of the neural crest is affected by extracellular matrix proteins [START_REF] Perris | Role of the extracellular matrix during neural crest cell migration[END_REF]. The marked increase in the mesodermal tissues may be affecting these proteins and the ENS may not receiving the correct signals for proper migration. In other experimentally manipulated guts, visceral muscle perturbations are associated with ENS patterning alterations. Hedgehog signal appears necessary for normal ENS pattern, either directly or via their effect on gut muscle development [START_REF] Ramalho-Santos | Hedgehog signals regulate multiple aspects of gastrointestinal development[END_REF][START_REF] Fu | Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut[END_REF]. Murine models show marked thinning of the gut smooth muscle but each demonstrate distinct ENS anomalies. These findings support a requirement of mesoderm/muscle signaling to normally pattern the ENS. It is interesting to note that both Shh (in the gut, [START_REF] Roberts | Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut[END_REF]) and Ihh (in other systems, [START_REF] Pathi | Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation[END_REF]) have been shown to be activators of Bmp4 and are expressed in the ganglia (data not shown; [START_REF] Fu | Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut[END_REF]. Further studies in which muscular hypertrophy is induced through other BMP unrelated pathways will help answer this question.

Human ENS disorders are fairly common and include Hirschsprung's disease, a pediatric dysmotility disorder associated with a varying amount of colonic agangliosis [START_REF] Amiel | Hirschsprung disease, associated syndromes, and genetics: a review[END_REF]. It is speculative but interesting to suggest that defects in the BMP pathway may be associated with this human ENS disorder. Hirschsprung patients often have malformations of the gastrointestinal tract [START_REF] Amiel | Hirschsprung disease, associated syndromes, and genetics: a review[END_REF] and recently intestinal atresia has been reported in association with ENS colonization and development abnormalities [START_REF] Khen | Intestinal obstruction induces alteration of enteric nervous system development in human intestinal atresia[END_REF]. We can hypothesize that BMP signaling pathway deregulation in the visceral mesoderm can be responsible for some Hirschsprung's disease patients.

EXPERIMENTAL PROCEDURES

Chick embryos

Timed fertilized white Leghorn eggs (SPAFAS, CT) were incubated at 38 °C in a humidified incubator (Kuhl,NJ) until used experimentally. Embryos were staged according to Hamburger and Hamilton (St.) [START_REF] Hamburger | A series of normal stages in the development of the chick embryo[END_REF] or by embryonic day (E). Whole embryos or dissected gut tissues were fixed in 4% paraformaldehyde for 4 (at room temperature) to 18 (at 4 °C) hours before processing as described below.

Viral infection

This technique has been previously described by [START_REF] Morgan | Manipulating gene expression with replication-competent retroviruses[END_REF]. Embryos at St. 6-10/E1-1.5 were used for experiments to target the proventriculus or duodenum. To target the hindgut, St.10-13/E1.5-2 embryos were injected. These times are prior to any regional ENS colonization (Newgreen and Young, 2002a;Newgreen and Young, 2002b;[START_REF] Burns | The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system[END_REF]. Targets were approximated using published fate maps [START_REF] Matushita | Fate-mapping study of the splanchnopleural mesoderm of the 1.5-day-old chick embryo[END_REF] such that foregut/midgut injections were placed adjacent to somites 3-7 bilaterally and hindgut injections started adjacent to the last 2 somites and continued caudally in the presomitic mesoderm. Approximately 1-5µl of freshly defrosted virus dyed with fast green was injected per embryo. Eggs were then placed at 38°C until harvested. Injected viral constructs included Bmp4 [START_REF] Smith | Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary[END_REF], Bapx1, the reverse function Bapx1 (constructed with the activation domain VP-16) Bapx1-VP16 [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF], and, as control, GFP (de Santa Barbara and Roberts, 2002b). Viral infection was documented in all cases by either detection of the viral gag protein by immunohistochemistry or by in situ hybridization using the viral specific probe Rcs as previously published (de Santa Barbara and Roberts, 2002b).

Immunohistochemistry

Fixed chick tissues were embedded in paraffin. Paraffin blocks were cut into 3-5 µm sections and placed on super frost plus slides (Fisher). Immunohistochemical studies were performed using standard techniques. Endogenous peroxidase was blocked in 1.5% hydrogen peroxide for 30-60 minutes. Antigen unmasking step was performed in 0.1M Sodium Citrate solution by boiling the samples for 10 minutes. Samples were then left to cool for about forty-five minutes at room temperature. The sections were briefly washed in PBT. Blocking step was performed in 10% chick serum plus 200 µl/ml Avidin D solution (Vector Laboratories). These incubations were 30 min at room temperature. Primary antibody solutions were made with 10% serum plus 200 µl/ml biotin solution (Vector Laboratories). The primary antibodies were applied at the following dilutions: 3C2 (1:5) [START_REF] Morgan | Manipulating gene expression with replication-competent retroviruses[END_REF], HNK-1 (NeoMarkers, 1:50) and PSmad1 (Cell signaling, 1:30 for paraffin fixed sections, 1:100 for frozen sections). The antibodies were incubated in a humidity chamber at 4 0 C overnight. On the second day, sections were washed in PBT and were then re-blocked in 10% serum.

Biotinylated goat anti-mouse IgM, biotinylated goat anti-mouse IgG, and biotinylated goat anti-rabbit IgG immunoglobulins (Vector) were all diluted 1:400 and incubated for 1 hour at room temperature. Sections were washed several times in PBS in room temperature, followed by incubation in ABC reagent according manufacturer instructions during 1 hour (Dako).

Sections were washed again and then incubated in DAB solution (Sigma) up to 20 minutes.

Samples were then washed several times in PBS and mounted with Paramount aqueous mounting medium (Dako).

In Situ Hybridization

In situ hybridization was performed on tissue embedded in paraffin. The samples were sectioned at 4-6 µm for in situ hybridization performed as previously described [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF]. All sections were hybridized for 18-24 hours; detection was performed using BM purple per manufacturer's instructions (Roche Molecular Biochemicals). Digoxigenin riboprobes were prepared as previously described [START_REF] Riddle | Sonic hedgehog mediates the polarizing activity of the ZPA[END_REF] and included: Bapx1 [START_REF] Nielsen | Gizzard formation and the role of Bapx1[END_REF], Bmp4 [START_REF] Zou | Requirement for BMP signaling in interdigital apoptosis and scale formation[END_REF], Bmp2 [START_REF] Roberts | Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut[END_REF], Bmp7 [START_REF] Roberts | Epithelial-mesenchymal signaling during the regionalization of the chick gut[END_REF], BmpR Ia, Ib and II [START_REF] Smith | Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary[END_REF], Rcs [START_REF] Morgan | Manipulating gene expression with replication-competent retroviruses[END_REF].

Photography

Photographs of whole-mounts were captured with either an Olympus SZX9 or a Nikon SMZ800 dissecting microscope using SPOT diagnostic RT color digital camera and PhotoShop software. Sections were photographed through a Nikon microphot FXA microscope using a SPOT diagnostics RT color digital camera and PhotoShop software. 

GI tract HNK-1 positive cells

Control 45

Bapx1-duodenal infection 95

Average on different cryostat plane sections counted in a 20X field in the duodenum level (n=4 each).
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