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Estimating a difference between Kullback-Leibler risks by a

normalized difference of AIC

SUMMARY

AIC is commonly used for model selection but the precise value of AIC

has no direct interpretation. We are interested in quantifying a difference

of risks between two models. This may be useful for both an explanatory

point of view or for prediction, where a simpler model may be preferred if

it does nearly as well as a more complex model. The difference of risks can

be interpreted by linking the risks with relative errors in the computation

of probabilities and looking at the values obtained for simple models. A

scale of values going from negligible to large is proposed. We propose a

normalization of a difference of Akaike criteria for estimating the difference

of expected Kullback-Leibler risks between maximum likelihood estimators of

the distribution in two different models. The variability of this statistic can

be estimated. Thus, an interval can be constructed which contains the true

difference of expected Kullback-Leibler risks with a pre-specified probability.

A simulation study shows that the method works and it is illustrated on two

examples. The first is a study of the relationship between body-mass index

and depression in elderly people. The second is the choice between models

of HIV dynamics, where one model makes the distinction between activated

CD4+ T lymphocytes and the other does not.

Some key words : Akaike criterion, body-mass index, depression, HIV dy-

2



namics, Kullback-Leibler, logistic regression, model choice.

1 Introduction

Since its proposal by Akaike (1973), Akaike information criterion (AIC) has

had a huge impact on so-called “model choice”, in particular in the appli-

cation of statistical methods; see the presentation of deLeuwe (1992). It

is often used in its original simple form, precisely because of its simplicity.

Many variants of the criterion have been proposed. We may cite in particular

the EIC (Konishi and Kitagawa, 1996; Shibata, 1997) which makes use of the

bootstrap, extended to the choice of semi-parametric estimators by Liquet,

Sakarovitch and Commenges (2004). Other criteria have been proposed such

as the BIC (Schwartz, 1978) or approaches based on complexity (Bozdogan,

2000). AIC is commonly used to select the “best” model on the basis of a

sample and it is often forgotten that it is a statistic and as such has a dis-

tribution (see Burnham and Anderson, 2002, and Shimodaira, 2001). When

the goal is prediction or estimating a parameter which may be common to

several models, the model averaging approach (Hoeting et al., 1999; Hjort

and Claesken, 2003; Shen and Huang, 2006) may be used.

One problem with AIC is that its value has no intrinsic meaning; in par-

ticular AIC is not invariant to a one-to-one transformation of the random

variables and values of AIC depend on the number of observations. Investi-

gators commonly display big numbers, only the last digits of which are used

to decide which is the smallest. If the specific structure of the models is of

interest, because it tells us something about the explanation of the observed
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phenomena, it may be interesting to measure how far from the truth each

model is. This may not be possible but we can quantify the difference of risks

between two models. It may also be useful in prediction problems where we

may prefer a simpler model, not only on statistical grounds but because of its

very simplicity, if the increase of risk incurred by using it is not too large. Of

course estimating the difference of risks will be informative only if we have

an idea of what a large or a small difference is.

We show that a normalized difference of AIC is an estimate of a difference

of Kullback-Leibler risks. The distribution of this statistic can be estimated

using the results of Vuong (1989) for non-nested models and results of Wald

(1943) for the case of nested models. We give some examples of values of such

differences to help develop an intuition of what a large or a small difference

is.

In section 2 we present two examples. One is the comparison of a linear

and a non-linear effect of body-mass index (BMI) on depression using data

from the Paquid study; the other is the comparison of two models of inter-

action between HIV and the immune system. In section 3 we present the

relevant Kullback-Leibler risk and we show that the normalized difference of

AIC is an estimate of the difference of risks; moreover we propose a so-called

“tracking interval” which should contain the difference of risks with a given

probability; we also give insight in the interpretation of the differences of

risks. Section 4 presents a simulation study in the framework of the logistic

regression, which makes it possible to assess the properties of the proposed

tracking interval. In section 5 we present an illustration on real data in the

two examples.
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2 Motivating examples

2.1 Comparison of linear and non-linear effect models

of BMI on depression

Our first example bears on the comparison of possible models of association

of depression and Body-mass index (BMI) in elderly people, using the data of

the Paquid study (Letenneur et al., 1999). We aim at assessing quantitatively

the difference between estimators based on different models.

As is conventional, depression was considered as a binary trait coded by

a dichotomized version of the CESD (using the thresholds 17 and 23 for men

and women respectively). The question here is to see whether there is a

linear effect or if there is an optimal BMI, as far as depression is concerned.

This problem is treated in the logistic regression framework. The simplicity

of the problem makes it possible to design a simulation study which looks

like this real data problem.

We worked with the sample of the first visit of the Paquid study and we

excluded the subjects who were diagnosed demented at that visit: the sample

size was 3484. We fitted logistic regression models for explaining depression

from BMI, age and gender. We entered age, gender and their interaction as

explanatory variables. As for BMI which was the factor of main interest, we

tried a linear (in the logistic scale) model and then we challenged the linear

model by trying a categorization of BMI in terciles and a quadratic model.

Specifically it is interesting to see, if there is an effect of BMI, whether there

is a linear trend or there is an optimal region of values of the BMI (as far

as depression is concerned). We also tried a more complex model involving
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simple powers of weight and height.

2.2 Comparison of two models of interaction between

HIV and the immune system

Models of the interaction between HIV and the immune system have had

a high impact on the research in the pathology induced by HIV (Ho et al.,

1995, Perelson et al., 1996). These models are based on ODE systems re-

flecting the mechanisms of infection of CD4+ T Lymphocytes (called CD4

for short) and the production of viruses by infected cells. A possible model,

denoted M1, is graphically represented in Figure 1 (a); see Appendix for the

description of the system of ordinary differential equations (ODE). Rather

than making a patient-by-patient analysis, random effect models (Putter et

al., 2002) make it possible to analyze a sample of subjects, thus yielding more

precise estimates of the parameters. The statistical estimation in these mod-

els is challenging because (i) the ODE systems have no analytical solution;

(ii) computation of the likelihood involves numerical multiple integrals.

It may be useful to distinguish between quiescent and activated CD4

because it seems that only activated CD4 can be infected (De Boer and

Perelson, 1998). Guedj, Commenges and Thiébaut (2007) analyzed such a

model, denoted M2, represented in Figure 1 (b); see Appendix for details.

However this model is more complex and therefore numerically more chal-

lenging. Moreover only the total number of CD4 is measured. So one may

wonder whether the possible gain obtained with this model is worth the ad-

ditional complexity. One way to study it is to estimate the difference of

Kullback-Leibler risks between the two models. Bortz and Nelson (2006)
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used an information complexity criterion and AIC to select between HIV

dynamics models but could not quantitatively assess the difference between

models. We will attempt to estimate the difference of Kullback-Leibler risks

between M1 and M2 using data of a clinical trial.

3 Theory about inference of differences of AIC

criteria

3.1 Estimating a difference of Kullback-Leibler diver-

gences

Consider a sample of independently identically distributed (iid) random vari-

ables Ȳn = (Yi, i = 1 . . . , n) having probability density function (pdf) f =

f(.). Let us consider two models : (g) = (gβ(.))β∈B, B ⊂ <p and (h) =

(hγ(.))γ∈Γ, Γ ⊂ <q.

Definition 1 (i) (g) and (h) are non-overlapping if (g)∩ (h) = ∅; (ii) (g) is

nested in (h) if (g) ⊂ (h); (iii) (g) is well specified if there is a value β∗ ∈ B

such that gβ∗ = f ; otherwise it is misspecified.

The log-likelihood loss of gβ relatively to f for observation Y is log f(Y )
gβ(Y )

.

The expectation of this loss under f , or risk, is the Kullback-Leibler diver-

gence (Kullback, 1968) between gβ and f : KL(gβ, f) = Ef [log f(Y )
gβ(Y )

]. We

have KL(gβ, f) ≥ 0 and KL(gβ, f) = 0 implies that gβ = f , that is β = β∗.

The Kullback-Leibler divergence is often intuitively interpreted as a distance

between the two pdf (or more generally between the two probability mea-

7



sures) but this is not mathematically a distance; in particular the Kullback-

Leibler divergence is not symmetric. It may be felt that this is a drawback,

and in particular it makes any graphical representation perilous. However

this feature may also have a deep meaning in our particular problem: there

is no symmetry between f , the true pdf, and gβ, a possible pdf. So we shall

take on the fact that the Kullback-Leibler divergence is an expected loss

(with respect to f) and not a distance. We assume that there is a value

β0 ∈ B which minimizes KL(gβ, f). If the model is well specified β0 = β∗;

if the model is misspecified KL(gβ0 , f) > 0. The MLE β̂n is a consistent

estimator of β0.

We shall say that (g) is closer to f than (h) (avoiding to qualify (g)

as“better” which may be misleading in this context) if KL(gβ0 , f) < KL(hγ0 , f).

We have KL(gβ, f) = Ef [log f(Y )] − Ef [log gβ(Y )]. We cannot estimate

KL(gβ0 , f) because the entropy of f , H(f) = Ef [log f(Y )], cannot be cor-

rectly estimated. However, we can estimate the difference of risks ∆(gβ0 , hγ0) =

KL(gβ0 , f)−KL(hγ0 , f), a quantitative measure of the difference of misspec-

ification by −n−1(Lgβ̂n

Ȳn
− Lhγ̂n

Ȳn
).

This result may not be completely satisfactory in practice if n is not very

large because the distribution we will use is gβ̂n rather than gβ0 . Thus it

is more relevant to consider the risk Ef [log f(Y )

gβ̂n (Y )
] that we call the expected

Kullback-Leibler risk (or simply Kullback-Leibler risk) and that we denote

by EKL(gβ̂n , f). This is the point of view introduced by Akaike (1973).

Akaike’s approach was revisited by Linhart and Zucchini (1986) who

showed that:

EKL(gβ̂n , f) = KL(gβ0 , f) +
1

2
n−1Tr(I−1

g Jg) + o(n−1), (1)
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where Ig = −Ef [
∂2 log gβ(Y )

∂β2 |β0 ] and Jg = Ef{[∂ log gβ(Y )
∂β

|β0 ][
∂ log gβ(Y )

∂β
|β0 ]

T}. This

can be nicely interpreted by saying that the risk EKL(gβ̂n , f) is the sum of the

misspecification risk KL(gβ0 , f) plus the statistical risk 1
2
n−1Tr(I−1

g Jg). Note

in passing that if (g) is well specified we have KL(gβ0 , f) = 0 and Ig = Jg,

and thus EKL(gβ̂n , f) = p
2n

+ o(n−1).

We also have:

EKL(gβ̂n , f) = −Ef (n
−1Lgβ̂n

Ȳn
) + H(f) +

1

n
Tr(I−1

g Jg) + op(n
−1). (2)

Here we have essentially estimated Ef [log gβ0(Y )] by Ef [n
−1Lgβ̂n

] but because

of the overestimation bias, the factor 1
2

in the last term disappears; thus the

term 1
n
Tr(I−1

g Jg) is the sum of two equal terms, the statistical error and the

estimation bias of the misspecification risk (of course the misspecification

risk is estimated up to the constant H(f)). Akaike criterion (AIC(gβ̂n) =

−2Lgβ̂n

Ȳn
+ 2p) follows from (2) by multiplying by 2n, deleting the constant

term H(f) replacing Ef (n
−1Lgβ̂n

Ȳn
) by n−1Lgβ̂n

Ȳn
and replacing Tr(I−1

g Jg) by p.

What we really want to estimate is ∆(gβ̂n , hγ̂n) = EKL(gβ̂n , f)−EKL(hγ̂n , f).

Using (2) we obtain:

Ef

{
−n−1{Lgβ̂n

Ȳn
− Lhγ̂n

Ȳn
− [Tr(I−1

g Jg)− Tr(I−1
h Jh)]}

}
= ∆(gβ̂n , hγ̂n)+op(n

−1).

Using the Akaike approximation Tr(I−1
g Jg) ≈ p, we obtain a simple estimator

of ∆(gβ̂n , hγ̂n):

D(gβ̂n , hγ̂n) =
1

2
n−1[AIC(gβ̂n)−AIC(hγ̂n)] = −n−1[Lgβ̂n

Ȳn
−Lhγ̂n

Ȳn
−(p−q)]. (3)

Ef [D(gβ̂n , hγ̂n) − ∆(gβ̂n , hγ̂n)] is an o(n−1). Thus, in contrast with AIC,

D(gβ̂n , hγ̂n) has an interpretation since its expectation tracks the quantity
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of main interest ∆(gβ̂n , hγ̂n) with pretty good accuracy. Moreover it has

important invariance properties.

Lemma 1 (Invariance properties) Both ∆(gβ̂n , hγ̂n) and D(gβ̂n , hγ̂n) are

invariant under re-parametrization, one-to-one transformation of the ob-

served variables and change of the reference probability.

The proof is straightforward. It can be noted that AIC itself is invariant

under re-parametrization but neither under one-to-one transformation of the

observed variables nor change of the reference probability.

3.2 Tracking interval for a difference of Kullback-Leibler

divergences

We propose a “tracking interval” for ∆(gβ̂n , hγ̂n). This is not a usual con-

fidence interval because ∆(gβ̂n , hγ̂n) changes with n. Although it converges

toward ∆(gβ0 , hγ0) we wish to approach ∆(gβ̂n , hγ̂n) for values of n for which

the Akaike correction is not negligible.

We focus on the case where gβ0 6= hγ0 . Using Theorem 3.3 of Vuong

(1989), which is valid under conditions clearly stated by this author, we

obtain that in that case:

n1/2[D(gβ̂n , hγ̂n)−∆(gβ̂n , hγ̂n)] −→D N (0, ω2
∗), (4)

where ω2
∗ = var

[
log gβ0 (Y )

hγ0 (Y )

]
. A natural estimator of ω2

∗ is

ω̂2
n = n−1

n∑
i=1

log
gβ̂n(Yi)

hγ̂n(Yi)

2

−

n−1
n∑

i=1

log
gβ̂n(Yi)

hγ̂n(Yi)

2

.
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From this we can compute the tracking interval (An, Bn), where An =

D(gβ̂n , hγ̂n) − zα/2n
−1/2ω̂n and Bn = D(gβ̂n , hγ̂n) + zα/2n

−1/2ω̂n, where 1 −

Φ(zα/2) = α/2 and Φ is the cdf of the standard normal variable. This interval

has the property:

Pf [An < ∆(gβ̂n , hγ̂n) < Bn] −→ 1− α,

where Pf represents the probability with density f . The assumption gβ0 6=

hγ0 is necessarily the case if the models do not overlap and may also be often

the case even if the models overlap or are nested. However in the latter

case the convergence toward the normal may be slow and it is desirable to

construct confidence and tracking intervals compatible with the likelihood

ratio test.

3.3 The case of nested models

In the case of nested models (g) ⊂ (h) the likelihood ratio test is often

used to test whether the true distribution f is in (g). It can be used in

the more general case where (h) (and hence (g)) is misspecified. In that

case the null hypothesis H0 that can be tested by the Likelihood ratio test

is gβ0 = hγ0 ; that is, the closest distribution to f in (h) is in (g). Let us

define LR = Lgβ̂n

Ȳn
−Lhγ̂n

Ȳn
. The asymptotic distribution of 2LR under the null

hypothesis is Chi-square with q− p degrees of freedom. If H0 is true we have

KL(gβ0 , f) = KL(hγ0 , f) and we deduce from (1) that ∆(gβ̂n , hγ̂n) ≈ p−q
2n

< 0.

Thus if H0 is true the risk of gβ̂n is always lower than that of hγ̂n , so we

should work with (g).
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If however H0 is not true we have KL(hγ0) < KL(gβ0) so that

∆(gβ̂n , hγ̂n) >
p− q

2n
. (5)

Since p−q
2n

is negative it is possible, if the difference of misspecification risks

is small enough, that the risk incurred with (g) is smaller than that incurred

with (h). Also, if H0 is not true, the LR statistic has a completely different

asymptotic distribution than when H0 is true. This is a normal rather than

a Chi-square distribution, and even more important, there is a scaling factor

n−1/2 (see (4)), showing that the LR statistic is an Op(n
1/2) and no longer

an Op(1). A practical question arises: is there a transition between two so

different distributions ? When H0 is not true but we are not far from it, that

is |∆(hγ0 , gβ0)| is small, the convergence toward the normal may be slow,

so at finite distance we may be in between the chi-square and the normal.

In particular we know that D > (p − q)/n; a normal distribution giving

non-negligible probability to {D < (p− q)/n} would not be satisfactory.

Wald (1943), see also Kendall and Stuart (1973), showed that under the

alternative hypothesis, the likelihood ratio statistic (−2LR) has approxi-

mately a non-central chi-squared distribution with q − p degrees of freedom

(dof). We adopt this distribution and express the non-centrality parame-

ter δ in term of ∆(gβ0 , hγ0). We deduce from equations (1) and (3) that

E[−2LR] ≈ 2n∆(gβ0 , hγ0) + q − p. Since the expectation of a non-central

chisquare with dof = q − p is δ + q − p we obtain δ ≈ 2n∆(gβ0 , hγ0). For

∆(gβ0 , hγ0) = 0 we retrieve the χ2
q−p distribution for the classical test of the

null hypothesis using the likelihood ratio statistic. This distribution is also

compatible with the asymptotic normal distribution given by Vuong (1989).

Indeed, for fixed ∆(gβ0 , hγ0), we have δ → ∞ when n → ∞, and we know
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that the non-central chi-squared distribution tends to a normal when δ →∞

(Evans, Hastings and Peacock, 1993). This also entails that, for fixed n, the

normal approximation will be better for large ∆(gβ0 , hγ0).

Now suppose that we wish to test “∆(gβ0 , hγ0) = ∆0”. We are in the

ideal situation of simple hypothesis testing where we can apply the Neyman

Lemma. That is, the rejection region of the test is formed by all the values

having the lower values of the density of the test statistic. Typically the

rejection region will be (c,∞) (resp. (cinf , csup)) for small (resp. large)

values of ∆0. The test can be inverted to form a confidence interval for

∆(gβ0 , hγ0): the 1 − α confidence interval is formed of all the values ∆0

which are not rejected by the test at level α. This confidence interval is by

definition compatible with the likelihood ratio test, since 0 will not be in the

interval if “∆(gβ0 , hγ0) = 0” has been rejected by the test (which precisely

assumes a χ2
q−p distribution for ∆0 = 0). From this confidence interval for

∆(gβ0 , hγ0), say (A′
n, B

′
n), we can deduce the tracking interval for ∆(gβ̂n , hγ̂n)

by subtracting to the bounds the additional statistical risk incurred with

(h), that is (q − p)/2n: An = A′
n + (p − q)/2n; Bn = B′

n + (p − q)/2n. It

is not impossible that An be negative, even if “∆(gβ0 , hγ0) = 0” has been

rejected. Indeed, if we reject H0 using the likelihood ratio test, we reject

∆(gβ̂n , hγ̂n) = p−q
2n

but we do not reject negative values of ∆(gβ̂n , hγ̂n) larger

than p−q
2n

.

In practice, the computation of the intervals may be done by comput-

ing the p-value for each value ∆0. Let f∆0 and F∆0 be the pdf and cdf of

the non-central chi-squared distribution with q − p dof and non-centrality

parameter 2n∆0. If f∆0(x) > f∆0(−2LR) for all x < −2LR, the p-value is
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simply 1−F∆0(−2LR). This situation occurs for small values of dof and non-

centrality parameter. If this is not the case the rejection region includes an

interval (0, cinf ) so the p-value is 1−F∆0(−2LR)+F∆0(cinf ) where f∆0(cinf ) =

f∆0(−2LR). In practice it may not be easy to find cinf unless a special pro-

gram is available. We propose to look at the quantile of (1−F∆0(−2LR))/2,

say qpv/2. If f∆0(qpv/2) > f∆0(−2LR) we can take p-value= 1− F∆0(−2LR);

if f∆0(qpv/2) < f∆0(−2LR) we take p-value= 2(1− F∆0(−2LR)).

3.4 How to interpret a difference of Kullback-Leibler

risks

It is important to judge whether the values within the intervals correspond to

large or small expected losses. The Kullback-Leibler risk takes values between

0 and +∞ but in practice most of the risks or difference of risks that we

encounter are lower than 1. To give an idea of how to interpret these values

we may relate them to relative errors made in evaluation of probabilities

as in Commenges et al. (2007). We will make errors by evaluating the

probability of an event A using a distribution g, Pg(A), rather than using

the true distribution f , Pf (A). For instance we may evaluate the relative

error re(Pg(A), Pf (A)) =
Pf (A)−Pg(A)

Pf (A)
. Consider the typical event on which

Pf (A) will be under-evaluated defined as: A = {x : g(x) < f(x)}. To

obtain a simple formula relating KL(g, f) to the error on Pf (A) we consider

the particular case Pf (A) = 1/2 and g/f constant on A and AC . In that

case we easily find: re(Pg(A), Pf (A)) =
√

1− e−2KL(g,f) ≈
√

2KL(g, f), the

approximation being valid for small KL value. For KL values of 10−4, 10−3,

10−2, 10−1 we find that re(Pg(A), Pf (A)) is equal to 0.014, 0.045, 0.14 and
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0.44, errors that we may qualify as “negligible”, “small”,“moderate” and

“large” respectively.

As already noted we can give an interpretation of EKL from (1) as the sum

of the misspecification risk KL(gβ0 , f) and the estimation risk, approximated

by p/2n. For a well specified model the risk is about p/2n; for instance it

is 10−2 if p = 10 and n = 500, or if p = 1 and n = 50. The statistical risk

associated to the estimation of one parameter is negligible, small, moderate

and large for n = 5000, 500, 50, 5 respectively. The correspondence between

the different scales is summarized in Table 1. We may also measure on this

scale the magnitude of the Akaike correction of (p− q)/n.

As an example the KL divergence of a double exponential relative to a

normal distribution with same mean and variance is of order 10−1 what may

be called a “large” value. As another example we may compute the risk

incurred when using a normal distribution of variance σ2 when the true dis-

tribution has variance one. It is easy to compute that the Kullback-Leibler

risk is 1
2
[log σ2 − 1 + 1

σ2 ]: this expression takes the value 0 for σ2 = 1 and

tends toward +∞ if σ2 tends toward +∞ or 0. The values obtained for

σ2 = 1.02; 1.1; 1.3; 2 are respectively = 0.0001; 0.002; 0.016; 0.096 correspond-

ing approximately to the the negligible, small, moderate and large levels. To

approach a risk of 1, one has to take very large values of σ2: the risk is 0.65 for

σ2 = 4 and 0.91 for σ2 = 16. Finally we give the correspondence between the

KL divergence and the odds-ratio in a particular case of a binary variable with

Pf (Y = 1|X) = 1/2, while logit[Pg(Y = 1|X)] = βX, X being itself a binary

variable taking values 1 or −1 with probability 1/2. We have KL(g, f) =

E{1/2 log[ 1/2
Pg(Y =1|X)

+ 1/2 log[ 1/2
Pg(Y =0|X)

}, where the expectation bears on X.
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After some algebra we find that KL(g, f) = 1/2 log[1/2(1 + cosh(β))]. The

values of the odds-ratio (OR= eβ) giving negligible, small, moderate and

large divergences are 1.03; 1.1; 1.35; 2.5 respectively. It is important to re-

alize that this correspondence depends on the joint distribution of both Y

and X; higher values of OR are associated to the same divergence levels for

Pf (Y = 1|X) 6= 1/2 or P (X = 1) 6= 1/2.

A question which arises is whether the Kullback-Leibler risks are com-

parable when Y is multivariate and when Y is univariate. If we have n

independent univariate variables and we group them in vectors of size m,

we obtain n′ = n/m multivariate observations. To get the same estimator

of the difference of risks between two models we should divide by the n′m

rather than by n′. Thus in case of multivariate data we propose to divide the

difference of AIC by the total number of measurements to get a value that

is more comparable to situation where the variables are univariate.

3.5 Extension to regression models

All that has been said can be extended to regression models (gY |X) = (gβ
Y |X(.|.))β∈B

and (hY |X) = (hγ
Y |X(.|.))γ∈Γ. This can be done as in Vuong (1989) by directly

defining the Kullback-Leibler divergence in term of conditional densities:

KL(gβ
Y |X , fY |X) = Ef [log

fY |X(Y |X)

gβ
Y |X(Y |X)

], where the expectation is taken for the

true distribution of the couple Y, X. However this approach has the draw-

back of requiring a new definition of the Kullback-Leibler divergence . The

so-called reduced model approach (Commenges et al., 2007) is more satisfac-

tory. Consider a sample of iid couples of variables (Yi, Xi), i = 1, . . . , n having

joint pdf f , f(y, x) = fY |X(y|x)fX(x). Consider the model (g) = (gβ(., .))β∈B
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such that gβ(y, x) = gβ
Y |X(y|x)fX(x) ; the model is called “reduced” because

fX(.) is assumed known. The Kullback-Leibler divergence is:

KL(gβ, f) = Ef [log fY |X(Y |X)]− Ef [log gβ
Y |X(Y, X)],

that is the term in fX(.) disappears (so that we do not need to know it

in fact) and we get the same definition as in Vuong (1989) using only the

conventional Kullback-Leibler divergence .

4 Simulation study

4.1 Study of the tracking interval in a non-nested case

We performed a simulation resembling the situation of the Depression-BMI

application where we have to choose between different logistic regression

models. We considered iid samples of size n of triples (Yi, x
i
1, x

i
2), i = 1, . . . , n

from the following distribution (which plays the role of the true distribu-

tion f). The conditional distribution of Yi given (xi
1, x

i
2) was logistic with

logit[fY |X(1|xi
1, x

i
2)] = 0.5+xi

1+2xi
2, where fY |X(1|xi

1, x
i
2) = Pf (Yi = 1|xi

1, x
i
2);

the marginal distributions of (xi
1, x

i
2) were bivariate normal with zero ex-

pectation and variance equal to the identity matrix. We considered model

(g) specified by logit[gβ
Y |X(1|xi

1, x
i
2)] = β0 + β1x

i
1 + β2x

i
2, which was well

specified and the (mis)specified model (h) defined as logit[hγ
Y |X(1|xi

1, x
i
2)] =

γ0 +
∑2

l=1 γlx
i
1l + γ3x

i
2, where xi

1l were dummy variables indicating in which

categories xi
1 fell; the categories were defined using terciles of the observed

distribution of x1, and this was represented by two dummy variables: xi
11

indicating whether xi
1 fell in the first tercile or not, xi

12 indicating whether
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xi
1 fell in the second tercile or not.

Since model (g) is well specified we know that gβ0 = f , that the misspeci-

fication error KL(gβ0 , f) is zero and that Tr(I−1
g Jg) = p. As for model (h) we

must compute the quantities of interest by simulation. We can compute that

in the logistic regression the l, k term of the matrix Jh is Ef [xl(Y − exγ0

1+exγ0
)2xk],

and that the l, k term of the matrix Ih is Ef [xl
exγ0

(1+exγ0 )2
xk]. We estimated γ0

by fitting model (h) on a simulated data set with n = 105. Our precise esti-

mate γ̌0 was thus γ̂n for n = 105. We used it to precisely estimate Jh and Ih

as Ǐh = 10−5 ∑105

i=1[x
i
l

exiγ̌0

(1+exiγ̌0 )2
xi

k] and J̌h = 10−5 ∑105

i=1[x
i
l(Yi − exiγ̌0

1+exiγ̌0
)2xi

k].

We estimated KL(hγ0 , f) by 10−5 ∑105

i=1 log
fY |X(Yi|xi

1,xi
2)

h
γ̌0
Y |X(Yi|xi

1,xi
2)

. We also computed

a precise estimate of ω2
∗, ω̌2

∗, by the empirical variance of log
fY |X(Yi|xi

1,xi
2)

h
γ̌0
Y |X(Yi|xi

1,xi
2)

computed on 105 replicas. Thus we can compute a precise estimate of

EKL(hγ̂n , f) and EKL(gβ̂n , f) by replacing the terms on right-hand of (1)

by their estimates. Because (g) is well specified we obtain immediately

EKL(gβ̂n , f) ≈ 3
2n

; a precise estimate of EKL(gβ̂n , f) − EKL(hγ̂n , f) is thus

given by ∆̌ = 3
2n
−KL(hγ̌0 , f)− 1

2n
Tr(Ǐ−1

h J̌h). We find first that KL(hγ̌0 , f) ≈

7.28 10−3, a value approaching the “moderate magnitude”. We found 3.998

and 3.999 for the values of Tr(Ǐ−1
h J̌h) for n = 250 and n = 1000 respec-

tively. These values are very close to q = 4 (that would obtain if (h)

was well-specified) so, in the following we will use this approximation. Us-

ing this approximation we can compute ∆̌ = − 1
2n
− KL(hγ̌0 , f) and obtain

∆̌ = −9.28 10−3 for n = 250 and ∆̌ = −7.78 10−3 for n = 1000. We also find

ω̌2
∗ = 1.44 10−2. We can then compute the standard error of D as n−1/2ω̌∗

and find 7.59 10−3 and 3.79 10−3 for n = 250 and n = 1000 respectively.

We see at once that there is more chance that the tracking interval does not
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contain zero for n = 1000 than for n = 250.

We generated 1000 replications from the above model for n = 250 and

n = 1000. For each replication we computed the maximum likelihood esti-

mates and the AIC. We computed the histogram of D(gβ̂n , hγ̂n) (see Figure

2): its shape is approximately in accordance with the asymptotic normal

distribution for both sample sizes; the empirical mean was −9.50 10−3 and

−7.67 10−3 for n = 250 and n = 1000 respectively, close to the values of ∆̌.

The empirical variance of D (not shown) was in agreement with the theo-

retical variance computed from ω̌2
∗. The mean of the estimated variances ω̂2

∗

was 1.88 10−2 and 1.54 10−2 for n = 250 and n = 1000 respectively, also

reasonably close to the ω̌2
∗. The proportion of replicas for which ∆̌ was out-

side the .95 tracking interval was 0.045 and 0.053 for n = 250 and n = 1000

respectively. The proportion of replicas for which zero was outside of the

tracking interval was 0.197 and 0.514 for n = 250 and n = 1000 respectively,

and in all cases (g) was preferred to (h). These results are summarized in

Table 2.

The results of the simulation are in accordance with the asymptotic the-

ory. From a practical point of view, the variability of D seems to be large

so that it is difficult to be sure that an estimator is better than another one

if the difference of risk is small or moderate. Note that this variability is

not specific to our approach but is a fact applying to any criteria based on

likelihood ratio. For instance in the simulated situation for n = 250 there

is a probability of about 12% that D(gβ̂n , hγ̂n) takes a positive value (thus

suggesting the wrong choice) and this probability is exactly the same for

AIC.
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4.2 Quality of the fit by the non-central chi-squared

distribution in the nested case

We performed another simulation for the case of nested model, to check the

quality of the approximation of the distribution of −2LR by the non-central

chi-squared distribution. We made two simulations with true distributions

f 1, specified by : logit[f 1
Y |X(1|xi

1, x
i
2)] = 0.5 + 0.2xi

1 + 2xi
2 and f 2, specified

by: logit[f 2
Y |X(1|xi

1, x
i
2)]) = 0.5 + 0.5xi

1 + 2xi
2. For both cases we consid-

ered two models: (g) and (h) with logit[gβ
Y |X(1|xi

1, x
i
2)] = β0 + β2x

i
2 and

logit[hγ
Y |X(1|xi

1, x
i
2)] = γ0 + γ1x

i
1 + γ2x

i
2, so that (h) was well specified while

(g) ⊂ (h) was misspecified. However if f 1 is the true distribution the differ-

ence of risks using (g) and (h) is of “small” magnitude (≈ 10−3) while if f 2

is the true distribution it of “moderate” (≈ 10−2) magnitude. The distribu-

tions of (xi
1, x

i
2) were as in the first simulation above. We simulated 10000

replications of samples of size n = 1000 from f 1 and f 2 and in both cases

we studied the fit of the non-central chi-squared distribution for the distri-

bution of −2LR. The dof was equal to 1 and we took the expectation equal

to the mean, from which we deduced the non-centrality parameter. Figure

3 displays the histograms and the non-central chi-squared densities for both

cases. The fits are nearly perfect and we also see that the distribution is

closer to the normal for f 2 than for f 1. It is clear that the convergence to

the normal is slow in the case of nested models unless the difference of risks

is large.
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5 Applications

5.1 Relation between BMI and depression: analysis of

the Paquid data

The values of AIC, and the D statistic and tracking intervals (taking as

reference the linear model) are given in Table 3. The tercile model had a

larger AIC than the linear model but the point estimate (D) of the difference

of risks was lower than 10−4 a level that we have qualified “negligible”, and

zero was well inside the tracking interval. So from the point of view of

Kullback-Leibler risk there was no evidence that one model is better than

the other. When it comes to comparing the linear and the quadratic model,

because the first is nested in the second, we can use the likelihood ratio test:

the null hypothesis is that the best distribution is in the linear sub-model.

The hypothesis was strongly rejected (p < 0.01). We tend to conclude that

the shape of the effect is not linear and that we may approach it better with

a quadratic term. However it is interesting to estimate the difference of risks

between the two models. The point estimate of the difference of risks was

0.0007, a value which approaches the 10−3 level that we qualified to be a small

(but not negligible) difference. Since (g) ⊂ (h) we computed the tracking

interval applying the version of the tracking interval for nested models of

section 3.3. The computation was done using using the pchisq, dchisq and

qchisq R functions. We found (0.00012; 0.0030) for the confidence interval

of ∆(gβ0 , hγ0) and, subtracting the increased statistical risk (p − q)/2n =

0.00014, we found (−0.00002; 0.0029) for the tracking interval. Thus we

are not completely sure to incur a smaller risk with the quadratic model.
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However, if the difference of risks was not in favor of the quadratic model,

this would be completely negligible. The difference of risks in favor of the

quadratic model may be negligible or of small magnitude.

In conclusion there is no reason to prefer the tercile model to the linear

model but there are some reasons to prefer the quadratic model to the linear

model. Figure 4 shows the shape of the effect of BMI with the quadratic

model, taking as reference the median BMI (equal to 24.2). This is a U-

shaped curve yielding the lower risks of depression for medium values of the

BMI, somewhat shifted however toward large BMI. Of course the epidemi-

ological interpretation of this result is delicate and the apparent effect that

we have detected is the consequence of complex biological and psychological

mechanisms that we do not attempt to explore here. Several other studies

have found links between BMI and depression (Bergdahl et al., 2007; Bjerke-

set et al., 2008).

Since BMI is a combination of weight and height one may wonder whether

it is possible to find a better model directly using simple powers of height and

weight in the linear predictor. It happens that the model including weight,

height, weight2, height2 and 1/height, that we denote (w) = (wθ)θ∈Θ, has a

better AIC than the quadratic (in BMI) model, (h). Note that (h) is not

nested in (w). Following the conventional use of AIC we should prefer (w)

to (h). However (w) lacks readability because it involves a combination of

weight and height that has never been used. For instance a nice graphical

representation of the effect of weight and height such as presented in Figure

4 is not possible. So we have non-statistical reasons to prefer (h) over (w). If

we examine the statistical reasons to prefer (w) over (h) they are very thin.
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First, the point estimate of ∆(hβ̂n , wθ̂n) is D = 0.0003, of the “negligible”

order of magnitude. Second, the tracking interval is [−0.0016; 0.0022]: zero

is well inside this interval, so there is no confidence that we incur a lower

risk using (w) rather than (h). Thus it is reasonable to prefer (h) for further

use, for instance presentation of the epidemiological evidence of a relation

between over- and under-weight and depression.

5.2 Interaction between HIV and the immune system:

analysis of the ALBI data

As an application of the proposed method, we analyzed the difference of risks

between the model M1 and model M2 described in section 2.2 using the

data of a randomized clinical trial, the ALBI ANRS 070 trial (Molina et al.,

1999). This trial compared over 24 weeks the combination of zidovudine plus

lamivudine (AZT+3TC) to that of stavudine plus didanosine (ddI+d4T).

There were 50 patients in each arm. Measurements of CD4 and of HIV

RNA were taken once a month up to six months. The likelihood, taking into

account the detection limit of HIV RNA, was computed with the algorithm

of Guedj, Thiébaut and Commenges (2007). The AIC for model M1 was

equal to 1466.15 while for model M2 AIC = 1026.63. The estimate of the

variance was ω̂2
n = 5.88. Thus the D statistic was equal to 4.40. However this

applies to a multivariate outcome: we had seven measurements of viral load

and of CD4 counts for each subject, that is 14 measurements per subjects.

So the standardized value of D was 4.40/14 = 0.31. For the tracking interval

we find [0.28; 0.35].

We can say with a good degree of confidence that the difference of risks
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is larger than 0.28, a large difference as we have seen. This means that this

difference between quiescent and activated CD4 is an important biological

fact and that it must be taken into account, even though fitting the more

complicated model is more challenging.

6 Discussion

We have proposed a statistic which tracks the difference of expected Kullback-

Leibler risks between maximum likelihood estimators in two different models,

∆(gβ̂n , hγ̂n). Moreover we have an estimator of the variance of this statistic

and we can construct a “tracking interval”. We can also construct a con-

fidence interval for ∆(gβ0 , hγ0): the bounds of the latter are the bounds of

the former shifted of (q − p)/2n. The results of our simulation study were

in agreement with the asymptotic results. Our approach enlightens the un-

avoidable variability of any criterion based on log-likelihood ratio such as

AIC, BIC and their variants. This variability is generally not taken into ac-

count and there is a misleading intuition that extrapolates the distribution of

the likelihood ratio test to the variability of AIC. The distribution of the like-

lihood ratio statistic is well approximated by a normal in the non-nested case

while it is better approximated by a non-central chi-squared in the nested

case. In both cases the variance is larger than that of the chi-squared with

q − p dof, a distribution which holds only under the null hypothesis of the

likelihood ratio test.

In fine we can do more than simply choosing the estimator which has the

lowest AIC. We can estimate the difference of risks and this has the same
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meaning in different problems. We may become accustomed to considering

differences of 10−4, 10−3, 10−2, 10−1 as negligible, small, moderate and large

respectively, as we are accustomed to interpret correlation coefficients or

odds-ratios for instance. More work is needed however to deepen our intuition

about the magnitude of a difference of Kullback-Leibler risks.

In the first application we have found that the quadratic model for the ef-

fect of BMI on risk of depression was better than a linear model, although the

difference between the two models was small. With the quadratic model both

low and high BMI are at higher risk of depression. Our method gives argu-

ments to prefer the quadratic model in BMI for presentation of the results to

a more complex model obtaining a slightly better AIC. In the application on

comparing two HIV dynamics models, we found that the model distinguish-

ing quiescent and activated CD4 was better than the simpler model which

did not make this distinction. The estimated difference of risks was large

and this has implications in future developments of HIV dynamics models.

The statistic D and the tracking interval for the difference of risks are

easy to compute and could be useful in a wide variety of applications.
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Appendix: The HIV dynamics models

To write the differential equation for the model, one uses assumptions which

are plausible in view of the knowledge of the biological mechanisms: for

instance we assume that new CD4 are produced (by the thymus) at a rate

λ, that only activated cells can be infected, that the probability of meeting

of a cell and a virion is proportional to the product of their concentrations.

A possible model (M1) takes into account the uninfected and infected CD4,

T̄ and T ∗ respectively, and the viral particles, V and is as follows:

dT̄t = (λ− (1− ηIRT )γTtVt − µT̄ T̄t)dt

dT ∗
t = [(1− ηIRT )γTtVt − µT ∗T ∗

t ]dt

dVt = (µT ∗
t
πT ∗

t − µvVt)dt,

where IRT is indicates whether a treatment based on an inhibitor of the

reverse transcriptase.

Another model (M2) distinguishes between quiescent (Q) and activated (T )

CD4:

dQt = (λ + ρTt − αQt − µQQt)dt

dTt = (αQt − (1− ηIRT )γTtVt − ρTt − µT Tt)dt

29



dT ∗
t = [(1− ηIRT )γTtVt − µT ∗T ∗

t ]dt

dVt = (µT ∗
t
πT ∗

t − µvVt)dt

A statistical model is necessary to take into account that some parameters

may differ from one subject to another and to link the observations to the

ODE system. In model M1 the parameters λ and π were random (adding

other random parameters did not increase the likelihood). In model M2 the

parameters α, λ and µT ∗ were considered as random. Measurements of the

total numbers of CD4 and of number of viruses were available at times tij.

We assumed the following observation equations:

Yij1 = log10(VI(tij, ξ̃
(i)

) + VNI(tij, ξ̃
(i)

)) + εij1, j ≤ ni

Yij2 = (Q(tij, ξ̃
(i)

) + T (tij, ξ̃
(i)

) + T ∗(tij, ξ̃
(i)

))0.25 + εij2, j ≤ ni

An additional complexity was that HIV RNA load was measured up to a

detection limit. Guedj, Thiébaut and Commenges (2007) designed a special

algorithm for computing and maximizing likelihood for this type of models.

We refer the reader to this paper for more details.
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Table 1: Order of magnitude of KL risks; the relative error is that for a

typical underestimated event in a standard case; the sample size is the size

which gives the corresponding statistical risk for estimating one parameter.

Qualification KL scale Relative error Risk for estimation of one parameter

Sample size

Large 10−1 0.44 5

Moderate 10−2 0.14 50

Small 10−3 0.045 500

Negligible 10−4 0.014 5000

Table 2: Simulation study: choice between tercile and linear model for the

explanatory variable in a logistic regression model.

n ∆̌ D̄ ¯̂ω
2

Coverage rate Power

250 −9.28 10−3 −9.50 10−3 1.88 10−2 0.967 0.197

1000 −7.78 10−3 −7.67 10−3 1.54 10−2 0.954 0.514
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Table 3: Upper part of the table: comparison of the linear, tercile and

quadratic models for the effect of BMI on depression: D and the track-

ing interval are with respect to the linear model. Lower part: comparison of

the quadratic model with the model (w) including weight, height, weight2,

height2 and 1/height: D and the tracking interval are with respect to the

quadratic model.

Model # parameters Likelihood AIC D Tracking interval

Linear 5 −1346.2 2702.5 - -

Tercile 6 −1345.6 2703.2 −0.0001 [−0.0009; 0.0007]

quadratic 6 −1342.9 2697.9 0.0007 [−2.10−5; 0.0029]

quadratic 6 −1342.9 2697.9 - -

(w) 9 −1338.7 2695.5 0.0003 [−0.0016; 0.0022]
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Figure 1: Graphical representation of HIV dynamics models: (a) model M1

including uninfected (T̄ ) and infected (T ∗) CD4+ T lymphocytes, and HIV

viruses (V ); (b) model M2 including uninfected quiescent (Q), uninfected

activated (T ), infected (T ∗) CD4+ T lymphocytes, and HIV viruses (V ).
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Figure 2: Histogram of the values of D (which estimates the difference of

Kullback-Leibler risks between the tercile and the linear models) in the sim-

ulation: upper figure, n = 250, lower figure, n = 1000.
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Figure 3: Fit of the distribution of −2LR in the case of nested models,

(g) ⊂ (h) (see section 4.2), by the non-central chi-squared distribution with

q − p dof: (a) case of a “small” difference of risks (true distribution f 1); (b)

case of “moderate” difference of risks (true distribution f 2).
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Figure 4: Estimated “effect” of the BMI on depression in the quadratic

model: odds-ratios with respect to the probability at the median of BMI

(24.2); the dots have for abscissas the observed BMI values.
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