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Abstract— Cardiac implantable devices offer improved record-
ing capabilities. Future developments have for objective to facil-
itate the home check-up of the patient to reduce the health care
expenditure. For this purpose, a challenge deals with the patient
ECG check-up from the intracardiac ElectroGraMs (EGM)
delivered by the implanted prostheses. In this paper we propose
a method to reconstruct the surface ECG from a set of EGM
signals, based on a 3D representation of the cardiac electrical
activity and Principal Component Analysis (PCA). The results,
in the case of sinus rhythm, show a correlation coefficient between
the real ECG and the reconstructed ECG of about 0.85.

I. INTRODUCTION

The clinical syndrome of congestive heart failure has be-

come a major cause of morbidity and mortality. This syndrome

can be treated by Cardiac Implantable Devices (CID), such

as Cardiac Resynchronization Therapy Pacemaker (CRT-P)

and Cardiac Resynchronization Therapy Defibrillator (CRT-

D). The cardiac electrical activity acquired from the CID,

named ElectroGraMs (EGM), is collected by electrodes placed

on the endocardium or epicardium. Indeed, the EGM provides

local information on the electric activity of a group of cardiac

cells, which make their morphologies different from those

observed from surface ElectroCardioGram (ECG) electrodes

(considered as the reference signal for the analysis of the

cardiac activity). Consequently, in order to perform a patient’s

check-up or modify the parameter setting of the CID, an ac-

quisition of a standard surface ECG in an attended laboratory

setting is generally required. A less expensive and less time

consuming solution for performing a patient’s check-up is

studied in this paper. More precisely, we aim to propose a

method to rebuild a surface ECG using only the intracardiac

EGM recorded from CID electrodes.

II. PROBLEM STATEMENT AND REFERENCE MATERIAL

A. Signal model

The problem that we propose to study can be viewed as a

direct problem (figure 1), where the outputs {x[m]}m∈�, rep-

resenting the ECG, are considered as an unspecified nonlinear

function F of the inputs {s[m]}m∈�, representing the EGM.

Then we have:

x[m] = F(s[m]) (1)

In the following, vectors are denoted by bold-faced lower-

cases, whereas bold uppercases denote matrices. One way of

approaching this problem could be to estimate a set of transfer

functions directly relating each EGM signal with each ECG

Fig. 1. Problem formalization.

signals [2]. Such an approach has, as major drawback, the

fact that the analysis of the standard 12-lead ECGs can not

compensate the changes in the orientation of the electrical

axis caused by various extracardiac factors [5]. In this paper

we propose an alternative solution, which is based on: i)

the extraction of a three dimensional (3D) representation of

cardiac electrical activity [6], [7] both for surface ECG (which

is called VectoCardioGram, VCG) and for EGM (that we

call VectoGram, VGM1), by using the Principal Component

Analysis (PCA) [1], and ii) the estimation of the transfer

function between VGM and VCG. More precisely, a two-

step procedure is proposed to rebuild a surface ECG. It

consists in a training step, which aim to identify the transfer

function between the EGM and the ECG and he reconstruction

step which is devoted to the estimation of surface ECG by

exploiting only the EGM, and the estimated transfer function

in the training step.

Nevertheless, before detailing our procedure, let us give

a brief description both of the 3D representation of cardiac

electrical activity and PCA and justify why these two tools

are used in our approach.

B. The 3D representation of cardiac electrical activity

The VCG is the methodological extension of ECG that

provides a 3D representation of the cardiac electrical field.

More precisely, the VCG is an orthogonal lead system that

reflects the electrical activity in the three perpendicular direc-

tions X, Y, and Z. For such a system, the interpretation is not

confined to findings in individual leads (case of ECG), but

additional information is acquired through the visualisation of

3D loops together with its projection onto the Y Z (frontal),

XZ (sagittal) and XY (transverse) planes [6], [7]. Although

1The VGM concept has never been introduced in the literature before us.



the 12-lead ECG is considered as the reference signal for

the analysis of the cardiac activity due to the existence of

a number of rules for its interpretation, the VCG contains

some useful information for certain applications. Indeed, it is

well known that the VCG is superior to the ECG in showing

phase differences between electric events in different parts

of the heart. In addition, contrary to the standard 12-lead

ECG, the analysis based on VCG loops has been found to:

i) compensate the changes in the electrical axis caused by

various extracardiac factors [5] and ii) give a solution to the

time synchronization problem which arises in cardiac data.

C. The principal component analysis

PCA, which is closely related to Karhunen-Loève Transform

(KLT) (also known as Hotelling transform), is a classical

technique in statistical data analysis, features extraction and

data compression. The purpose of PCA is to derive a relatively

small number of uncorrelated linear combinations (principal

components) of a set of random zero-mean variables while re-

taining as much of the information from the original variables

as possible. Typically, the PCA of vector process {x[m]}∈�
consists in looking for an N ×P orthonormal linear transform

W (P smaller or equal to N ), such that:

z[m] = W Tx[m] (2)

where the components of the vector process {z[m]}∈� are

mutually uncorrelated. Sometimes we need the column of the

matrix W ; if we denote wnp (1 ≤ n ≤ N and 1 ≤ p ≤ P )

the elements of the W the model of (2) can also be written

as:

zp[m] =
N∑

n=1

wnpxn[m] = w
T

px[m] (3)

It is straightforward to show that the PCA problem can be

converted to the eigenvalue problem of the covariance matrix

Rx [1]. Thus, if we denote [e1 . . .eP ]T the eigenvectors of

Rx corresponding to the eigenvalues (λ1, . . . λP ) where λ1 ≥
. . . ≥ λP , the first principal component of x[m] is z1[m] =
e

T

1x[m]. Likewise, the P -th principal component is obtained

by zP [m] = e
T

P x[m].

III. A TWO-STEP PROCESSING APPROACH

The aim of this section is to provide more information (see

figure 5) about the two steps of our procedure, namely the

training step and the reconstruction step.

A. Training step

This step (figure 2(a)) can be decomposed into three sub-

steps: the identification of the orthonormal linear transform

W , between the ECG (x[m]) and the VCG (zV CG[m]), the

3D registration of the VGM loops (zV GM [m]) and the esti-

mation of the filter h[m] between the VCG and the registered

VGM loops.

Identification of W. Let us assume that x[m] =
[x1[m], . . . , xN [m]]T (where N ≥ 3 and m = 1, . . . ,M ) rep-

resents the ECG of L successive heartbeats. The orthonormal

linear transform W is estimated by applying the PCA on x[m]
so that the following result holds:

zV CG[m] = W Tx[m] (4)

It is worth noting that once the N ×P matrix W is identified,

only the components of interest are considered. In our case,

we just take into account the three principal components, cor-

responding to the three largest eigenvalues of the covariance

matrix Rx, which provides us a N × 3 matrix W .

The VGM 3D registration. In order to improve the preci-

sion of some automatic ECG analysis algorithms, L. Sörnmo

proposed in [5] a pre-processing method to compensate for

heartbeat morphology variations during an ECG/VCG record-

ing. This method, based on four steps (translation, scaling,

rotation and time synchronisation) is applied here to the

registration of VGM loops. Let us assume that the VCG loop

is considered in our case as a reference loop. As for ECG,

let s[m] = [s1[m], . . . , sK [m]]T (where K ≥ 3 and m =
1, . . . ,M ) be the EGM of L successive heartbeats. The VGM,

zV GM [m], is firstly derived by applying the PCA on s[m],
where we just take into account the three largest eigenvalues of

the covariance matrix Rs. Then, both zV CG[m] and zV GM [m]
are segmented into L non-overlapping blocks of equal length

T , zV CG�[m]�=1,...,L and zV GM�[m]�=1,...,L, respectively.

Now let us consider the expectations of zV CG�[m]�=1,...,L and

zV GM�[m]�=1,...,L estimated by averaging over the number of

heartbeats L using the following sample formula [3]:

z̄V CG[m] =
1
L

L∑

�=1

zV CG�[m] (5)

z̄V GM [m] =
1
L

L∑

�=1

zV GM�[m] (6)

In order to include the time synchronisation step, it is neces-

sary to substract 2Δ samples to the reference loop z̄V CG[m],
which provides us a new 3×T −2Δ reference loop ˜̄zV CG[m].
The estimation of the rotation R, the scaling α and the shift

time τ is based on a model in which the VGM loop z̄V GM [m]
is related to the reference loop ˜̄zV CG[m] as follows:

˜̄zV CG[m] = αRz̄V GM [m]Jτ (7)

where τ = −Δ, . . . ,Δ and Jτ = [0Δ−τ I 0Δ+τ ]T. The

dimensions of the left and right zero matrices are equal to

Δ − τ × T − 2Δ and Δ + τ × T − 2Δ, respectively.

It is easy to show that the estimation of R, α and τ can be

reduced to the following minimization problem [5]:

ξ2
min = min

α,R,τ

∥∥˜̄zV CG[m] − αRz̄V GM [m]Jτ

∥∥2

F
(8)

where ‖.‖F denotes the Frobenius norm. More precisely, the

minimization of the previous equation is performed by first

finding the estimates α̂ and R̂ by fixing τ . The optimal

estimates α, R and τ are then determined by evaluating the

error ξ2 for different values of τ (see [5] for more details).



Estimation of the filter h[m]. In order to estimate h[m], we

must estimate three different transfert functions h1[m], h2[m]
and h3[m] between each row of the output vector ˜̄zV CG[m]
and the input vector z̄V GMR[m]. For the sake of readability

let us consider the estimation of h1[m], which is characterized

by the input-output relationship:

˜̄zV CG1 [m]=(z̄V GMR1∗h1)[m]=
Lh−1∑

i=0

h1[i]z̄V GMR1 [m− i] (9)

where ∗ denotes the convolution operator. In vector notation

it reads:

˜̄zV CG1 [m] = h1z̄V GMR1 [m] (10)

where the Lh-dimensional parameter vector h1
def=

[h1(0), . . . , h1(Lh − 1)]T is the impulse response of a

Linear Time Invariant (LTI) filter, and z̄V GMR1 [m] def=
[z̄V GMR1 [m], . . . , z̄V GMR1 [m − Lh + 1]]T. An estimate, ĥ1,

of h1, can thus be derived from the general Wiener-Hopf

equation [4] which relates the optimal LTI filter to the

covariance matrix of the output R˜̄z and to the intercorrelation

between the output and the input R˜̄zz̄ , such that:

ĥ1 = R−1
˜̄z

R˜̄zz̄ (11)

The same result can be directly derived for h2 and h3.

B. Reconstruction step

This step (figure 2(b)) is devoted to the estimation of

surface ECG, by exploiting the EGM and different parameters

identified in the training step. To do so, we suppose that we

only observe the EGM of Q successive heartbeats, denoted

by s[m] = [s1[m], . . . , sK [m]]T (where K ≥ 3 and m =
1, . . . ,M ′). Then, s[m] is segmented into Q non-overlapping

blocks of equal length T , sq[m]q=1,...,Q and the PCA is

applied on each block, which provides us Q VGM blocks

zV GMq[m]q=1,...,Q (as for the training step, only the three first

principal components are taken into account). Finally, the Q
heartbeats surface ECG are estimated one by one as following:

∀q ∈ {1, . . . , Q} , ŝq[m] = (α̂τ̂R̂τ̂zV GMqJ τ̂ ∗ h)[m]W T

(12)

IV. RESULTS

A data set issued from 10 patients with sinus rhythm (P1 to

P10) is used for evaluating the proposed method. Each record

of the database is composed of 12 surface ECG channels,

namely I, II, III, AVR, AVL, AVF, V1, to V6, and 3 to 11

EGM leads (11 EGM for P1, P2, P3, P4, six EGM for P5, P6,

five EGM for P7, P8, P9 and 3 EGM for P10) depending

on the CID type. The ECG and EGM are simultaneously

recorded with a GE Cardiolab station during the implant of

CIDs with a sampling rate equal to 1000 Hz. Each patient’s

data is segmented into two blocks. The first block contains L
heartbeats of ECG and EGM is used in the training step in

order to estimate the transfer function between EGM and ECG

(see sectionIII-A), whereas the second block containing Q

Fig. 2. Detailed representation of our procedure: a) training step, b)
reconstruction step.

heartbeats is devoted to the reconstruction step (see sectionIII-

B). In order to evaluate the quality of the reconstruction the

correlation between the real ECG and the reconstructed signal

is processed.

Figures 3(a) and 3(b) and 3(c) show an example of 11

EGM channels recorded from the CID and the real surface 12-

leads ECG and the reconstructed ECG (ECGR), respectively.

Clearly, the 12 ECG channels are well estimated (figure 3(c)),

whereas the original EGM (figure 3(a)) input signals are really

morphologically different from the real ECG. Indeed, figure

3(d) shows, for each heartbeat and each ECG channel, that the

reconstruction errors are practically insignifiant. This result is

also confirmed by the correlation coefficient (figure 4), which

is about 0.90 for the three distinct heartbeats.

Figure 5, shows the comparative performance obtained by

applying our procedure by exploiting: i) all the available EGM

(black bars) and ii) only three EGM channel (gray bars).

It is very interesting to note that the performance obtained

using three EGM are quasi-identical than those obtained by

all available EGM, namely 11 EGM in the case of P1, P2,

P3 and P4, six EGM in the case of P5 and P6 and five EGM

for P7, P8 and P9. In addition, when considering the total of

the database, the global correlation for each ECG channel is

about 0.85.

V. CONCLUSION

We propose in this paper a procedure in order to facilitate

the home check-up of patients by using the intracardiac EGM

derived by the implantable prostheses. More precisely our

procedure aims at reconstructing the surface 12-lead ECGs

using the 3D representation of cardiac electrical activity and

PCA. The results obtained on patients with sinus rhythm

show a correlation coefficient between the real ECG and the

reconstructed ECG about 0.85. In addition, our procedure

seems to provide quasi-identical performance by using only

three EGM or a high number of EGM (five, six and 11 EGM

channels in our case). This last result is very useful in practical



case. Indeed, most of CIDs provide only three implantable

electrodes. Current work is directed to the clinical evaluation

of more patients, especially for those presenting an abnormal

heart rhythm such as the presence of premature ventricular

beats.

Fig. 3. Example of ECG reconstruction from EGM fpr P2: a) EGM, b) real
ECG, c) reconstructed ECG (ECGR) and d) reconstruction error.
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