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Abstract 

 

The mapping of numbers onto space is fundamental to measurement and to mathematics. Is 

this mapping a cultural invention, or a universal intuition shared by all humans regardless of 

culture and education? We probed number-space mappings in the Mundurucu, an Amazonian 

indigene group with a reduced numerical lexicon and little or no formal education. At all ages 

the Mundurucu mapped symbolic and non-symbolic numbers onto a logarithmic scale, while 

Western adults used a linear mapping with small or symbolic numbers, and a logarithmic 

mapping when numbers were presented nonsymbolically under conditions that discouraged 

counting. Thus, the mapping of numbers onto space is a universal intuition, and this initial 

intuition of number is logarithmic. The concept of a linear number line appears to be a 

cultural invention that fails to develop in the absence of formal education. 
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What then is mathematics if it is not a unique, rigorous, logical structure? It is a 

series of great intuitions carefully sifted, and organized by the logic men are willing 

and able to apply at any time 

-- Morris Kline, Mathematics: The loss of certainty (p. 312) 

 

The mapping of numbers onto space plays an essential role in mathematics, from 

measurement and geometry to the study of irrational numbers, Cartesian coordinates, the real 

number line and the complex plane (1, 2). How does the human mind gain access to such 

abstract mathematical concepts? Constructivist theories view mathematics as a set of cultural 

inventions that are progressively refined in the history of mathematics and are slowly acquired 

during childhood and adolescence (3). However, the mental construction of mathematical may 

have deeper foundations. Mathematical objects may find their ultimate origin in basic 

intuitions of space, time and number that have been internalized through millions of years of 

evolution in a structured environment, and that emerge early in ontogeny, independently of 

education (2, 4). Here, we present evidence that reconciles these two points of view: our 

results suggest that all humans share the intuition that number maps onto space, but that 

culture-specific experiences alter the form of this mapping. 

Previous psychological and neuroimaging research supports the view that a sense of 

number is present in humans and many other species at an early age, and with a reproducible 

substrate in the bilateral intraparietal sulcus (5-8). This region is remarkably close or even 

overlapping with areas engaged in the coding of spatial dimensions such as size, location and 

gaze direction (9-11). Interactions between numerical and spatial codes in parietal cortex may 

therefore occur at this level. Indeed, in human adults, the mere presentation of an Arabic 

numeral automatically elicits a spatial bias in both motor responding and attention orienting 
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(11-13). Brain-lesioned patients show corresponding impairments in comparing and bisecting 

line segments and numbers (14), and some people even report a vivid experience of seeing 

numbers at fixed locations on an idiosyncratic spatially contiguous ‘number form’ (15, 16). 

Recent experiments document a remarkable shift in the child’s conception of how 

numbers map onto space (17-19). When asked to point towards the correct location for a 

spoken number word onto a line segment labelled with 0 at left and 100 at right, even 

kindergarteners understand the task and behave non-randomly, systematically placing smaller 

numbers at left and larger numbers at right. They do not distribute the numbers evenly, 

however, and instead devote more space to small numbers, imposing a compressed, 

logarithmic mapping. For instance they might place number 10 near the middle of the 0-100 

segment. This compressive response fits nicely with animal and infant studies that 

demonstrate that numerical perception obeys Weber’s law, a ubiquitous psychophysical law 

whereby increasingly larger quantities are represented with proportionally greater 

imprecision, compatible with a logarithmic internal representation with fixed noise (7, 20, 

21). A shift from logarithmic to linear mapping occurs later in development, between 1st and 

4th grade depending on experience and the range of numbers tested (17-19). 

All of these observations, however, were made in Western subjects who all had access 

to mathematical education and culture at an early age. Prior to formal schooling, Western 

children may acquire the number line concept from Arabic numerals seen on elevators, rulers, 

books, etc. Thus, existing studies do not reveal which aspects of the number-space mapping 

constitute a basic intuition that would continue to exist in the absence of a structured 

mathematical language and education. In particular, we do not know if the log-to-linear shift 

would occur spontaneously in the course of brain maturation, or whether it requires exposure 

to critical educational material or culture-specific devices such as rulers or graphs. 
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To address these issues, we gathered evidence from psychological experimentation in 

the Mundurucu, an Amazonian indigene culture with little access to education (22, 23). 

Previous research has established that, although their lexicon of number words is reduced and 

they have little or no access to rulers, measurement devices, graphs or maps, the Mundurucu 

entertain sophisticated concepts of both number and space, albeit in an approximate and non-

verbal manner (22, 23). We therefore asked whether they conceive of these two domains as 

being related by a systematic mapping and, if so, what form this number-space mapping takes. 

A total of 33 Mundurucu adults and children were tested individually in a number-

space task (figure 1)(24). On each trial, a line segment was displayed on a computer screen, 

with one dot at left and ten dots at right (or, in a separate block, 10 and 100 dots respectively). 

Then other numbers were presented in random order, in various forms (sets of dots, sequences 

of tones, spoken Mundurucu words, spoken Portuguese words). For each number, the 

participant pointed to a screen location and this response was recorded by a mouse click, 

without feedback. Only two training trials were presented, with sets of dots whose numerosity 

corresponded to the ends of the scale (e.g. one and ten). The participants were told that these 

two stimuli belonged to their respective ends, but that other stimuli could be placed at any 

location. Because training did not involve intermediate numbers, performance on all 

subsequent trials served to reveal whether the participants would spontaneously use a 

systematic mapping, and if so, whether their mapping would be compressive or linear. 

The Mundurucu’s mean responses revealed that they understood the task. Although 

some participants tended to use only the endpoints of the scale (see 24), most used the full 

response continuum and adopted a consistent strategy of mapping consecutive numbers onto 

consecutive locations (figure 2). There was a significant positive correlation between stimulus 

number and mean response location, regardless of the modality in which the numbers were 

presented. The task was easy when the stimuli were sets of dots similar to the reference labels 
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placed at the endpoints (numbers 1-10, r²=92.6%, 8 d.f.; numbers 10-100, r²=91.9%, 8 d.f.). 

However, the Mundurucu continued to use a systematic number-space mapping with 

untrained stimuli that only shared with the reference labels an abstract concept of number: 

sequences of tones 1-10 (r²=92.5%, 8 d.f.), spoken Mundurucu number words (r²=91.8, 

6.d.f.), and Portuguese number words (r²=91.1%, 8 d.f.), although a small proportion of 

random responses tended to slightly flatten the curves. Note that the Mundurucu stimuli 

included complex expressions that are very rarely uttered, such as “pũg põgbi ebadipdip bodi” 

[approximate translation: “one handful (and) four on the side”]. The results suggest that the 

Mundurucu partially understand the quantity to which these expressions refer. 

Crucially, however, linear regression did not provide the best model of participants’ 

responses. Rather, for all modalities of presentation, the curves were negatively accelerated. A 

multiple regression procedure evaluated the contribution of a logarithmic regressor, over and 

above the linear regressor. The logarithmic compression effect was significant for all stimulus 

modalities, although it was only marginal with Portuguese words (one-tailed p=0.04; see 

significance levels and regression weights on figure 2). Additional analyses allowed us to 

exclude interpretations in terms of linear responding with different slopes for small and large 

numbers, parallax error, experimenter bias, or bimodal responding (see 24). The Mundurucu 

seem to hold intuitions of numbers as a log scale where the middle of the interval 1 through 

10 is 3 or 4, not 5 or 6. 

Previous number-space mapping experiments with Western subjects included only 

symbolic numerals, whereas the present experiment included non-symbolic visual and 

auditory numerosities. Thus, it was important to verify whether these novel stimuli were rated 

linearly or logarithmically in educated Western subjects. As shown in figure 2, American 

adults rated linearly all numerals presented in English and in Spanish as well as the sets of 1-

10 dots, which could easily be counted. However, they exhibited a significant logarithmic 
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component with sets of 10-100 dots and with sequences of tones. When the two groups of 

participants were compared directly, the Mundurucu showed a greater compressive non-

linearity than the American subjects only with sets of 1-10 dots (p=0.003) and with numerals 

in the first language (p=0.033). This finding concurs with previous data suggesting that 

Western subjects estimate large numerosities in an approximate and compressive manner (25, 

26). Their judgments are linear only when the numbers are presented in a symbolic manner or 

as small sets whose numerosity can be precisely assessed. 

The Mundurucu population is heterogeneous, and some of our participants, 

particularly the children, had received a little education. To examine the impact of this 

variable, we calculated, for each participant, an index of non-linearity in the number-space 

mapping: the weight of the log regressor in a multiple regression of the data on linear and log 

regressors. For this analysis, we pooled over the trials with dots 1-10 and number words, but 

excluded those with dots 10-100 and tones for which Western subjects showed some non-

linearity. The index confirmed a highly significant non-linearity in Mundurucu participants 

(t=6.20, 34 d.f., p<10-6). In American participants, performance did not deviate from linearity 

(p=0.08) and differed markedly from that of the Mundurucu (Welch t=4.37, 48.6 d.f., 

p<0.0001). Crucially, the Mundurucu’s non-linearity remained significant even when 

restricting the analysis to adults (t=4.34, 23 d.f., p=0.0002), to monolingual speakers (t=5.36, 

29 d.f., p<10-5), or to uneducated participants (t=2.60, 7 d.f., p=0.035; see figures S7-S10 for 

a graphic depiction of subgroup performance)(24). T-tests, linear and rank-order regression 

analyses showed no effect of gender, age, education or bilingualism. There was only a trend 

towards a reduced non-linearity as a function of age (Kendall tau = -0.23, p=0.055). While 

this observation suggests that older Mundurucu may evolve towards a greater understanding 

of the linear number line, it should be noted that in Western children, the mapping becomes 

linear over the range 10-100 by the 1st or 2nd grade (17-19), while in our data, even the oldest 
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Mundurucu adults (age>40) continued to show a highly significant non-linearity over the 

range 1-10 (t=3.36, 11 d.f., p=0.006). 

Finally, we analyzed the special case of Portuguese numerals. Although overall 

performance was logarithmic, subdivision by education level indicated that logarithmic 

responding held for participants with 1-2 years of education (t=3.15, 16 d.f., p=0.006; figure 

S9), but not for those with no education at all or with more education. In uneducated 

participants, performance with Portuguese numerals was highly variable and weakly 

correlated with number (r²=39.0, p=0.053; figure S8), suggesting that many of these subjects 

simply did not know the meaning of Portuguese numerals. For the most educated group, on 

the other hand, performance was strictly linear (r²=94.5%, p<10-5; figure S10). Excluding 

participants with no education, we found that greater education significantly changed the 

responses to Portuguese from logarithmic to linear (t=2.48, 16.6 df, p=0.024) but left 

responses to Mundurucu numerals and dot patterns unchanged (p>0.5), thus yielding a 

significant interaction (p=0.008). Strikingly, within the more educated group, performance 

varied significantly with number notation (t=3.12, 9 d.f., p=0.012), as it was linear for 

Portuguese numerals but logarithmic for Mundurucu numerals and dot patterns 1-10. 

Overall, these results reveal both universal and culture-dependent facets of the sense of 

number. After a minimal instruction period, even members of a remote culture with reduced 

vocabulary and education readily understand that number can be mapped onto a spatial scale. 

The exact form of this mapping switches dramatically from logarithmic to linear, however, 

depending on the ages at which people are tested, the education that they received, and the 

format in which numbers are presented,. 

In light of the performance of Amazonian adults, it is clear that the mental revolution 

in Western children’s number line does not result from a simple maturation process: 

logarithmic thinking persists into adulthood for the Mundurucu, even for very small numbers 
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in the range 1-10, whether presented as dots, tones or spoken Mundurucu words. What are the 

sources of this universal logarithmic mapping? Research on the brain mechanisms of 

numerosity perception have revealed a compressed numerosity code, whereby individual 

neurons in parietal and prefrontal cortex exhibit a Gaussian tuning curve on a logarithmic axis 

of number (27). As first noted by Gustav Fechner, such a constant imprecision on a 

logarithmic scale can explain Weber’s law – the fact that larger numbers require a 

proportional larger difference in order to remain equally discriminable. Indeed a recent model 

suggests that the tuning properties of number neurons can account for many details of 

elementary mental arithmetic in humans and animals (21) In the final analysis, the logarithmic 

code may have been selected during evolution for its compactness: like an engineer’s slide 

rule, a log scale provides a compact neural representation of several orders of magnitude with 

fixed relative precision. 

It is not yet known which critical educational or cultural experience turns this initial 

representation into a linear scale. When a cultural difference in conceptual representation is 

observed in a remote population, Whorf’s hypothesis is often invoked (28), according to 

which language determines the organization of thought. In the present case, however, the 

Whorfian explanation fails, since neither linguistic competence per se (present in all 

Mundurucu), nor numerical vocabulary and verbal counting (present in most Mundurucu, 

including some monolingual speakers and young children, see 24) suffice to induce the log-

to-linear shift (17-19). Speculatively, two factors underlying the shift may be experience with 

measurement, whereby a fixed numerical unit is applied to different spatial locations, and 

experience with addition and subtraction, ultimately yielding the intuition that all consecutive 

numbers are separated by the same interval +1. The most educated Mundurucu eventually 

understand that linear scaling, which allows measurement and invariance over addition and 

subtraction, is central to the Portuguese number word system. At the same time, they still do 
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not extend this principle to the Mundurucu number words, where perceptual similarity 

between quantities is still seen as the most relevant property of numbers. The system of 

Mundurucu number words may be a cultural device that does not emphasize measurement or 

invariance by addition/subtraction as a defining feature of number, contrary to Western 

numerals. 

The simultaneous presence of linear and compressed mental representations of 

numbers is probably not unique to the Mundurucu. In American children, logarithmic 

mapping does not disappear all at once, but vanishes first for small numbers and much later 

for larger numbers 1-1000 (up to 4th or 6th grade in some children) (17-19). In fact, a 

logarithmic representation may remain dormant in all of us for very large numbers or 

whenever we approximate numbers (29), including prices (30). Thus, log and linear scales 

may be deeply embedded in all of our mental activities (31). 
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Figure legends 

Figure 1. 

Number mapping task with numbers 1-10. A horizontal segment, labelled with a set of one 

dot on the left and a set of 10 dots on the right, was constantly present on screen. Numbers 

were presented visually as sets of dots or auditorily as sequences of tones (see 24), 

Mundurucu numerals or Portuguese numerals . For Mundurucu numerals, a rough translation 

into Arabic numerals is provided (e.g. “pũg põgbi xex xep bodi” ≈ “one handful (and) two on 

the side” ≈ 7; “xex xep põgbi” ≈ “two handfuls” ≈ 10). For each stimulus, participants pointed 

to a place on the line, and the experimenter clicked it with the computer mouse, which made a 

small bar appear. 

Figure 2. 

Average location of numbers on the horizontal segment, separately for Mundurucu 

participants (left column) and for American participants (right column). Data are mean +/- 

standard error of the mean. Graphs of performance broken down by age group and education 

are available as supplementary material (24). 
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