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“Prediction is very difficult, especially if it’s about the future”

Niels Bohr

Preface

To cope with an unpredictable variety of potential pathogenic insults, the immune system

must generate an enormous diversity of recognition structures, and it does so by making

stepwise modifications of key genetic loci in each lymphoid cell. This proceeds through the

action of lymphoid-specific proteins acting together with the general DNA-repair machinery

of the cell. Strikingly, these general mechanisms are usually diverted from their normal

functions, being used in rather atypical ways in order to privilege diversity over accuracy. In

this Review, we focus on the contribution of a set of DNA polymerases discovered in the last

decade to these unique DNA transactions.

Introduction

Starting from their development in the bone marrow, B cells undergo a series of complex

molecular events to generate mature B cells that express a single functional B-cell receptor

(BCR). After antigen encounter, B cells can remain for the life of the host in the memory B-

cell compartment to provide protection from infection (Fig.1). For this to occur, B cells must

first generate a diverse pre-immune repertoire of BCRs for recognition of the diverse

antigenic world. In mice and humans, this repertoire is generated by ongoing rearrangement

of a large pool of variable (V) gene segments (around 50–100) and a small pool of diversity

(D) and joining (J) units (around 10) that combine to form the BCR by a process known as

V(D)J recombination1. Activation of B cells by foreign antigen induces a new cascade of

genomic modifications in the responding B cells. These involve the introduction of point

mutations in the V regions of the rearranged antibody to improve its affinity for the antigen (a

process known as somatic hypermutation (SHM)), as well as a switch in the DNA that

encodes the constant (C) region of the immunoglobulin heavy chain, from Cµ to another

heavy chain, Cγ, Cα or Cε, to provide appropriate effector function2 (a process known as

class-switch recombination (CSR)). SHM and/or a third type of DNA modification known as

gene conversion, are also used in some species that have more restricted numbers of germline

V gene segments to generate the pre-immune BCR repertoire3 (Fig.1).

In this Review, we focus on a specific set of enzymes — DNA polymerases — that are

mobilized during these different DNA transactions in B cells. New DNA polymerases have
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been described in the last decade, and several of them have now been shown to have a distinct

role in the adaptive immune system. We describe the variety of enzymatic activities carried

out by DNA polymerases that contribute to immunoglobulin gene diversity either through the

processing of DNA junctions or through mutagenesis.

DNA polymerases

DNA polymerases are enzymes that synthesize new DNA strands using a DNA template.

DNA polymerases act in semi-conservative DNA replication and in various DNA-repair

pathways that require de novo DNA synthesis. Escherichia coli encodes five polymerases

(PolI to PolV), two of which are involved in replication, with the other three being involved in

DNA repair, DNA damage tolerance and stress-induced mutagenesis4. By contrast, mammals

have 14 such enzymes (or 15, if one includes terminal deoxynucleotidyl transferase (TdT), a

template-independent polymerase). Four are replicative polymerases (Polα, Polγ, Polδ and

Polε) and 11 perform various non-replicative tasks5,6 (Table 1). These non-replicative

functions concern the removal and repair of damaged bases (for example, Polβ in base-

excision repair), the rejoining of broken DNA ends (Polλ and Polµ in non-homologous end-

joining (NHEJ)), the by-pass of DNA lesions that block the progression of replication forks

(Y family polymerases, as well as Polζ, in translesion DNA synthesis (TLS)) and template-

independent insertion of nucleotides (TdT during V(D)J recombination). One hypothesis

proposed for the striking increase in the number of non-replicative polymerases in higher

vertebrates compared with prokaryotes is that each polymerase would display a preferential

handling of specific DNA lesions, for which it would harbour both higher efficiency and

accuracy, thereby reducing the deleterious consequences of the corresponding damage7.

V(D)J recombination  and DNA polymerases

A complete V gene sequence of the BCR is assembled from dispersed V, D and J coding

segments for the heavy chain, and V and J elements for the light chain. This recombination

process is mediated by the lymphoid-specific genes recombination-activating gene 1 (RAG1)

and RAG2, which ensure that the process is targeted to antigen-receptor loci, together with

the general NHEJ machinery of the cell. The ubiquitous NHEJ machinery mediates several

essential steps: the binding of DNA ends, their processing and their proper religation.

Extensive modifications that occur at DNA ends before the continuity of the immunoglobulin
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coding sequence is restored are the hallmark of V(D)J recombination, and the enzymatic

activities involved are discussed below.

The rearrangement process. The assembly of a complete immunoglobulin V gene involves

the introduction of double-strand breaks (DSBs) in the DNA at the border of each coding

element followed by rejoining of the ends8, 9 (Fig. 2). For this to occur, a synapsis forms

between the two distantly located genomic regions and the DNA is cleaved by a process

involving the two RAG proteins. The RAG1/RAG2 complex binds to conserved elements in

the DNA known as recombination signal sequences (RSSs) that flank each coding segment

(V, D and J segments) and introduces a nick into one strand of the DNA between the RSS and

the coding sequence. The nick creates a free 3’ hydroxyl group, which attacks the

phosphodiester bond on the opposite strand, forming the DSB. This cleavage generates two

coding ends that terminate in a covalently sealed hairpin and two blunt signal ends. The signal

ends remain associated with the RAG complex, which serves as a scaffold to recruit factors

that religate the ends — by the NHEJ pathway — to generate a circular episome that will

eventually be eliminated. The hairpin coding ends, also synapsed by the RAG complex, are

encircled by the Ku proteins (Ku70 and Ku86), which recruit DNA-PKcs (DNA-dependent

protein kinase catalytic subunit), which in turn recruits and activates Artemis, enabling it to

open the hairpin ends.

In most places in the genome, the DSBs are then resolved by rendering the DNA ends

compatible for their religation. However, at the antigen-receptor loci, the coding ends are

subjected to extensive ‘nibbling’ (nucleotide trimming) by as-yet-undefined exonucleases

followed by DNA resynthesis by template-dependent polymerases, and random nucleotide

insertions (N-additions) by the template-independent polymerase TdT. These different

enzymatic activities create diversity by varying the number of amino acids in the

complementarity-determining region 3 (CDR3) of the antigen receptor, a region that makes a

major contribution to the specificity of the antibody produced. Finally, the strands are

religated and the coding joint formed by the activities of XRCC4 (X-ray repair cross-

complementing protein 4) in complex with Cernunnos (also known as XLF) and DNA ligase

IV10.

Random pairing of the rearranged heavy and light chains then occurs during assembly

of the antibody molecule to create different specificities. It should be emphasized that the

junctional variability generated during V(D)J recombination at the heavy chain locus exceeds
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by orders of magnitude the diversity created by both the assortment of V, D and J gene

segments and the combination of heavy-chain and light-chain pairing.

Here we focus on the role of DNA polymerases during the rearrangement process of

the BCR and we start by summarizing our current knowledge of the role played by the PolX

family (which comprises Polβ, Polλ, Polµ and TdT in mammals). Owing to their capacity to

interact with DNA-PKcs complexed to DNA, Polµ and Polλ have emerged as possible

partners of both general NHEJ and V(D)J recombination11, 12. Polβ in contrast seems to be

mainly involved in BER13.

PolX polymerases in NHEJ. Polymerases are required during the repair of DSBs by NHEJ to

fill in gaps in the DNA or to extend recessed 3’ ends. In the yeast Saccharomyces cerevisiae,

the Pol4 enzyme, which belongs to the PolX family, has been shown to be involved in fill-in

DNA synthesis during NHEJ14. Among PolX polymerases, Polλ is closer to yeast Pol4 while

Polµ and TdT, which are highly homologous to each other, are more distantly related15-17.

Polµ and Polλ are expressed in most tissues, with enhanced expression of Polµ found in

lymphoid cells, whereas TdT is exclusively expressed in developing B and T cells.

Several laboratories have studied the role of PolX polymerases during DSB repair.

Polµ and Polλ have been shown to associate with the protein complex Ku–DNA-PKcs once

they are bound to DNA and can perform gap-filling synthesis of paired DNA ends in vitro11, 12,

18. The possible use of these enzymes during NHEJ seems to be due to their capacity to

synthesize DNA from less stable primer structures compared to replicative polymerases, such

as primers that encompass a DNA template with a gap19 (Fig.3c). Lieber and colleagues, using

purified polymerase proteins in vitro, showed that a competitive hierarchy exists in the

recruitment of polymerases to the DNA during NHEJ, with Polµ being preferentially recruited

over Polλ in the absence of TdT, whereas the reverse was true when TdT was present12.

Ramsden and colleagues proposed the existence of a range of increasing template dependence

among mammalian PolX family members, with TdT showing the least template dependency,

then Polµ and then Polλ, which shows higher template dependence20. Accordingly, in their

assay, Polµ has the unique capacity to prime DNA synthesis across a junction without any

base pairing (Fig.3c).

Paradoxically, the absence of these polymerases induces no sensitivity to DSB-

inducing agents, as embryonic fibroblasts derived from mice lacking either or both Polµ and

Polλ were not sensitive to ionizing radiation21. This implies that other processing activities
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can substitute and provide efficient DSB repair, although the outcome of DSB rejoining may

be qualitatively different.

The nibbling process during V(D)J recombination. The CDR3 that is generated during the

rearrangement process displays a size heterogeneity that is more marked for the heavy chain

(15 to 55 base pairs) than for the light chain (20 to 30 base pairs). Such size differences imply

a variable trimming of the coding ends before religation, but the enzyme responsible for this

activity has not yet been formally characterized. It has been proposed that a splicing variant of

TdT may have such exonuclease activity22, but biochemical and functional assays have

challenged this idea23, 24. During NHEJ, Artemis forms a complex with DNA-PKcs, which

phosphorylates Artemis and allows it to acquire an endonucleolytic activity acting on 3’ or 5’

overhanging ends and on various branched DNA structures. This role for Artemis explains the

general radiosensitivity observed cells that lack this protein25, 26. Artemis cleaves RAG-

induced hairpin ends preferentially 3’ from the tip in vitro25. In vivo, this cleavage results in a

small palindrome sequence (referred to as P addition) at the coding end of the

immunoglobulin gene segments. Once the hairpin has been cleaved, Artemis could be

responsible for nucleotide trimming at the 5’ and 3’ ends of the coding ends, but the

involvement of additional exonucleases has not been ruled out. We found no effect of

inactivation of the exonuclease Exo1 on the size of the CDR3 of heavy-chain V regions (C.-

A. Reynaud and J.-C. Weill, unpublished observations, in collaboration with W. Edelmann),

but other enzymes, such as TREX1 (three prime repair exonuclease 1)27, remain to be

assessed.

PolX polymerases during V(D)J recombination. A role for Polµ and Polλ polymerases in the

V(D)J recombination process has been assessed by the analysis of immunoglobulin

rearrangement in mice deficient for these enzymes, alone or in combination. We reported that

light-chain junctions were shorter by about 6 base pairs in the absence of Polµ, whereas the

size of heavy-chain junctions was not affected28. These altered light-chain junctions resulted

in an impaired pre-B-cell to B-cell transition, at which stage light-chain genes rearrange, as

well as a moderate and more variable peripheral B-cell deficiency. Surprisingly, Polλ-

deficient mice had normal light-chain joints but heavy-chain junctions that were about 5 base

pairs shorter, although no quantitative effect on the B-cell population was observed21.

Nucleotide additions were unaffected in the absence of Polλ, suggesting that Polλ was acting
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before TdT-mediated nucleotide addition and was therefore not involved in filling the gaps

generated by 3’ TdT-mediated extensions. Mice deficient in both polymerases displayed the

additive effects of both phenotypes, without any further decrease in junction size or B-cell

deficiency21. Together, these studies suggest that Polµ  and Polλ  act on different

immunoglobulin chains: Polµ on the light chain and Polλ on the heavy chain. During B-cell

ontogeny, Polλ and Polµ are expressed at similar levels at the pro-B-cell stage, when heavy-

chain gene rearrangement takes place, whereas Polµ expression increases 25-fold at the stage

when the light chain genes rearrange. By comparison, there is a several hundred-fold higher

expression of TdT at the pro-B-cell stage, when N-additions are made, compared with later

differentiation steps, indicating that the recruitment of these different enzymes may be

dictated by both their relative affinity for DNA and their respective expression level.

Exactly how Polλ and Polµ participate in V(D)J recombination remains to be

elucidated (Fig. 3). Their role could involve protecting the DNA ends from an exonuclease or,

as proposed for Polµ, filling in gaps in the DNA at junctions with minimal homology, or

possibly both20, 21. Whatever their exact roles, the fact that the immune system has evolved

two different polymerases for each chain of the BCR is an unexpected finding. We have

proposed that their precise interventions may be linked to the particular property of each

CDR321. For light chains, a restricted heterogeneity of CDR3 sizes is indeed required to

maintain a semi-invariant residue encoded at the 3’ end of Vκ genes29, whereas CDR3

heterogeneity is key for the heavy-chain repertoire. Minimal processing of light-chain coding

ends would be tightly controlled by Polµ, whereas a less potent activity of Polλ would allow

for the large size diversity that is characteristic of CDR3s of immunoglobulin heavy chains.

Somatic hypermutation and DNA polymerases

In the 1950s, SHM was proposed as a central player in the immune system either to improve

the primary repertoire or to mature a specific immune response30, 31. It was not until decades

later that mutations were actually observed, first in the immunoglobulin protein32 and then at

the DNA level33-36, providing proof that a process of adaptive mutation targeted to a single

locus, not observed in any other living organism, was co-opted by the immune system.

One of the central problems researchers faced when trying to understand SHM was the

nature of the enzymatic activity involved37. The discovery of activation-induced cytidine

deaminase (AID) provided a clue to this problem38-40. It is now generally accepted that the

deamination of cytidines into uracils by AID is the initiating event that allows the specific
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recruitment of factors involved in SHM, CSR or gene conversion41. Uracils can normally be

excised by several uracil glycosylases and replaced by the base-excision repair pathway,

which faithfully restores the original DNA sequence. By contrast, during SHM, the uracils

generated by AID can be recognized either by uracil-DNA glycosylase (UNG) or, as U-G

mispairs, by the mismatch repair complex. However, both repair pathways appear to function

abnormally. Effectively, the action of UNG is restricted to uracil excision, giving rise to

abasic sites, and, for mismatch repair, the mismatch-binding moiety (MSH2–MSH6, together

with Exo1) proceeds alone without recruiting the effector part of the complex

(MLH1–PMS2)42-44. These two repair pathways therefore trigger further DNA alterations

through mutagenic DNA synthesis, rather than their normal role in correcting the error to

match the original sequence (see model proposed below). Evidence for the involvement of

mutagenic polymerases in these atypical repair processes is reviewed in the following

sections, and a model is proposed based on our knowledge of the different partners involved.

Candidate polymerases for SHM. The first candidate polymerase known to lack proofreading

activity and to act outside the S phase of the cell cycle was Polβ. As Polβ-deficient mice die

after birth, reconstitution of the immune system of irradiated animals with Polβ-deficient fetal

liver cells was carried out, but this failed to reveal any deficiency in the SHM process45.

Another group of polymerases — namely the TLS polymerases46-48 — were considered

good candidates for being involved SHM. These enzymes can mediate polymerase activity

opposite DNA lesions that induce a stalling (pausing) of the replication fork. Because of their

relaxed catalytic sites that allow them to accommodate distorted DNA structures, TLS

polymerases are highly error-prone when copying normal undamaged DNA. Although studies

of TLS have been largely focused on polymerases of the Y family (together with Polζ), other

enzymes, such as Polµ, Polλ and Polθ, have shown robust translesion activity in vitro49-51.

Each non-replicative polymerase (except Polν) has been tested for its role in SHM. Since

most of these enzymes have a specific mutagenic signature in vitro, when copying normal

DNA or when by-passing abasic sites, one should expect that inactivation of a polymerase

involved in SHM would result in a modification of the immunoglobulin gene mutation pattern

in a manner that reflects its enzymatic preferences.

Polη. The study of patients affected by the xeroderma pigmentosum variant (XP-V)

syndrome, a genetic disease associated with the inactivation of polη52, 53, provided the first
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experimental evidence for the involvement of a TLS polymerase in SHM. A reduced mutation

frequency at A/T bases was observed in these patients54, 55, an observation that was further

confirmed in Polη-deficient mice56-58 (Fig.4).

The preferred mutation of Polη  when copying normal DNA in vitro is the

incorporation of Gs opposite Ts, thereby generating T to C and A to G transition mutations,

the complementary mutation (that is, the incorporation of Cs opposite As) being 10 times less

frequent59. Altogether, the nucleotide misincorporation frequency of Polη is 2–3%, with Ts

mutated 2–2.5 times more frequently than As, and Cs plus Gs about 3–4 times less frequently

than both As and Ts. Polη is not a processive enzyme and therefore favours the synthesis of a

few nucleotides (short-patch DNA synthesis). Mutagenicity of Polη was estimated using a Vκ

template sequence when synthesizing either the transcribed or the non-transcribed strand in

vitro60. Interestingly, despite the fact that this assay monitored the error rate of the polymerase

during the synthesis of a few hundred bases that may not occur in vivo, a strong correlation

with the in vivo pattern of mutations at A/T base pairs was observed, in particular during

synthesis of the coding strand (the non-transcribed strand), although hotspots on both coding

and non-coding strands were clearly observed. This suggested that both strands could be

copied by Polη in vivo, possibly with some bias for the coding strand.

A residual A/T mutagenesis (10–15%) is observed in Polη-deficient mice, suggesting

that other polymerase activities might contribute to the formation of mutations at A/T bases56.

Half of these mutations consist in A to C and T to G transversion mutations, a pattern that

evokes the signature of another TLS enzyme, Polκ61, 62(Fig.4). As Polκ does not seem to play

a role in the physiological situation63, 64, it suggests that this polymerase acts as a back-up

when the normal pathway is compromised. Accordingly, the reduction in A/T mutagenesis

corresponds well with the lower mutagenicity of Polκ61, 62. Altogether these data support the

proposition that Polη is the sole contributor of A/T mutations during physiological SHM in

mice, with other TLS polymerases playing a backup role65.

Rev1. Rev1 has a deoxycytidyltransferase activity that is directed opposite various damaged

bases, as well as abasic sites and normal DNA66, 67. The Rev1 protein contains an N-terminal

domain that is unique among other Y family enzymes46 (known as BRCA1 C-terminal

(BRCT), which is involved in protein–protein interactions) and a C-terminal region that

mediates interaction with other TLS polymerases68. Deletion of the BRCT domain of Rev1

has been shown to be required for TLS activity of certain DNA lesions, although it does not
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seem to be required for SHM69. By contrast, the complete deficiency of Rev1 has a clear

effect on SHM70. G/C mutations represent around 50% of all mutations during SHM, among

which approximately 25% are G to C and C to G transversion mutations that could correspond

to the mutation signature of Rev1 when bypassing abasic sites. Surprisingly, in Rev1-deficient

mice, C to G mutations were almost absent from the coding strand, whereas G to C mutations

were only reduced (by around 50%), suggesting a different use of Rev1 depending on the

strand synthesized and the implication of another polymerase for generating the remaining C

to G mutations. As these mutation data were obtained using functional Vλ1 sequences,

analysis of unselected mutations would be useful to confirm this strand bias. These data

therefore indicate that other polymerases, in addition to Rev1, are responsible for generating

transversions mutations at G/C bases.

Polζ. Polζ  is composed of two subunits –Rev3, the catalytic subunit, and Rev7– and is a

major partner in the bypass of DNA lesions. It has been proposed that polζ could work as a

general DNA extender in lesion bypass performed by other TLS enzymes, being able to

synthesize a few nucleotides before the replication fork restarts its progession71. Moreover,

Polζ is the only TLS polymerase that when inactivated in mice is embryonic lethal, indicating

that this enzyme has other functions beyond TLS activity72-74. It was recently reported that the

activity of Rev3 is error-prone when copying undamaged DNA, albeit to a lesser extent than

Polη and Polι75. However, it should be noted that all biochemical assays on Rev3 are

performed using the yeast enzyme, as no active recombinant mammalian Rev3 has been

produced so far. In transgenic mice expressing an antisense transcript against Rev3 that

reduces its expression in B cells, a lower mutation frequency was observed, with no specific

impact on the mutation pattern76. A similar observation was made in a Burkitt’s lymphoma

cell line (CL-01) that is induced to undergo SHM in culture, using antisense oligonucleotides

against Rev377.  Mice with conditional Rev3 inactivation, allowing its deletion in mouse B

cells, were recently generated. Rev3 deficiency impaired B-cell proliferation, presumably due

to a defect in the maintenance of genome stability, as Rev3-deficient B cells frequently

harboured chromosomal aberrations. A decreased SHM frequency was observed, but again

with no obvious change in the SHM pattern78.

Taken together, these results can be interpreted in two ways. First, Polζ could be a

major partner in all the mutations produced during SHM. This is a feasible scenario because it

could participate in extending the short-patch DNA synthesis performed by Polη and the
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bypass of abasic sites. Second, the effect of the Rev3 deficiency observed could be indirect,

being due instead to the altered cell viability caused by the absence of Polζ.

Polι. Like Polη, Polι tends to incorporate a T opposite a G when copying normal DNA79.Polι

is ten-fold more potent than Polη in generating this error, although recent data suggest that its

fidelity may vary considerably depending on the nature of the divalent ionic cofactor present

in the reaction80.

Human Burkitt’s lymphomas undergo SHM in culture either constitutively (Ramos

cell line) or after induction (BL2 or CL-01 cell lines)81-84. The pattern of mutations does not

mimic the SHM pattern generated in vivo as it displays more mutations at G/C base pairs

(80% versus 20% at A/T base pairs). It seems therefore that the A/T pathway does not

function properly in these cell lines despite the presence of a functional mismatch repair

pathway and normal Polη expression85. Strikingly, SHM could no longer be induced when

Polι was inactivated in the BL2 cell line86. In contrast, SHM was found to be normal in mice

deficient for Polι (a deficiency generated by a spontaneous stop codon mutation occurring in

the 129 mouse strain), thus excluding Polι as a physiological partner of hypermutation in the

mouse87. Therefore, in BL2 cells, Polι may be involved in an error-prone repair pathway

mediated by UNG, similar to what occurs for Polη in MSH2-deficient mice (see model

below). Accordingly, BL2 subclones displaying increased Polβ expression fail to induce

SHM, suggesting that Polβ could displace Polι to perform its normal error-free repair

function88.

Polθ. Two groups have reported contrasting results on the impact of a complete inactivation

of Polθ on SHM in mice. In one report, deletion of Polq (the gene encoding Polθ) leads to a

large decrease in the frequency of mutations, with a pattern biased towards transition

mutations89. In another report, deletion of this gene only induces a moderate reduction in

mutation frequency, without alteration of the pattern of mutations90. Moreover, deletion of

both Polθ and Polη did not further modify the mutation profile seen in Polη-deficient mice91.

Deletion of the sole polymerase domain of Polθ  also resulted in a mild phenotype, with a

small increase of A/T mutagenesis but no alteration of the G/C mutation profile92, a result

that, again, does not fit well with the robust translesional activity of Polθ at abasic sites in

vitro and its preference for insertion of As51. Additional experiments are therefore needed to

clarify whether there is a direct role of Polθ during SHM.
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PCNA. Proliferating cell nuclear antigen (PCNA) is a sliding clamp that tethers DNA

polymerases to the DNA template during replication. PCNA is monoubiquinated at lysine

residue 164 in human cells after UV-irradiation, and it has been proposed that this

modification may mediate the exchange between replicative and TLS polymerases when the

replication fork arrests at a lesion93. Accordingly, TLS polymerases bind to

monoubiquitinated PCNA through two types of motif: a PCNA interacting peptide (PIP box)

that binds directly to PCNA94 and an ubiquitin-binding motif that is required for their bypass

function95. The role of PCNA in SHM was analysed using mice bearing a PCNA mutation

(Lys164Arg) that is known to inhibit its monoubiquitination and therefore its interaction with

TLS polymerases. Mutations at A/T bases were found to be practically absent96. Mutations at

G/C bases were mildly affected, with only a 50% reduction of C to G transversion mutations

and no alteration of other types of G/C mutations, including G to C transversions. When these

results are compared with those observed for Rev1-/- mice, they imply that, for C to G

mutations, bypass of half of the abasic sites on the coding strand can be accomplished by

Rev1 independently of a monoubiquitinated form of PCNA. MSH2 and UNG also have a PIP

box, and it has been shown that PCNA can be recruited in specific DNA processes, such as

mismatch repair or base-excision repair which takes place outside DNA chromosomal

replication97. However it is not known whether PCNA is monoubiquinitated during these

processes. The contribution of the monoubiquitination of PCNA during SHM appears

therefore somewhat paradoxical, being required during the short-patch DNA synthesis

performed by Polη, but almost dispensable during the bypass of abasic sites that represents a

classical TLS process.

UNG, MSH2 and the A/T mutagenesis pathway

The uracils generated by AID are processed by only two pathways, UNG and mismatch

repair, as clearly established by Neuberger and colleagues. These authors used UNG/MSH2

double-deficient mice98 to show that uracils generated by AID are carried over into replication

without processing, to generate only G to A and C to T transition mutations (Fig.4). These

mutations therefore represent the footprint of AID deamination at the immunoglobulin locus.

UNG deficiency alone shifts mutagenesis at G/C bases towards transition mutations,

with a minor impact on A/T mutations99 (Fig. 4). By contrast, MSH2 deficiency results in a

decreased mutagenesis at A/T bases, a phenotype that is also associated with MSH6 and Exo1
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deficiency100-103 (but which is not observed in the absence of PMS2 or MLH1, the effector

partners of the mismatch repair complex)42, 104. These contrasting phenotypes led to the

proposition of two alternative phases of SHM: one mediated by UNG and generating

mutations at G/C bases after uracil excision, and one mediated by MSH2–MSH6, introducing

A/T mutations98. However, alteration of the mutation pattern in MSH2-deficient animals

appears to be more complex: in addition to a reduced A/T mutagenesis, it shows an overall

reduced mutation frequency, an increase in transition mutations at G/C bases, and an altered

mutation profile showing an increased targeting at a few hotspot positions (Fig.4). For a long

time, no comprehensive explanation was provided for this complex phenotype, which was

described before the discovery of AID. However, when compared to the footprint of AID

targeting revealed in Ung-/-Msh2-/- mice, this profile can be simply explained by an increased

error-free repair mediated by UNG in the absence of MSH2–MSH6, thus reducing the overall

number of mutations65. Inefficient displacement of AID from its target DNA would explain

the increase in G/C transition mutations (uracils being carried over to replication), especially

at a few hotspot positions showing a symmetrical WGCW structure (W standing for A or T).

The residual A/T mutagenesis appears to be generated by an error-prone repair mobilizing

UNG and Polη, as clearly shown by the complete absence of A/T mutations in MSH2/Polη

double-deficient mice65 (Fig.4), but whether this UNG-mediated error-prone repair is

artificially caused by the absence of MSH2 is an open question.

A model for SHM: two competitive rather than alternative pathways

The following model attempts to bring together data obtained from mice deficient in TLS

polymerases, mismatch repair, Exo1 and UNG (Fig.5).

In this model, AID attacks the V gene segment undergoing SHM, introducing uracils

on both strands of the DNA most probably during a few rounds of replication. Because AID is

expressed throughout the cell cycle105, this attack can occur in the different phases of the cell

cycle. Uracils generated during the G1 phase are preferentially recognized as U-G mismatches

by the MSH2–MSH6 complex. If this complex is absent, UNG will process most of the

uracils and repair them error free. In wild-type cells, the MSH2–MSH6 complex recruits

Exo1103, to excise a patch of DNA from a single-strand nick, the origin of which is yet

unknown, as well as Polη, which results in mutagenic synthesis of the strand targeted by AID.

AID deaminates 60% of Cs on the coding strand and 40% on the non-coding strand98, whereas

the G:C mutation ratio is reequilibrated after Polη intervention (Fig.5). Together with As
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being mutated about twice as frequently as Ts, this suggests that Polη exerts its activity more

frequently on the coding strand, and possibly extends a longer patch of DNA on this strand.

The equivalent mutation frequency observed at the V gene segment for wild-type and

MSH2/UNG-deficient mice suggests that, in general, every uracil that is repaired by the

mismatch-repair pathway gives rise to a distant mutation. It has been proposed recently, using

a transgenic model, that A/T mutations are only produced on targeting of the coding strand106.

Whereas such a strand-specific repair would be compatible with the equalization of mutations

between G and C bases, and the A over T bias observed in V gene mutations (Fig.4), the

proposition deserves additional studies, as the mutations reported do not fit with the pattern

expected from Polη-mediated repair60.

Uracils that remain during replication or those that are generated in S phase, while

present in single-stranded DNA, will be processed by UNG. As the replication fork proceeds,

it will stall opposite the abasic site generated by UNG and will recruit TLS polymerases in a

classical TLS bypass process, although it is surprisingly largely independent of PCNA

monoubiquitination. So the question remains: which polymerases, besides Rev1, might create

mutations at these abasic sites? Transition mutations could be produced opposite uracils by

the replicative polymerases, but it is also possible that UNG might excise most of them and

that several TLS polymerases could follow the “A rule” opposite an abasic site (a default

pathway leading to insertion of A opposite a lesion4), and thus also produce G to A and C to T

transition mutations. Polζ could also be involved in the bypass of these abasic sites, and a role

for replicative polymerases has been proposed as well107.

Rather than representing two alternative pathways for the handling of AID-mediated

deaminations, we therefore propose that the mismatch repair and UNG-mediated pathways

are competitive, with the MSH2–MSH6 complex restricting the role of UNG in the S phase to

the single-stranded configuration of uracils.

CSR, gene conversion and DNA polymerases

CSR occurs in activated B cells and allows the exchange of heavy chain constant region

genes, from Cµ to other downstream C regions (Fig.1). Specific sequences (switch regions)

that are located upstream of each constant region are involved in this recombination event that

requires the deamination of cytidine residues in these switch regions by AID. Uracils are

further processed by UNG and by mismatch-repair factors, the former having a more
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important role in CSR than in SHM, suggesting that the competition between these two

activities might differ during both processes.

Polη-dependent mutations have been observed upstream of switch junctions in human

and mouse B cells, but there does not seem to be any quantitative alteration in CSR in the

absence of this enzyme55-57, 108. As DNA sequences surrounding switch junctions have no

function once CSR has occurred, these mutations are likely to have no physiological role. It

was recently reported that, during CSR, error-free repair by Polβ after uracil excision could

compete with the generation of the DSBs that are required to initiate recombination109. Polη

(as well as Polκ if used as a back-up enzyme) lacks deoxyribophosphate-lyase (dRP-lyase)

activity to remove the sugar moiety left at an abasic site after incision of the sugar-phosphate

DNA backbone, whereas Polβ has such an activity, which allows it to contribute efficiently to

the base-excision repair process. Absence of this dRP-lyase activity could slow down the

ligation step after DNA synthesis by Polη and thus increase the occurrence of two nearby

nicks in DNA, generating DSBs.

Gene conversion is a non-reciprocal recombination event used by some species, such

as chickens and rabbits, to generate their pre-immune repertoire (Fig.1). V(D)J recombination

remains the initial event in these species, but it involves either a single or a restricted number

of V genes. Rearranged heavy- and light-chain genes are thereafter diversified by templated

gene conversion during the extensive proliferation of B cells in gut-associated lymphoid

tissues (bursa of Fabricius, Peyer’s patches and appendix)3. A virally transformed bursal B-

cell line, DT40, was reported to undergo ongoing gene conversion at its light chain locus in

culture110, 111, a process strictly dependent on AID activity112, 113. The DT40 cell line has also

become a popular model for studying hypermutation, notably upon removal of the pool of

donor genes, thus forcing the outcome of AID-induced deamination towards untemplated

mutagenesis114. However, the characteristics of this mutation process appear to diverge

substantially from physiological SHM (Box 1).

Gene conversion was significantly reduced in the chicken DT40 cell line after deletion

of Polη115. Considering the error rate of this polymerase during the copying of a normal DNA

template and the low frequency of untemplated mutations within gene conversion tracts, this

result appears rather paradoxical. One could imagine that the mutations introduced by Polη

will be corrected by mismatch repair, but the rationale for selecting an error-prone polymerase

for this process remains difficult to assess. It is tempting to speculate that Polη is recruited by

AID together with MSH2–MSH6 at U/G mismatches, this complex being somehow mobilized
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as a whole, whatever the outcome of the repair process116. Alternatively, this could reflect a

more general role of Polη in homologous recombination, as recently described in vitro117.

Conclusion

Bacteria use TLS polymerases to avoid irreversible replication blocks when other damage

avoiding strategies have failed7. By so doing, mutagenesis is favoured over cell death, and it

has been widely discussed that mutator phenotypes have an adaptive value in prokaryotes118,

119. The paradigm of the XPV syndrome, in which a TLS polymerase deficiency results in

sunlight sensitivity and an increased risk of skin cancers, suggests an alternative scenario in

higher organisms. Amplification of polymerases in higher vertebrates may have evolved to

ensure a specialization towards defined lesions for which each polymerase would be selected

for both efficiency and accuracy, thus avoiding deleterious mutations that could lead to cancer

in multicellular organisms. Strikingly, the adaptive immune system mobilizes TLS

polymerases in their ancient mutagenic role, mirroring during its fight against pathogens the

stress-induced adaptability of the prokaryotic world.
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BOX 1 | SHM in the DT40 cell line: “passive” versus “active” mutagenesis

The DT40 cell line is a chicken bursal lymphoma that undergoes high rate of activation-

induced cytidine deaminase (AID)-dependent gene conversion in culture110-113. Deletion of the

all pseudogenes upstream of the single functional Vλ gene deprives this cell line of all donor

sequences required in cis for gene conversion, and shifts the V-targeted modifications towards

mutations114. Mutagenesis observed in DT40 cells appears essentially “passive”, occurring by

saturation of the uracil-DNA glycosylase (UNG) repair pathway. Accordingly, deletion of

Ung in DT40 cells results in a sevenfold increase in mutagenesis120, implying that a large

fraction of the uracils generated by AID are repaired error-free, by base-excision repair or by

sister chromatin exchange. All mutations observed are targeted to G or C bases, being almost

exclusively transition mutations or G to C and C to G transversion mutations: they thus appear

to be generated during replication by copy of unrepaired uracils or by bypass of abasic sites,

performed by Rev1 in a translesion process that appears strictly dependent on PCNA

monoubiquitination121, 122. This cell line therefore does not mimic the “active” SHM process

— in which the MSH2–MSH6 complex recruits Polη to generate mutations at A/T bases and

the bypass of abasic sites involves TLS polymerases other than Rev1 — but it nevertheless

reproduces the initial steps of SHM consisting in the targeting of AID to the V region.

Glossary

BCR

B cell receptor. Refers to the Ig molecule present at the B cell surface, irrespectively of its

heavy chain isotype.

V(D)J recombination

Somatic rearrangement of variable (V), diversity (D) and joining (J) regions of the genes that

encode antigen receptors, leading to repertoire diversity of both T-cell and B-cell receptors.

gene conversion

A non-reciprocal homologous recombination event in which the donor gene(s) remains

unmodified and an acceptor gene acquires the recombined segment. In chickens, variable (V)

pseudogenes are donors that modify the functional, rearranged V gene in follicles of the bursa

of Fabricius to generate a diverse pre-immune repertoire.
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somatic hypermutation

A process by which antigen-activated B cells in germinal centres acquire point mutations

targeted to the variable regions of rearranged immunoglobulin gene segments. The B cells are

subsequently selected for those expressing the ‘best’ mutations on the basis of the ability of

the surface immunoglobulin to bind antigen. This process occurs in activated B cells in all

jawed vertebrates, but it also occurs in immature B cells in sheep to generate the pre-immune

repertoire.

class-switch recombination

(Class or isotype switching). A region-specific recombination process that occurs in antigen-

activated B cells. This takes place between ‘switch region’ DNA sequences located upstream

from each immunoglobulin heavy chain constant region genes and results in a change from

the IgM to one of the IgG, IgA or IgE immunoglobulin isotypes. This imparts flexibility to the

humoral immune response and allows it to exploit the different capacities of the

immunoglobulins to activate the appropriate downstream effector mechanisms.

translesion DNA synthesis

(TLS). Process that allows the bypass of DNA damage that otherwise blocks the progression

of the replication fork, through the replacement of the replicative polymerase with specialized

polymerases (known as TLS polymerases) that can copy non-instructive DNA lesions. TLS

polymerases have low fidelity on undamaged templates. Most TLS polymerases belong to the

Y family polymerases.

recombination-activating genes

(RAG1 and RAG2). RAG1 and RAG2 are involved in creating the synapsis and the double-

strand DNA breaks required for the assembly of the dispersed gene segments that encode the

complete protein chains of B-cell and T-cell receptors.

synapsis

Non-covalent juxtaposition of two non-adjacent stretches of DNA.

recombination signal sequences

(RSSs). Conserved elements that constitute recognition sites for the V(D)J recombinase

proteins, which are encoded by the recombination-activating gene 1 (RAG1) and RAG2. They

consist of a palindromic heptamer that is immediately adjacent to the coding gene segments

— V (variable), D (diversity) or J (joining) — and is separated by a 12- or 23-base-pair spacer

from a conserved nonamer sequence.

non-homologous end joining
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(NHEJ). The process that joins broken DNA ends without depending on extended homology.

Components of this pathway include the proteins Ku70, Ku80, Artemis, X-ray repair cross-

complementing protein 4 (XRCC4), DNA ligase IV, Cernunnos/XLF and the catalytic subunit

of DNA-dependent protein kinase (DNA-PKcs).

complementarity-determining regions

(CDRs). The three hypervariable antigen-receptor regions (in both chains of the T-cell and B-

cell receptors) that interact with the antigen. The third CDR (CDR3) is partly encoded by the

germline variable (V), diversity (D) and joining (J) regions of each receptor chain. Extensive

diversity is generated in CDR3 during gene rearrangement by nucleotide trimming and/or

template-independent nucleotide additions by terminal deoxynucleotidyltransferase.

base-excision repair

A DNA-repair pathway that removes single non-canonical bases from the DNA, such as

deaminated or oxidized bases, and replaces them with an appropriate base templated on the

opposite strand. Repair is initiated by a DNA glycosylase that is specialized for a particular

type of damage, and nucleotide replacement is performed by DNA polymerase β.

deamination

Removal of an amine group from a pyrimidine or purine nucleic-acid base. Deamination of

cytosine and adenosine yields uracil and inosine, respectively.

mismatch repair

A repair pathway that recognizes mismatched bases that arise in DNA because of errors made

by replicative DNA polymerases. These are then repaired by an excision system that removes

a tract of DNA including the mismatch, and re-copies the original strand. The mismatch repair

complex includes a mismatch-binding moiety (such as MSH2–MSH6), and an effector part

(such as MLH1–PMS2) that triggers excision of the mismatch-containing DNA sequence.

hotspot motif

A short DNA motif (DGYW or WRCH; where D denotes adenosine (A), guanosine (G) or

thymidine (T); Y denotes cytidine (C) or T; W denotes A or T; R denotes A or G; and H

denotes T, C or A) at which mutations are preferentially targeted during somatic

hypermutation.

replication fork

Site in double-stranded DNA at which the template strands are separated, allowing a newly

formed copy of the DNA to be synthesized, with the fork moving in the direction of leading

strand synthesis.
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abasic site

A common form of DNA damage in which a base is lost from a strand of DNA,

spontaneously or by the action of DNA repair enzymes such as uracil glycosylase, while

leaving the phosphodiester bond intact.

xeroderma pigmentosum

(XP). A rare inherited human disorder, in which patients are sensitive to the DNA-damaging

effects of sunlight. XP can be caused by disabling any of eight different genes. Seven of the

genes, denoted XPA–XPG, encode components of the nucleotide excision-repair pathway. A

variant form of the syndrome, XPV, corresponds to the inactivation of the gene encoding

DNA polymerase η.

transition mutations

Base changes in DNA in which a pyrimidine (C or T) is replaced by another pyrimidine, or a

purine (A or G) is replaced by another purine.

transversion mutations

Base changes in DNA in which a pyrimidine (C or T) is replaced by a purine (A or G), or a

purine is replaced by a pyrimidine.

proliferating-cell nuclear antigen

(PCNA). PCNA was first identified as a DNA sliding clamp for replicative polymerases, but

is now known to coordinate the organization of protein partners that are involved in many

processes, including DNA replication, DNA repair and cell-cycle control.
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Figure legends.

Figure 1. DNA transactions during the formation of the B cell repertoire.

The pre-immune B-cell repertoire in mice and humans is generated by site-specific

recombination of V (variable), D (diversity) and J (joining) coding segments that make up the

antigen receptor. A second wave of DNA modifications occurs in B cells participating in an
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immune response. These consist of locus-specific point mutagenesis (known as somatic

hypermutation), which modifies the rearranged V region, and a recombination process

between non-homologous repeated sequences (switch (S) regions) located upstream constant

(C) region genes (known as class-switch recombination). Somatic hypermutation and/or gene

conversion, which involves the exchange of gene segments between a rearranged V gene and

donor sequences (often non-functional (pseudogenes, ψV)), contribute to the formation of the

pre-immune repertoire in species such as chickens, sheep and rabbits.

Figure 2. Junctional diversification during V(D)J recombination at the immunoglobulin

locus.

During V(D)J recombination at the immunoglobulin locus, two pairs of coding segments with

defined signal sequences (orange and green triangles) come together to form a synapsis.

Double-strand breaks are introduced into the DNA, resulting in the generation of coding ends

that terminate in a hairpin and two signal ends that have blunt ends. The hairpin coding ends

are then opened by the Artemis-DNA-PKcs complex and, before the ends are religated by the

XRCC4-Cernunnos-ligase IV complex, extensive processing of DNA ends takes place,

creating diversity of the coding joint.  The coding ends are subjected to nucleotide trimming,

end-filling and/or protection by DNA polymerases Polλ and N-nucleotide addition by

terminal deoxynucleotidyltransferase (TdT) (heavy chain) or Polµ (light chain). Modifications

at the coding junction are represented as a black bar. Little modification occurs during signal

end joining.

Figure 3. Possible roles of DNA polymerases at V(D)J junctions.

Three possible functions of DNA polymerases during V(D)J recombination are shown,

arbitrarily represented as symmetrical configurations: a role in protecting DNA ends, by

competition with exonucleolytic degradation; a fill-in synthesis function, generating blunt

DNA ends; a role in the bridging of 3’ protruding ends. Polµ and polλ have been shown to be

able to extend DNA ends in such a primer-template configuration that shows lower stability,

since the primer encompasses a nicked DNA template.

Figure 4. The C over G targeting bias mediated by AID (60 : 40) is equalized by the

mismatch-repair pathway.

The pattern of nucleotide substitutions observed in mutated intronic JH4 sequences from
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PNAhigh Peyer’s patch B cells is shown for the genetic backgrounds indicated, and expressed

as percent of total mutations observed. Values are corrected for base composition, i.e.

normalized for a sequence with an equal content of the four bases. Data from Ung-/-Msh2-/-

and Ung-/- cells were obtained from Rada et al.98, all other data are taken from Delbos et al.65.

Deamination by activation-induced cytidine deaminase (AID) generates a C over G mutation

bias (60:40, as observed in Ung-/-Msh2-/- mice). This bias is equalized in MSH2-proficient

animals, and result in a two-fold higher targeting of A versus T mutations, whereas it is

conserved in MSH2-deficient mice.

Figure 5. Two competitive pathways for hypermutation: the MSH2-MSH6 complex

prevents UNG from performing error-free repair.

The uracils produced by activation-induced cytidine deaminase (AID)-mediated cytidine

deamination are preferentially handled by the mismatch repair complex MSH2–MSH6, when

present as a U-G mismatch (for example in the G1 phase). This prevents uracil-DNA

glycosylase (UNG) from performing error-free repair. A patch of DNA is excised by

exonuclease 1 (Exo1), and is resynthesized with low fidelity by Polη. Uracils that are carried

over into replication or that are generated in the S phase, and present in single-stranded DNA,

are processed by UNG, to generate abasic sites in the absence of a repair template. These

abasic sites are bypassed by several translesion polymerases, such as Rev1 and others that

remain to be identified. Rather than splitting hypermutation in phase I and phase II according

to Neuberger and colleagues41, this model proposes an A/T vs. G/C mutation model that is

essentially cell-cycle and/or DNA structure dependent.
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Polymerase
family

A

B

X

Y

Polymerase name
(gene name)

Pol gamma (PolG)
Pol theta (PolQ)
Pol nu (PolN)

Pol alpha (PolA)
Pol delta (PolD)
Pol epsilon (PolE)
Pol zeta (PolZ)

Pol beta (PolB)
Pol lambda (PolL)
Pol mu (PolM)
TdT

Pol eta (PolH)
Pol iota (PolI)
Pol kappa (PolK)
Rev1

Nematode
(C. elegans)

+
+
-

+
+
+
S

-
-
-
-

+
-
+
+

Mammals
(Homo sapiens)

+
+
+

+
+
+
L

+
+
+
+

+
+
+
+

Birds
(Gallus gallus)

+
+
+

+
+
+
L

+
+
-
+

+
-
+
+

Fishes
(Danio rerio)

+
+
+

+
+
+
L

+
+
+
+

+
+
+
+

Yeast
(S. cerevisiae)

+
-
-

+
+
+
S

-
Pol4

-
-

+
-
-
+

a

a S = small Rev3, protein size similar to yeast, approximately 1500 amino acids
L = large Rev3, protein size similar to humans, approximately 3000 amino acids

Table 1: Amplification of DNA polymerases in higher vertebrates

Relevant DNA transaction
(birds or mammals)

mitochondrial DNA replication
TLS ? BER ?

TLS ?

replication priming
replication
replication

TLS , SHM?

base excision repair (BER)
BER, NHEJ (V-D-J recombination),TLS ?

NHEJ (V-J recombination), TLS ?
V-D-J recombination

TLS, SHM,GC ?, homologous recombination ? 
TLS

TLS, NER ?
TLS, SHM

b

b “?” refers to processes mainly documented in vitro
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VDJ                  Cγ   Cα   Cε
 

pre-immune repertoire

immune response
(repertoire diversification)

VDJ          Cµ    Cγ    Cα   Cε

somatic hypermutation

class switch recombination

VDJ           Cµ

ψV          VDJ    Cµ

gene conversion

V                      D                     J                 Cµ

Ig gene rearrangement

Figure 1
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Binding of RAGs
Formation of synapsis

Single-strand break, harpin
and double strand break formation,
binding of Ku70, Ku80 to DNA ends

Processing of DNA ends
(endo/exonucletidic degradation,
pol  lambda/Tdt or pol mu)

Ligation by the DNA-ligase IV
-XRCC4-Cernunnos complex

« Signal joint »
(minor processing)

« Coding joint »
(extensive end modification)

DNA-PKcs + Artemis recruitment
hairpin opening

Figure 2
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5’
3’

Ku70 Ku80 DNA polymerase

5’
3’

    a) end protection b)  fill-in of 3’-recessed ends    c)  bridging / fill-in
of 3’-protruding ends

5’
3’

5’
3’ 5’

3’
5’
3’

Figure 3
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