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Abstract

Genome-wide association studies raise study-design and analytical issues that are still being

debated. Among them, stands the issue of reducing the number of markers to be genotyped

without loss of efficiency in identifying trait loci, which can reduce the cost of studies and minimize

the multiple testing problem. With this aim, we proposed a two-step strategy based on two

analytical methods suited to examine sets of markers rather than single markers: the local score,

which screens the genome to select candidate regions in Step 1, and FBAT-LC, a multiple-marker

family-based association test used to obtain significance levels of regions at step 2. The performance

of this strategy was evaluated on all replicates of Genetic Analysis Workshop 15 Problem 3

simulated data, using the answers to that problem. Overall, seven of the nine generated trait loci

were detected in at least 87% of the replicates using a framework designed to handle either

association with the disease or association with the severity of disease. This multiple-marker

strategy was compared to the single-marker approach. By considering regions instead of single

markers, this strategy minimizes the multiple testing problem and the number of false-positive

results.

Background
Genome-wide association studies with hundreds of thou-
sands of markers (SNPs), as made possible by new high-
throughput genotyping technologies, raise many study-
design and analytical issues, among which the multiple
testing problem occupies a central role. Several strategies
have been proposed to confront this problem, including
one-stage and multiple stage study designs, analytical

approaches in one or multiple steps, and use of one or
multiple data sets [1,2]. The two-stage study design, which
consists of genotyping many markers in an initial sample
at a first stage and a subset of selected SNPs in another
sample at a second stage, has often been chosen for cost
reasons. However, it has been shown to have other advan-
tages because it allows the number of analyzed markers to
be decreased, thus minimizing the multiple testing prob-
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lem, while maintaining adequate power [3]. To further
minimize the multiple testing problem, a number of
methods have been proposed for the joint analysis of
neighboring marker loci, including haplotype analysis
and multiple regression-based methods [4]. As a result, it
appears relevant to select whole genomic regions rather
than single markers at a first stage of genome-wide associ-
ation studies, but, to our knowledge, this has been
scarcely considered until now. We are proposing a two-
step strategy based on two new methods that each have
the ability to examine sets of markers rather than single
markers: the local score statistic, which can be used to
select genomic regions based on a sequence of association
signals at a first stage, and FBAT-LC (linear combination
of family-based association tests) [5], which allows testing
for association with sets of markers in the selected regions
at a second stage. Using sums, the local score statistic
identifies accumulations of high statistics in a sequence.
In molecular biology, this method has been applied to the
localization of hydrophobic domains in proteins and the
identification of similar regions among two or more
sequences [6]. It was recently applied to association stud-
ies for the detection of significant local high-scoring seg-
ments from case-control data [7]. The second method,
FBAT-LC, is a new extension of FBAT for the joint analysis
of multiple markers in family data that does not require
haplotype reconstruction [5]. Our goal was to assess the
statistical performance of the proposed two-step multiple-
marker strategy by analyzing the rheumatoid arthritis
(RA) case-control and affected sib-pair (ASP) simulated
data (Problem 3 of Genetic Analysis Workshop 15), using
the set of 9187 SNPs distributed across the genome. Our
aim was also to compare this multiple-marker strategy to
the single-marker based approach.

Methods
Two-step multiple-marker strategy

We propose a flexible multiple-marker analytical
approach for genome-wide association studies made up
of two steps. In the first step, the local score method is
applied to case-control data in order to detect and rank
candidate regions across the genome. It serves as a screen-
ing tool. In the second step, these candidate regions are
tested for association with the studied phenotype in a
sample of family data using FBAT-LC [5] and the p-values
obtained are then corrected for multiple testing. Each of
these two steps is independent from each other and can be
modified according to the type of data collected. We chose
to make full use of Problem 3 data, which included both
case-control and family data, thus guiding the choice of
the test statistics suited to these data.

Step 1: Detecting candidate regions

The local score method used the Pearson chi-square statis-
tic applied to the case-control genotypic contingency table
for each marker to produce a sequence of scores [7].

Let X = (Xi)i=1,...,n be a sequence of real random variables.
In our context X represents a sequence of statistics of asso-
ciation attached to each marker along the genome. The
statistic:

defines the local score assigned to X. In practice, it corre-
sponds to the value of the region with the maximal sum
of scores Xi. Consequently, the variables Xi must be nega-
tive on average otherwise the best region would easily
span the entire sequence. This definition is restrained to
the highest-scoring region. The next high-scoring ones are
potentially interesting as well because the data set may
contain more than one trait locus (TL). We define the kth

best region as the local score of the initial sequence dis-
joint from the preceding k - 1 best regions. In this case H(1)

> ... > H(k) are the scores of the k first and distinct highest-
scoring genomic regions. Advantages over simple-marker
strategies arise from the ability of this statistic to identify
a set of candidate genomic regions that may contain genes
involved in the disease.

The algorithm of the local score approach includes the

three following procedures: i) producing the initial sequence

X: we assign to each marker a statistic of association (Xi)

corresponding, in our case, to the Pearson chi-square test

of case-control marker genotype frequencies. A constraint

of this strategy is to have X negative on average; that does

not happen with positive statistics such as Pearson chi-

square, so a constant δ must be subtracted from the whole

signal X. In this study, δ corresponds to the value of statis-

tic Xi at the classical 5% level and we let X' = X - δ; ii) iden-

tifying the highest-scoring region: a simple approach to get

the local score from X' consists of comparing the value of

 for all possible regions [a; b] but excluding those

regions spanning different chromosomes; iii) identifying

the next high-scoring regions by using an iterative algorithm:

find the highest-scoring region, remove it from X', and

apply the algorithm again until there are no more positive

local scores in the sequence. At the end, the number of

tests has been reduced from M markers to N candidate

genomic regions ranked according to their local scores.
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Step 2: Testing candidate regions for association

The new FBAT extension proposed by Xu et al. [5] was
used to analyze the regions selected in Step 1 in the family
data. This method allows testing multiple markers simul-
taneously without haplotype reconstruction, and provides
significance levels. In brief, the FBAT-LC test proposed by
Xu et al. [5] is based on a linear combination of single-
marker FBAT test statistics using data-driven weights,
where marker weight derivation is based on the "condi-
tional mean model" [8]. The FBAT test for each bi-allelic
marker is carried out for only one allele. When assuming
an additive model, this test does not depend on the
selected allele. Finally, for the -values obtained for all
candidate regions, different corrections for multiple test-
ing were compared: no correction, Benjamini and Hoch-
berg correction, and Bonferroni correction. A region was
considered significant if the corrected -value was less
than 5%.

Performance of the multiple-marker two-step strategy and 

comparison with the single-marker approach

We assessed the ability of our strategy to reveal regions
containing the trait loci by comparing the results obtained
from the analysis of all Problem 3 case-control and family
data replicates with the answers that were provided.
Because the local score was applied to case-control data in
Step 1 and FBAT-LC to ASP data in Step 2, we formed 50
replicates of association-study data sets, each set being
made of two independent samples: one replicate of case-
control data and one replicate of family data. Each case-
control data replicate included 1500 cases (one case
drawn at random from each ASP) and 2000 controls gen-
otyped for the 9187 SNPs. Each family data replicate
included 1500 ASPs genotyped for all SNPs belonging to
the candidate regions selected in Step 1.

To evaluate the performance of our strategy, we first iden-
tified, in each replicate, the true positive and the true neg-
ative regions among those selected in Step 1, a region
being defined as positive if it contained at least one of the
two flanking markers of any hidden trait locus. We then
derived the three following quantities: 1) sensitivity,
which is the proportion of true-positive regions that were
correctly identified by FBAT-LC test; 2) specificity, which
is the proportion of true-negative regions that were cor-
rectly identified by FBAT-LC test; 3) the false-discovery
rate (FDR), which is the proportion of false positives
among the declared significant results. An average esti-
mate and standard deviation of each of these three quan-
tities were computed over the 50 replicates of family data.
The estimates of these quantities were compared accord-
ing to the correction applied to the FBAT-LC -values. The
average proportion of trait loci detected by our two-step
approach over the 50 replicates of association-study data
sets was also derived.

We then conducted a two-stage single-marker analysis to
be compare with our multiple-marker strategy. All 9187
genotyped SNPs were ranked according to the values
associated with the Pearson chi-square test applied to the
case-control genotypic contingency table. A number, ,
of markers with the smallest -values to be analyzed in
Step 2 was selected. was equal to the average number of
markers belonging to the regions selected by the local
score method over 50 replicates. In Step 2, a single-marker
FBAT was applied to each of the selected markers and -
values were either not corrected or corrected using either
Benjamini and Hochberg or Bonferroni corrections. To be
comparable with the above definition of a true-positive
region, true-positive markers among the selected mark-
ers were those flanking each trait locus. Estimates of the
same performance indicators, as defined above, were
derived over the 50 replicates of association-study data
sets.

Results
In Step 1, the local score method revealed an average of
381 regions (standard deviation (sd) = 7.79) with positive
scores. These regions contained 472 SNPs on average (sd
= 3.30). The distribution of the number of SNPs per
region showed that Region 1 contained 38 markers on
average, Regions 2 to 6 had more than 2 SNPs and up to
4 SNPs on average, the next 18 regions contained 2 SNPs,
and the remaining ones had only 1 SNP.

As an illustration, Table 1 presents the outcomes of each
step of our multiple-marker approach in the first associa-
tion-study data set for 10 regions having the highest local
scores in Step 1. Five of these regions were significant at
the nominal 5% level in Step 2 and four of them remained
significant after Bonferroni correction. These four regions
were on chromosomes 6 (two regions), 11, and 18. The
first region on chromosome 6 contained the DR, C and D
loci, the second and third ones on chromosomes 11 and
18 contained the F and E loci respectively, while the other
region on chromosome 6 did not harbor any locus
involved in RA, and was therefore a false positive. We
noted that this pattern of results was actually similar
across all replicates, the first three regions (chromosomes
6, 11, and 18) always having the highest local scores in
Step 1.

We first evaluated the performance of our strategy by
selecting at the first step 50 regions with the highest local
scores, which included 115 SNPs on average, thus repre-
senting 1% of the 9187 genotyped SNPs. Table 2 shows
the average sensitivity, specificity, and FDR of the FBAT-
LC statistic applied to these 50 regions and of the single-
marker FBAT applied to each of the 115 SNPs having the
lowest -values among all genotyped SNPs. The average
sensitivity was very high (>94%), regardless of -values
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formance (results not shown). Moreover, the average pro-
portion of trait loci detected by either the multiple-marker
or single-marker two-step strategy was close to 55%: the
DR, C, D, and E loci affecting RA risk directly and the F
locus as a QTL for IgM were detected in at least 98% of the

replicates, while the influence of Loci G and H on disease
severity and the involvement of Loci A and B in more
complex gene × gene (G × G) and gene × environment
interactions (G × E) were almost never revealed. These
results could be explained by the fact that the local score
statistic was based on the Pearson chi-square test of asso-
ciation between genotype frequencies and affection sta-
tus, and hence not dedicated to study severity or
interactions.

We repeated our two-step analysis by using other test sta-
tistics to compute the local score in Step 1. Regarding
severity, we used the test of Spearman rank correlation
between marker genotype (0, 1, 2) and severity (from 1 to
5). An average of 395 regions (containing 467 markers on

Table 1: Results for the first 10 regions in the first replicates

Step 1 Step 2

Region Chr IDs of the 2 extreme markers 
bounding a region

Local Scoresa FBAT_LC 
p-valueb

Bonferroni 
corrected p-value

Trait loci in the region

1 6 128 162 8235.4874 0.000000 0.000000 DR, C, D

2 11 387 396 202.3407 0.000000 0.000000 F

3 18 269 269 44.5575 0.000000 0.000000 E

4 18 10 11 28.2714 0.042545 0.425450

5 10 355 357 16.8203 0.476407 1.000000

6 4 347 348 11.7416 0.440749 1.000000

7 6 355 355 11.6840 0.002913 0.029130

8 3 58 58 11.5742 0.137617 1.000000

9 8 392 392 11.5131 0.387798 1.000000

10 7 94 95 11.4852 0.706698 1.000000

aLocal Scores obtained from the first replicate of case-control data.
bp-Values obtained from FBAT-LC applied to regions selected in Step 1 in the first replicate of family data.

Table 2: Comparison of multiple marker and single marker strategies

Correction for 
multiple testing

Sensitivitya Specificitya FDRa % of all TL detectedb

FBAT-LC

Multiple markersc None 0.97 (0.08) 0.95 (0.03) 0.37 (0.17) 0.56 (0.02)

Benjamini & Hochberg 0.95 (0.10) 0.99 (0.09) 0.03 (0.09) 0.55 (0.02)

Bonferroni 0.94 (0.11) 0.99 (0.09) 0.03 (0.09) 0.55 (0.03)

Single-marker FBAT

Single markerd None 0.97 (0.09) 0.78 (0.03) 0.83 (0.02) 0.56 (0.02)

Benjamini & Hochberg 0.95 (0.11) 0.87 (0.01) 0.74 (0.02) 0.55 (0.02)

Bonferroni 0.95 (0.11) 0.87 (0.01) 0.74 (0.03) 0.55 (0.02)

aMean (standard deviation) of sensitivity, specificity, and false-discovery rate of FBAT-LC (multiple markers) and single-marker FBAT computed 
over 50 replicates of family data.
bMean (standard deviation) of the proportion of all trait loci (TL) selected in Step 1 and detected in Step 2 by FBAT at the 5% level over 50 
replicates.
c50 regions were selected in Step 1 using the local score method.
d115 SNPs were selected in Step 1 (see text) using the Pearson chi-square applied to case-control genotypic contingency table.
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average) with positive local scores was found. Applying
the same selection criterion as before, we kept 50 regions
with the highest local scores to be analyzed in Step 2. The
performance of FBAT-LC is shown in Table 3. Both sensi-
tivity (96% or more) and specificity (99%) were very high
and the FDR was 14% when values were corrected.
Moreover, the two loci influencing RA severity were
detected in at least 87% of replicates. Regarding the loci
involved in G × G and G × E interactions, we used a logis-
tic regression model incorporating either one of these
interactions and the likelihood-ratio test of interaction
served as input for computing the local scores. However,
there was no improvement in the detection of Loci A and
B.

Discussion
Overall, our results show that the present two-step strat-
egy based on sets of markers provides significant evidence
for all four loci affecting RA risk (DR, C, D, E), one QTL
for IgM (F) and two loci influencing RA severity in almost
all replicates, provided appropriate test statistics are used
in Step 1 to compute the local scores. These regions were
always detected at the first step for the five former loci and
in 87% of replicates for the two severity loci. All of these
regions were confirmed at least 94% of the time in Step 2.
This shows the efficiency and flexibility of this overall
strategy, which can use different test statistics within the
same framework. However, loci involved in more com-
plex interactions (A, B) were difficult to identify, which
may be partly due to the relatively small importance of
these interactions and/or weak linkage disequilibrium of
these loci with the analyzed markers.

When comparing the proposed multiple-marker strategy
to the single-marker approach, these two strategies
showed similar power to detect RA loci and had both high
sensitivity and specificity. However, while the FDR associ-
ated with the multiple-marker FBAT-LC decreased signifi-
cantly when -values were corrected for multiple testing,
the FDR associated with the single-marker FBAT remained
high. Previous simulations had shown that the local score

statistic was more powerful than the single-marker
approach in case-control data [7]. The present findings
may be partly due to the generated model in which several
loci, especially those on chromosome 6, played an impor-
tant role in the disease and were thus likely to be always
detected. Thus, further comparisons of multiple and sin-
gle-marker-based methods in other data sets generated
under different models appear warranted.

The results presented here were obtained for the first 50
selected regions with highest local scores in Step 1, which
were followed up in Step 2. However, varying the number
of selected regions from 10 regions to all regions with pos-
itive local scores had a small impact on sensitivity, specif-
icity, and FDR as well as on proportion of TLs detected.
This shows that the performance of the proposed strategy
was already satisfactory even for a small number of
selected regions. However, this may be at least partly due
to the strong effect of most TLs on RA. Nevertheless, select-
ing a small number of regions (50, or as few as 10 regions)
in Step 1 might be an appropriate strategy that can mini-
mize the multiple testing problem, although disease mod-
els other than the one simulated here need to be explored
before drawing a definite conclusion.

We used a two-stage analytical approach using two differ-
ent statistical methods applied to two independent data
sets. However, in the context of a two-stage design for
genome-wide association studies, Skol et al. [1] have
shown that the joint analysis of the two steps was more
efficient than the independent analysis of each step, this
analysis being based on single-marker tests of marker
allele frequencies in case-control data. Comparison of this
latter strategy to the one proposed here would be worth
conducting, but the framework of this comparison needs
to be further defined.

We used here the local score method as a simple screening
tool in a two-stage design. However, this approach can
also stand on its own in genome-wide association studies.
The significance of local scores can be determined via the

Table 3: Performance of the multiple-marker strategy in disease severity analysis

Correction for multiple 
testing

FBAT LC % of severity loci detectedb

Sensitivitya Specificitya FDRa

Without correction 1.00 (0.00) 0.92 (0.03) 0.75 (0.13) 0.91 (0.19)

Benjamini & Hochberg 0.96 (0.20) 0.99 (0.01) 0.14 (0.24) 0.87 (0.26)

Bonferroni 0.96 (0.20) 0.99 (0.01) 0.14 (0.24) 0.87 (0.26)

aMean (standard deviation) of sensitivity, specificity and false-discovery rate of FBAT-LC test computed over 50 replicates of family data when 50 
regions were selected in Step 1.
bMean (standard deviation) of the proportion of severity loci selected in Step 1 and detected in Step 2 by FBAT at the 5% level over 50 replicates 
when 50 regions were selected in Step 1.
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extreme values theory. Indeed, under the null hypothesis
( 0), the local score is known to follow the GUMBLE dis-
tribution asymptotically. However, this asymptotic
approximation is only valid under linkage equilibrium,
which generally does not hold. A Monte-Carlo simula-
tion-based version taking these dependencies into
account has been implemented (available at http://
stat.genopole.cnrs.fr/software/lhisa), but simulations
increase the time of execution notably. The simple use of
the local score method to rank regions to be further tested
in another data set, as proposed here, was fast to run

because the overall two-step strategy took less than 10
minutes to analyze one sample of 2000 cases/1500 con-
trols in Step 1 and one sample of 1500 affected sib pairs
in Step 2. Finally, the proposed strategy is also flexible
because it allows different types of data and different test
statistics at each step to be considered. Use of a case-con-
trol sample in Step 1 might be preferred because it
requires less cost and less time to collect data [9], and
using a family-based method in Step 2 protects against
population stratification.

Schematic representation of the local scores methodFigure 1

Schematic representation of the local scores method. A, scores Xi (e.g., Pearson chi-squared statistics for case-control 

genotype frequencies) at marker locations along a chromosome. B, Scores  at marker locations along a chromosome;  = 

Xi - δ, δ being the value of statistic Xi at the 5% level.

′Xi ′Xi

http://stat.genopole.cnrs.fr/software/lhisa
http://stat.genopole.cnrs.fr/software/lhisa
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Conclusion
The proposed two-step multiple-marker strategy provides
a general and flexible framework for genome-wide associ-
ation studies that can integrate different types of data and
different test statistics. By considering regions instead of
single markers, this strategy minimizes the multiple test-
ing problem and the number of false-positive results. It is
also simple and fast to run. Evaluation of this strategy in
more complex situations than the ones examined here
and extensive comparison with other strategies proposed
for genome-wide association studies would be worth per-
forming.
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