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Abstract  

Rare studies have used MRI and voxel based morphometry (VBM) to assess atrophy, 

and only two PET studies used SPM to examine functional changes in semantic dementia 

(SD). Our aim was to highlight both morphological and functional abnormalities in a same 

group of 10 SD patients, in the entire brain, using a “state of the art” methodology (optimized 

VBM procedure, PET data corrected for partial volume effects and voxel based analyses). We 

also used an extensive neuropsychological battery. We showed that main alterations 

concerned the left temporal lobe, in accordance with the striking impairment of semantic 

memory in SD patients, as well as the hippocampal region, which may partly explain their 

moderate episodic memory deficits. Hypometabolism was more extensive than grey matter 

loss in both temporal lobes, and specifically concerned the orbitofrontal areas, consistent with 

the moderate impairment of executive functions and behavioural changes. While PET is more 

sensitive than MRI, there is striking concordance between morphological and functional 

abnormalities, which contrast with the discordance observed in Alzheimer‟s disease and 

might be a typical feature of SD. 
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1. Introduction 

Elisabeth Warrington [76] was the first to describe patients suffering from object 

recognition and progressive anomia reflecting fundamental loss of semantic memory. There is 

compelling evidence to consider that this syndrome, termed either temporal variant of 

frontotemporal dementia [18, 35] or semantic dementia (SD) [70], is part of the disease 

spectrum of frontotemporal lobar degeneration (FTLD). Although FTLD is a relatively 

common cause of dementia, accounting for about 20% of cases of dementia with presenile 

onset, most of cases suffer from the frontal variant of FTD, while the temporal variant is a 

relatively rare disorder [61]. This disease is characterized by progressive loss of semantic 

knowledge and relative preservation of grammatical aspects of language, visuospatial skills 

and day-to-day memory [31, 70], although episodic memory, when specifically assessed, can 

be impaired [35].  

Morphological magnetic resonance imaging (MRI) studies in SD patients show an 

involvement of the temporal lobe, with an anteroposterior gradient, highest changes 

concerning the anterior part of the temporal lobe. Left-sided predominant atrophy is more 

frequent than right predominant or symmetrical involvement (e.g., [7, 26, 29]). Visual 

inspection of MRI brain scans has suggested that the hippocampal complex is preserved in 

SD, which might fit with normal day-to-day memory, or near normal performance on episodic 

memory tests in some patients [27, 28, 57, 58]. Some authors [29, 9] did not find significant 

atrophy of the hippocampus and adjacent structures using the SPM software which allows a 

voxel-by-voxel analysis (Voxel Based Morphometry, VBM) of the entire brain. Nevertheless, 

some studies using the region-of-interest (ROI) method [7, 12, 22, 52] emphasized bilateral 

hippocampal atrophy, predominant on the left hemisphere. According to Chan et al. [7] and 

Galton et al. [22] the failure to identify hippocampal abnormality using VBM possibly reflects 
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the limited resolution of the voxel-by-voxel method for small complex structures such as the 

hippocampus. Indeed, this technique implies an automated comparison of individual data 

normalized on a template obtained from normal young control MRI scans, which is not 

optimal while considering demented patients with atrophied brains. By opposition, Good et al. 

[25] reported significant hippocampal atrophy in semantic dementia with an optimized VBM 

technique, i.e. using a customized template obtained from the control and patient samples of 

the study. Thus, this method is highly recommended while assessing pathologic state 

associated with brain atrophy, since it helps to reduce the influence of non-brain tissue on the 

resulting GM statistical probability maps and allows avoiding bias during the spatial 

normalization step. 

Some studies have shown atrophy in other brain regions, notably the frontal lobes [39, 

49, 64, 69] and the amygdala [4, 7, 22, 39, 49, 64, 78]. It is worth noting that, with the 

evolution of the disease, SD patients develop executive dysfunction and behavioural 

symptoms [18], in accordance with the role of the frontal lobes in behaviour regulation. 

Concerning the atrophy involving the amygdala, it is well known that this structure has strong 

links with the processing of emotion as indicated by severe deficits in the recognition of facial 

expressions in patients with amygdala damage [68]. These emotional impairments may 

contribute to the behavioural deficits observed in SD. 

In sum, only a few studies have applied the VBM procedure in SD [4, 25, 26, 29, 48, 

49, 64]. Moreover, two of these studies investigated a small group of patients ([48] N = 4; 

[49] N = 6), while Rosen et al. [64] compared SD patients with a mixed group of healthy 

subjects and patients with frontal variant of frontotemporal dementia. Finally, only one study 

has used the optimized VBM procedure [25] to examine 10 SD patients and the authors 

showed bilateral atrophy in the inferior, middle and superior temporal lobe, the amygdala, 

hippocampus and entorhinal cortex with a left hemispheric predominance. 
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Functional neuroimaging methods such as Single Photon Emission Computerized 

Tomography (SPECT) or Positron Emission Tomography (PET) are more accurate techniques 

to identify subtle neural dysfunction than morphological MRI [43]. SPECT has been used in 

few studies to investigate the patterns of regional cerebral blood flow in SD. The results of 

these studies have principally demonstrated temporal bilateral or left involvement [32, 71] or 

temporal and frontal bilateral involvement [18]. PET has a better spatial resolution and 

quantitative accuracy than SPECT, and appears to be a more promising functional imaging 

technique for the diagnosis and differential diagnosis of dementia [30]. The first PET studies 

highlighted left temporal lobe involvement [37, 74]. Nevertheless, all these above mentioned 

studies performed using SPECT or PET used either a visual rating or the ROI method for the 

analysis of brain images. Both methods are observer-dependent and although the latter is 

quantitative, it only explores a selected set of structures on the basis of a priori hypotheses, 

potentially missing other areas. Only two PET studies of regional glucose metabolism used an 

objective and comprehensive voxel-based analysis, thanks to the SPM software [17, 52] to 

assess hypometabolism in SD. Diehl et al. [17] reported significant hypometabolism over the 

whole left temporal neocortex (excluding the hippocampus) and in the right temporal pole. 

However, actual glucose metabolic values in patients with degenerative diseases measured 

using PET may be biased because of the partial volume effects (PVE). Indeed, the apparent 

radiotracer concentration in small structures is influenced by surrounding structures. This 

phenomenon is particularly dramatic when cortical atrophy is present, such as in degenerative 

dementia. PVE correction has been applied in the recent study carried out by Nestor et al. [52] 

who showed hypometabolism in bilateral temporal lobes, including the perirhinal cortex and 

extending to the fusiform gyrus.   

The main aim of our study was to assess both morphological and functional 

abnormalities in the same group of SD patients, through the entire brain, which has never 
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been performed yet, using a “state of the art” methodology (i.e. voxel based analyses, the 

optimized VBM procedure, and PET data corrected for PVE). We also aimed at describing 

the profile of cognitive impairment in these patients. 

2. Material and methods 

2.1. Subjects 

We studied 10 patients suffering from SD (age: mean = 65.7 ± 8.6 years; range: 54 -79; 

MMSE mean = 24.2 ± 3.08; disease duration mean = 3.3 ± 2.5) selected according to research 

criteria of SD established by Neary et al. [50], namely progressive, fluent empty spontaneous 

speech, loss of word meaning, manifest by impaired naming and comprehension, semantic 

paraphasias and/or prosopagnosia and/or associative agnosia. For each patient, the selection 

was made according to a codified procedure in French qualified centres by senior neurologists 

(VDLS & SB) whose major activity is dedicated to the diagnosis and follow-up of patients 

suffering from neurodegenerative disorders, as well as a neuropsychologist and a speech 

therapist. Patients with history of alcoholism, head traumatism, neurological or psychiatric 

illness were excluded. In all patients, as mentioned by their family, the predominant and 

inaugural symptom concerned semantic memory deficits reflected by anomia, word 

comprehension difficulties as well as deficits in the recognition of familiar people. In all our 

patients the family reported preserved day-to-day memory and autonomy. Indeed, the patients 

could continue to carry out everyday activities such as do their own shopping, travel around 

by public transport, keep appointments such as going alone to the physician and remember 

recent or current events. They were all well oriented in time and space.  

We did not exclude patients with episodic or executive disorders, attested by a formal 

neuropsychological examination, provided that these deficits were not severe, and above all, 

had not preceded the semantic disorders as attested by family members and/or the clinical 

staff. Thus, neuropsychological tests carried out on the first examination emphasized semantic 
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memory deficits and visual episodic memory was totally preserved in most of our patients 

(8/10) as shown by performances on the recall of the Rey figure [63] and/or the “test de la 

ruche”, a spatial memory task [75]. In the two patients who presented visual episodic deficits 

at the first examination, one had impaired free recall in contrast with normal recognition 

performances, and in both patients the deficits were much less severe than those of semantic 

memory. Finally, the clinical and neuropsychological follow-up of our patients which have 

been re-examined between 1 to 5 years after their first consultation, has confirmed the initial 

diagnoses (i.e. the semantic memory deficits were still predominant, and their spatial 

orientation and autonomy, still preserved). 

For the cognitive assessment, patients were compared with 21 control subjects (age: 

mean = 69.85 ± 8.57 years; range 51-80 years) matched for age and level of education. For 

the neuroimaging examinations, they were compared to an other independent sample of 17 

control subjects from our database (mean: 65.8 ± 7.4 years; range: 57- 84). All were 

unmedicated, living at home and were strictly screened for lack of cerebrovascular risk 

factors, dementia or mental disorders. They had neither clinical nor biological abnormalities. 

The Mattis dementia rating scale [41] was used to exclude any subjects suspected of 

neurodegenerative pathology.  

This protocol was approved by the Regional Ethics Committee. Controls and patients 

gave written consent to the procedure prior the investigation. 

Within a few days interval at most, each subject underwent a neuropsychological 

examination, a high-resolution T1-weighted volume MRI scan and a resting PET study using 

[
18

F] fluoro-2-deoxy-D-glucose (
18

FDG).  
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2.2. Neuropsychological exam 

We explored semantic memory by means of 1) an oral naming task (DO 80) [13], 2) a 

semantic knowledge task assessing naming of drawings, categorical and attribute knowledge 

of concepts [23], 3) a questionnaire assessing knowledge about famous persons [55], 4) a 

French version of the dead/alive memory test initially worked out by Kapur et al. [36], and 5) 

a categorical (names of animals) verbal fluency tasks [6]. To assess the executive function, 

following the conception of Miyake et al. [45], we investigated the shifting process, inhibition 

of inappropriate responses and updating function using the trail making test [62], the Stroop 

test [72] and the running span task [46, 60], respectively. According to Baddeley‟s model [1] 

of working memory, we used a dual-task paradigm [2, 60] and backward digit and 

visuospatial spans to assess the central executive. As regards the slave systems, we assessed 

the phonological loop and visuospatial sketchpad by using forward digit and visuospatial 

spans [77]. In order to evaluate visuo-spatial activities, we used the complex figure from the 

AMIPB (Adult Memory and Information Processing Battery, [11]), and visual episodic 

memory was assessed with the immediate and delayed recall of the figure. Finally, we used a 

French version of the “Dysexecutive questionnaire” (DEX) from the Behavioural Assessment 

of Dysexecutive Syndrome battery (BADS) [80] to assess emotional or personality changes, 

motivational, behavioural, and cognitive changes (see [42], for details on the cognitive tests).  

 

2.3. Neuroimaging 

2.3.1. Data acquisition 

The T1-weighted volume MRI scan consisted of a set of 124 adjacent axial cuts 

parallel to the AC-PC line and with slice thickness 1.5 mm and pixel size 1x1 mm, using the 

SPGR gradient echo sequence (TR=10.3 s; TE=2.1 kHz; FOV=24*18; matrix=256*192). All 

the MRI data sets were acquired on the same scanner (1.5 T Signa Advantage echospeed; 
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General Electric) and with the same parameters. Standard correction for field inhomogeneities 

was applied at acquisition. 

Each subject also underwent a PET scan. Data were collected using the high-

resolution PET device ECAT Exact HR+ with isotropic resolution of 4.6  4.2  4.2 mm 

(FOV = 158 mm). The patients were fasted for at least 4 hours before scanning. To minimize 

anxiety, the PET procedure was explained in detail beforehand. The head was positioned on a 

head-rest according to the cantho-meatal line and gently restrained with straps. 
18

FDG uptake 

was measured in the resting condition, with eyes closed, in a quiet and dark environment. A 

catheter was introduced in a vein of the arm to inject the radiotracer. Following 
68

Ga 

transmission scans, three to five mCi of 
18

FDG were injected as a bolus at time 0, and a 10 

min PET data acquisition started at 50 min post-injection period. Sixty-three planes were 

acquired with septa out (volume acquisition), using a voxel size of 2.2  2.2  2.43 mm (x y 

z). During PET data acquisition, head motion was continuously monitored with, and 

whenever necessary corrected according to, laser beams projected onto ink marks drawn over 

the forehead skin.  

2.3.2. Image handling and transformations 

MRI data were analyzed using the optimized VBM protocol, described in details 

elsewhere [24], and already used in our laboratory [8, 9]. Briefly, the procedure included 

customized template creation (of the whole brain and of the grey matter (GM), white matter 

(WM), and cerebro-spinal fluid (CSF) sets) from the MRI data of the whole patient and 

control samples (n = 27), segmentation and normalization of the original (i.e. in native space) 

scans using these customized priors to determine optimal normalization parameters, 

application of these optimal parameters to the original scans, segmentation of the normalized 
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data and smoothing of the resultant GM partitions, using a 12 mm Gaussian filter. All image 

processing steps were carried out using SPM2. 

The PET data were first corrected for partial volume effect (PVE), taking into account 

not only the loss of GM activity as a result of spill-out onto extraparenchymal tissues, but also 

the gain in GM activity as a result of spill-in from adjacent tissues. This method, originally 

proposed by Müller-Gartner et al. [47] and slightly modified by Rousset et al. [66] is 

described in details in Quarantelli et al. [59]. All image processing steps were carried out 

using the „PVE-lab‟ software. Using SPM2, corrected PET data were then subjected to 

coregistration onto their respective MRI and normalization into the same customized template 

as the one used for normalization of MRI data, reapplying the corresponding optimal 

normalization parameters. Resultant images were then smoothed using a classical Gaussian 

kernel of 14 mm, to blur individual variations and to increase the signal-to-noise ratio. In 

order to remove the confounding effect of intersubject variability in global CMRglc, the 

CMRGlc images were divided pixel by pixel by the individual value for the cerebellar vermis 

(this value being not statistically different from controls), as classically performed in previous 

studies [14, 15, 16, 19]. 

.  

2.4. Data analyses 

For each cognitive test measure, we performed Mann-Whitney analyses to assess 

between-group comparisons. Statistics were considered as significant using a p<0.05 

threshold. 

Regarding MRI and PET data, we assessed group differences to obtain maps of significant 

atrophy and significant hypometabolism in patients with SD compared to controls, using the 

“compare-populations: 1 scan/subject” SPM2 routine. In order to minimize “edge effects”, 
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only those voxels with values above 10% of the mean for the whole brain were selected for 

statistical analyses. For both analyses of GM loss and hypometabolism, we used a stringent 

threshold of p<0.05 FWE (family wise error, the standard measure of type I errors in multiple 

testing, see [53]) corrected for multiple comparisons, with a minimum cluster size of 100 

voxels, to limit the risk of false positives. For the sake of completeness, the reverse contrasts 

were also assessed (i.e. greater GM loss or hypometabolism in Controls).  

3. Results 

3.1. Neuropsychological data 

Results of the Mann-Whitney analyses for each test are listed in Table 1. Impairment of 

semantic memory was severe, as attested by significantly lower performances in SD 

compared to controls in all semantic memory tasks of the extensive neuropsychological 

examination. This examination also revealed an impairment of the shifting process (Trail 

Making test) and the inhibition of inappropriate responses (Stroop test) in contrast with the 

preservation of the updating function (running span task). The working memory was 

preserved, as shown by the dual-task paradigm and backward digit and visuo-spatial spans, as 

well as forward digit and visuospatial spans. Visuospatial abilities were also preserved as 

pointed by the copy of the Amipb figure. The patients showed a clear-cut impairment of 

episodic memory, as assessed by the immediate and delayed recall of the Amipb figure. 

Finally, the 6 patients who underwent the “Dysexecutive Questionnaire” (DEX) presented 

various behavioural changes. Indeed, they were apathetic and exhibited reduced empathy and 

stereotypic behaviours. Among the 4 patients who did not undergo the DEX questionnaire, 

two presented behavioural disturbances (agitation and obsessional disorders), as attested by 

their family. 

 

3.2. Neuroimaging data 
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Figure 1 (top) illustrates the significant GM loss in SD patients compared with 

controls, and the most significant peaks are listed in Table 2. Regions of significant loss, 

largely predominant in the left hemisphere, involved the whole left temporal neocortex 

(temporal pole and inferior, middle and superior temporal gyri), extending to the hippocampal 

region (hippocampus, parahippocampal gyrus, amygdala), as well as the left insula, thalamus, 

caudate nucleus and fusiform gyrus. The left anterior cingulate cortex was also involved 

although less significantly. On the right side, the GM loss was less significant and only 

concerned a small part of the temporal neocortex as well as the hippocampal region (also 

including the hippocampus proper, parahippocampal gyrus and amygdala), extending into the 

fusiform gyrus. There was no significant cluster when assessing the reverse contrast. 

Figure 1 (bottom) illustrates the significant hypometabolic regions in SD patients 

compared with controls, and Table 3 lists the most significant peaks. Regions of significant 

hypometabolism were roughly the same as those of significant GM loss, although the overall 

pattern of brain hypometabolism was more extended. They were bilateral but more extensive 

on the left side, and involved the temporal lobe, including both the temporal neocortex 

(temporal pole, and inferior, middle and superior gyri) and the hippocampal region (including 

the hippocampus proper, parahippocampal gyrus, and amygdala), and also encroaching the 

fusiform gyrus. Bilateral hypometabolism also concerned insula, caudate nucleus, anterior 

cingulate and orbitofrontal areas. The reverse contrast did not reveal any significant cluster. 

Thus, hypometabolism was more extensive than GM loss in both temporal lobes, but 

more in the right one and it also involved the bilateral orbitofrontal areas (BA 11), right 

caudate nucleus and insula, while these areas did not show significant atrophy at the same 

threshold. Conversely, there was no area of significant atrophy without significant 

hypometabolism.  
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Finally, in an exploratory way, we then searched for positive correlations between 

morphometric and metabolic data on the one hand, and cognitive performances on the other 

hand. Given the small number of patients, we limited this research to one issue, that of the 

involvement of left versus right temporal lobe in the alteration of semantic memory. We 

correlated semantic memory performances with the mean morphological or metabolic values 

obtained for each temporal region, using a non-parametric correlational analysis (Spearman 

test). These values were extracted using the “functional ROI analysis” of the fMRI-ROI SPM 

toolbox (which allows to obtain the mean value of each ROI of interest included in each 

cluster). Regarding morphological data, we found significant (p<0.05) correlations, all being 

left-sided situated, between 1) naming performances and the temporal pole and superior 

temporal gyrus (r = 0.64 and 0.73, respectively), 2) categorical fluency and the inferior 

temporal gyrus (r = 0.61) and 3) semantic knowledge performances and the superior temporal 

gyrus (r = 0.57). Regarding metabolic data, scores obtained at the Dead or Alive test were 

significantly correlated with the temporal pole (r = 0.57), fusiform gyrus (r = 0.66) and 

parahippocampus (r = 0.60), all in the right hemisphere.  

 

4. Discussion 

In this study we have used an extensive neuropsychological assessment to further 

describe the profile of cognitive impairment in a group of 10 SD patients. Our main aim was 

to examine both morphological and functional cerebral changes in the same group of patients, 

thanks to a rigorous and up to date methodology, including 1) an optimized VBM procedure, 

2) the correction of PET data for PVE, 3) the use of identical normalization parameters for 

both neuroimaging modalities data sets (thus avoiding bias due to differences in these 

handling steps between MRI and PET data), and finally 4) the same stringent threshold for 
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assessing both atrophy and hypometabolism statistics, providing thus a high degree of 

confidence in our findings.  

Semantic memory was severely impaired in our group of patients, whatever the type of 

stimulus assessed (concepts or famous persons), and whatever the task used (naming, 

knowledge assessment or categorical fluency), in accordance with the literature [31, 33, 56]. 

Regarding executive functions, this group of SD patients showed a deficit of inhibition and 

shifting processes, in contrast with the preservation of updating. Working memory was 

preserved whatever the component assessed, either the central executive, or the slave systems, 

a pattern of results similar to that shown by Hodges and colleagues [34, 56]. Visuospatial 

abilities were also preserved [56, 38], while visual episodic memory was impaired. Even if 

SD is characterized by preserved day-to-day memory [50], our finding is in keeping with 

previous reports showing deficient performances on standard episodic memory tests [35]. 

While episodic memory deficits could be partly due to semantic memory impairments, the use 

of a visual episodic task in our study suggests genuine episodic memory impairment, although 

definitely less serious than in Alzheimer Disease patients [52, 58]. Finally, all the patients 

who underwent the behavioural assessment presented various changes, in line with growing 

evidence that many patients with SD have behavioural changes, sometimes identical to those 

suffering from the frontal variant of frontotemporal dementia [5, 18, 39, 54, 65, 67]. 

The findings of our MRI study highlight, as expected, significant GM reduction in the 

left temporal neocortex (temporal pole, and inferior, middle and superior temporal gyri), and 

at a lesser degree, in the right temporal neocortex, in accordance with previous quantitative 

volumetric [7, 22, 39] and VBM [4, 25, 26, 29, 49] studies. This pattern of results is in 

agreement with the severe semantic memory deficits in our group of SD patients.  
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The GM reduction was also found to concern at a lesser degree the left fusiform gyrus, 

consistently with previous studies in SD [22, 26, 49], as well as in the amygdala, 

parahippocampal gyrus and hippocampus, predominantly on the left hemisphere. Left 

amygdala atrophy in SD has recently been shown in VBM [4, 25] and in volumetric [39, 78] 

MRI studies, and seems to be more pronounced than in Alzheimer‟s disease. Davies et al. [12] 

have also stressed the involvement of the parahippocampal gyrus, more precisely, the 

perirhinal and entorhinal cortices, in SD. Our findings regarding the hippocampus are in 

keeping with the study of Good et al. [25] which used an optimized VBM procedure. The 

presence of significant atrophy in this region has also been reported in other studies using the 

ROI method [7, 22, 52]. In contrast with our findings, these latter authors showed that medial 

temporal lobe damage in SD was not associated with episodic memory deficits. However, 

their study was designed to contrast the patterns of brain alterations between SD patients with 

selective semantic memory deficits and Alzheimer‟s disease patients with episodic memory 

deficits, instead of providing the brain profile of alteration representative of SD pathology. 

Their SD patients have thus been specifically selected for this purpose as being free from 

episodic memory deficits.  

We also reported significant atrophy in the left insula, anterior cingulate cortex, 

thalamus and caudate nucleus in our group of patients, in accordance with Gorno-Tempini et 

al.‟s VBM study [26].  

 

Regarding PET data, we showed a bilateral temporal lobe hypometabolism, consistent 

with the two previous voxel based PET studies [17, 52]. It is worth noting that both studies 

did not report additional areas of significant hypometabolism. By contrast, we found a 

metabolic defect in the bilateral hippocampal region as well as in the bilateral orbitofrontal 

areas, right caudate nucleus and insula. While the former structures also showed an extended 
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atrophy, the latter regions were not significantly atrophied at the same threshold. Although the 

hypometabolism of orbitofrontal areas had not been described yet, morphological alterations 

of this region have been reported [18, 49]. This result fits on the one hand with the deficit of 

inhibition processes, in contrast with the preservation of other executive processes, such as 

updating, mainly subtended by the frontopolar cortex [10], and on the other hand, with 

behavioural changes of the patients. It is worth noting that a recent VBM study [65] supports 

the involvement of the right orbitofrontal cortex in disinhibition in FTD/SD patients. 

However, Williams et al [79] found that this area appeared to correlate with semantic 

performances but not with behavioural changes. Thus, orbitofrontal damage appears as a  

common feature of SD cases but what it means to the clinical expression remains an open 

question. 

Altogether, our findings revealed a broader than previously described pattern of 

hypometabolism in SD. This finding might be due to the fact that we studied a group of 

patients suffering from an advanced disease stage and/or to the use of a rigorous 

methodology. The first hypothesis would fit with their impairment of some executive 

functions and visual episodic memory, but seems insufficient to explain such findings since 

semantic dementia patients free from all other deficits than semantic memory are likely to be 

rare. Moreover, in the two previous PET studies [17, 52], the dementia severity, as assessed 

with the MMSE [21] was similar to that of our patients. Regarding the study of Nestor et al., 

the differences are probably due to the criteria selection (see above). Although 

methodological improvements might account for the specific findings of the present study 

compared to Diehl et al. (see methodological section), one other plausible explanation for 

differences in this study compared to the other two SPM studies is that any two cohorts of 

degenerative brain disease are likely to have some idiosyncrasies that reflect the individual 

cases. Overall, except for orbitofrontal metabolic abnormalities, there is a good concordance 
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between our findings and those of Diehl et al. [17] who reported significant hypometabolism 

over the whole left temporal neocortex and in the right temporal pole and Nestor et al. [52] 

who showed hypometabolism in bilateral temporal lobes, including the perirhinal cortex and 

extending to the fusiform gyrus.   

Regarding the differential contribution of the right and left temporal lobes to semantic 

knowledge impairment in SD, findings from our exploratory correlational analysis suggest a 

predominant role of the dysfunction of the left temporal lobe in word-finding difficulties and 

in general semantic knowledge, while the right counterpart would be implicated in the 

impairment of person-specific knowledge. Consistent with this interpretation, several studies 

have reported significant correlations between semantic memory deficits and GM loss in the 

left temporal neocortex in SD [29, 49]. More recently, Williams et al. [79] have revealed in a 

group of frontotemporal dementia patients (including both temporal and frontal variants) that 

semantic breakdown, measured by non-verbal associative knowledge and naming, was mainly 

correlated with extensive loss of GM volume throughout the left anterior temporal lobe. Our 

findings also fit with those of Thompson et al. [73] who showed different patterns of 

cognitive disturbances (predominant in the domain of word-finding and person-specific 

knowledge, respectively) according to the predominantly altered temporal lobe. Other authors 

have suggested the right temporal lobe to be critical to person-specific knowledge (e.g., [20]).  

 

To conclude, hypometabolism is more extensive than atrophy in the temporal lobes 

and specifically concerns the bilateral orbitofrontal areas, right caudate nucleus and insula. 

However, most of the regions of significant hypometabolism were about the same as those 

areas of significant GM loss and were also mainly left-lateralized. The relative overlap 

between morphological and functional abnormalities in SD contrasts with the discordance 

observed in Alzheimer‟s disease [3] and patients at a pre-dementia stage of Alzheimer's [8]. 
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Indeed, in this pathology, while the temporal lobe is the first to be atrophied, the posterior 

cingulate-precuneus area is the highest and earliest functionally altered region. This 

discrepancy between both profiles suggests that functional changes may be caused partly by 

remote effects from the morphologically altered hippocampus, while this region would be the 

site of a compensatory response by neuronal plasticity [8, 40, 44, 51]. The current findings 

also accord with those of Nestor et al [52] who found that metabolism and atrophy in mesial 

temporal ROIs were correlated in SD but not in AD. Thus, the consistency between 

morphological and functional abnormalities in SD might be a typical feature of this disease 

and would be useful to better differentiate SD from AD.   
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Table 1. Neuropsychological data (m ± ) for 10 SD and 21 control subjects.  

 

 

Cognitive functions Tests 
Controls 

 

Patients 

 

Group 

effect 

(U Mann-

Whitney test) 

Semantic memory Picture naming test (DO 80) 79.57 (1.1) 45.9 (22.03) *** 

Semantic Knowledge test (/236) 232.38 (3.6) 185.78 (38) *** 

Famous People test (/40) 39.84 (0.6) 25.50 (16) *** 

Dead or Alive test (/13)  10.01 (2.5) 4.34 (3.1) ** 

Categorical fluency 26.47 (7.5) 10.22 (5.3) ** 

Executive Function Trail Making Test B (seconds) 133.47 (65.5) 225.88 (99.7) * 

 
Stroop (Word Color) 48.28 (6.9) 33.3 (9.1) ** 

 
Running Span task (/16) 7.33 (4.1) 4.67 (2.1) NS 

Working 

memory 

Central 

executive 

Dual task (level of performance, in %) 71.98 (18.4) 67.29 (8.5) NS 

Backward digit span 4.14 (0.9) 4.25 (1.3) NS 

Backward visuo-spatial span 4.24 (0.8) 3.75 (1.03) NS 

Slave 

systems 
Forward digit span 5.76 (0.9) 5.75 (1.03) NS 

Forward visuo-spatial span 4.71 (0.6) 4.75 (1.2) NS 

Visuospatial abilities Copy of the Amipb figure (/76) 75.04 (1.5) 75.44 (1.3) NS 

Episodic memory Amipb figure, Immediate recall (/76) 45.29 (16.6) 22.44 (19.4) ** 

 
Amipb figure, Delayed recall (/76) 45.95 (15.4) 24.33 (20.4) ** 

 

Significant differences between patients and controls: *: p<0.05; ** : p < 0.01 ; *** : 

p<0.001 ; NS : non significant 
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Table 2. MRI data: significant (p <0.05 FWE corrected and k> 100) atrophy in SD compared 

to controls.  

MNI 

coordinates 

T k Label  BA % label 

-57 -12 -23 10.62 32322 L Temporal Pole  20, 21, 38 16.9 

     L Inf Temporal G 20 14 

     L Mid Temporal G 20, 21, 22 19.1 

     L Sup Temporal G  21, 22 31.2 

     L Parahippocampus 28, 35, 36 32.4 

     L Hippocampus   70.6 

     L Amygdala   74.9 

     L Fusiform G 20 15.2 

     L Thalamus  3.3 

-31 20 2 8.18 4430 L Insula  18.9 

     L putamen  4.2 

23 -14 -14 8.06 4525 R Parahippocampus 28, 35, 36 11.2 

     R Hippocampus  30.2 

     R Amygdala  16 

40 -10 -10 8.04 1204 R Inf Temporal G  2.3 

     R Fusiform G 20 1.8 

-8 26 1 7.37 3145 L Caudate  11.4 

     L Ant Cingulate G  24 6.4 

35 14 -41 7.31 181 R Mid Temporal  20 1.8 

Location and MNI coordinates of peaks of significant GM reduction in SD patients compared to 

Controls (in decreasing order of significance). Cluster size is indicated by k= number of voxels in the 

particular cluster. Labels and percentage of the labelized region belonging to the cluster were 

obtained for each significant cluster using the automated anatomical labeling (AAL) Toolbox.  

MNI = Montreal Neurological Institute; BA = Brodman area; L = left; R= right; G = gyrus; 

inf = inferior; ant = anterior; mid = middle; sup = superior. 
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Table 3. PET data: significant (p<0.05 FWE corrected) hypometabolism in SD compared to 

controls. 

MNI coordinates T k Label  BA % label 

-28 5 -35 8.43 62184 L Temporal Pole 20, 21, 38 79.1 

     L Inf Temporal G 20 49.5 

     L Mid Temporal G 20, 21 14.1 

     L Sup Temporal G  21 9.1 

     L ParaHippocampus 28, 35, 36 51.8 

     L Hippocampus   60.6 

     L Amygdala   61.9 

     L Fusiform G 20, 36 32.8 

     L Insula  27.1 

     L Orbitofrontal G 11 8.4 

-13 4 24 7.01 53349 R Temporal Pole 20, 21, 38 40.4 

     R Inf Temporal G 20 11.3 

     R Mid Temporal G 20, 21 3.4 

     R Sup Temporal G   21 1.7 

     R ParaHippocampus 28, 35 32.5 

     R Hippocampus  11.2 

     R Fusiform G 20, 36 15 

     R Insula  1.5 

     L & R Caudate   62 & 21.3 

     L  & R Ant Cingulate G  24/32 13.2 & 5.2 

     L & R Rectus G 11 13.9 & 10.8 

     L  & R Orbitofrontal G 11 12.1 & 8.9 

Location and MNI coordinates of peaks of significant hypometabolim in SD patients compared to 

Controls. Cluster size is indicated by k= number of voxels in the particular cluster. Labels and 

percentage of the labelized region belonging to the cluster were obtained for each significant 

cluster using the automated anatomical labeling (AAL) Toolbox.  

MNI = Montreal Neurological Institute; BA = Brodman area; L= left; R = right; G = gyrus; 

inf = inferior; ant = anterior; mid = middle; sup = superior. 
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Legend Fig 1 

Clusters of significant (p<0.05 FWE corrected; k > 100 voxels) atrophy (top), and 

hypometabolism (bottom), in patients with SD compared to controls, as superimposed onto 

axial slices of the customized template. 

 

 

 


