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Abstract  
Background The Dystrophin-glycoprotein complex (DGC) comprises Dystrophin, dystroglycan, 
sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an 
essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to 
protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular 
dystrophies. Most members of the DGC are also concentrated at the neuromuscular junction (NMJ), 
where their deficiency is often associated with NMJ structural defects. Hence, synaptic dysfunction 
may also intervene in the pathology of dystrophic muscles. Dystroglycan is a central component of 
the DGC because it establishes a link between the extracellular matrix and Dystrophin. In this study, 
we focused on the synaptic role of Dystroglycan (DG) in Drosophila.  
 
Methodology/Principal Findings We show that DG was concentrated postsynaptically at the 
glutamatergic NMJ, where, like in vertebrates, it controls the concentration of synaptic Laminin and 
Dystrophin homologues. We also found that synaptic DG controlled the amount of postsynaptic 4.1 
protein Coracle and alpha-Spectrin, as well as the relative subunit composition of glutamate 
receptors. In addition, both Dystrophin and Coracle were required for normal DG concentration at 
the synapse. In electrophysiological recordings, loss of postsynaptic DG did not affect postsynaptic 
response, but, surprisingly, led to a decrease in glutamate release from the presynaptic site.   
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Conclusion/Significance Altogether, our study illustrates a conservation of DGC composition and 
interactions between Drosophila and vertebrates at the synapse, highlights new proteins associated 
with this complex and suggests an unsuspected trans-synaptic function of DG.   
 
 
Introduction   In muscle fibers, the Dystrophin-glycoprotein complex (DGC) is thought to provide 

an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix. This 

complex comprises Dystroglycan subunits (α and β), Dystrophin or Utrophin, sarcoglycans subunits, 

syntrophin subunits, and dystrobrevin subunits. Dystroglycan (DG) is a central component of the 

DGC because it establishes the transmembrane link between Laminins and Dystrophin [1,2]. DG is 

encoded by a single gene (dag1) [3], and is expressed as a propeptide that gets cleaved in two 

fragments: α and β-DG, which associate non-covalently in mature skeletal muscle. The extracellular 

DG α-subunit is heavily glycosylated, and interacts with extracellular Laminin, whereas the 

transmembrane β-subunit interacts with subsarcolemmal Dystrophin, which itself links the actin 

network. The maintenance of this structural link provides stability of the sarcolemma, especially 

upon muscle contraction. In Duchenne muscular dystrophy, mutation and subsequent loss of 

Dystrophin destabilizes the other DGC members [4], which further leads to mechanical damage of 

the muscle cell membrane [5,6]. There are no known dystrophies associated with a mutation in the 

dystroglycan gene, probably because of the importance of the encoded protein in other cellular 

types. Indeed, loss of DG in mice leads to early embryonic death [7]. However, mutations in 

enzymes responsible for the glycosylation of α-DG are the cause of congenital myopathies such as 

the Walker-Warburg syndrome, the muscle-eye-brain disease and Fukuyama-type congenital 

muscular dystrophy, for review [8,9].   

 Most members of the DGC are found to be concentrated at the cholinergic neuromuscular junction. 

Moreover, mouse studies revealed abnormalities of NMJs lacking DGC components [10-15] 

suggesting a role for a defective neurotransmission in some dystrophies [16,17]. For example, NMJs 

without muscle DG show decreased levels of synaptic Laminin and Utrophin, as well as smaller 

acetylcholine receptor clusters [17-20]. A more general function of the DGC in synaptic 

transmission is further supported by the localization of DGC components in central brain synapses 

[21-23] and the occurrence of mental retardation in myopathic patients that do not show any major 

brain structural defect [24]. In this study we focused on the synaptic role of DG, using the 

Drosophila glutamatergic larval NMJ. This synapse is not only a neuromuscular junction, but also a 

well-established model to study the development, the structure and the function of a glutamatergic 
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synapse [25]. We showed that DG is concentrated postsynaptically at this NMJ. We analyzed the 

status of DG partners at this synapse and found that 1) like in vertebrates, DG controls synaptic 

Laminin and Dystrophin concentration, 2) DG also controls the amount of postsynaptic 4.1 protein 

Coracle, the postsynaptic spectrin cytoskeleton, and the relative subunit composition of glutamate 

receptors, and 3) reciprocally, both Dystrophin and Coracle are required for DG concentration at the 

synapse. Finally, electrophysiological analysis shows that loss of muscle DG leads to a functional 

defect, i.e. a decrease in presynaptic glutamate release. 

Methods  

Fly stocks.  yw
CS

flies were used as a control in all experiments with dg mutants. dg-RNAi/+ or UAS-
DG-C/+ flies were used as controls when studying crosses with these transgenes. The 24B-Gal4 line 
was used for all muscle expression experiments [26]. Dg323 and dg62 

alleles as well as UAS-DG-C 
transgenic flies have been previously described [27]. The genotype of larvae overexpressing DG-C in 
our experiments is 24BGal4/UAS-DG-C. We also used the piggybac insertion dg

e01554
 [28]. The DG 

directed RNAi construct [27] originally on chromosome 3 was remobilized on chromosome 2 (line 
n°12), and flies containing the two RNAi transgenes over wild-type chromosomes were used for all 
immunocytochemistry experiments. We created a UAS-DG-C-GFP construct using the Gateway 
system and by inserting the PCR amplified sequence of DG (LD11619) in ptWG. The Dys-COOH 
RNAi transgenic flies were described in [29]. The hypomorph cora

14

 allele was described in [30]. 
This mutation leads to the replacement of R1607 by a stop codon.  The null cora[k08713] allele was 
analyzed in [31]. The cora alleles as well as The P{EPgy2}cora[EY07598] containing stock were 
obtained from the Bloomington Drosophila Stock Center. Green fluorescent protein or Tubby 
balancers were used to identify homozygous individuals. All crosses were performed at 25°C except 
those with RNAi which were set up at 25°C for three days (to allow egg-laying) and transferred at 
29°C. 

Generation of polyclonal antibody The Dystroglycan C-terminal polyclonal antibody (LG5) was 
raised in New Zealand rabbits by repeated intra dermal injections. Synthetic peptide of the last 7 C-
terminal amino acids of Human Dystroglycan (PPPVYPP) was conjugated via a cysteine residue 
associated to hexanoïc acid to the keyhole limpet hemocyanin and such KLH-linked peptide was used 
as antigen according to a previously described protocol. The resulting polyclonal antibody was 
purified and characterized as previously described [32]. Note the Drosophila 7 C-term sequence is 
PPPVYSP. 

Immunocytochemistry Larvae were dissected in PBS 1x, EDTA 1mM, and then fixed in fresh 4% 
paraformaldehyde (Sigma, L’isle d’Abeau, France) for 20 min. for all stainings, apart from GluRIIA 
and GluRIIC ones. For these stainings, preparations were fixed for 15 min. in Bouin’s fixative 
(Sigma, L’isle d’Abeau, France). Antibody incubations were performed in PBS 1x buffer with 0.3% 
Triton X100 and 0.2 to 1% BSA. The following antibodies were used: Goat anti-HRP (Sigma, L’isle 
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d’Abeau, France, 1:1000), mouse monoclonal anti alpha-Spectrin 3A9 (1:25), mouse monoclonal 
anti-DLG 4F3 (1:100), mouse monoclonal anti-DGluRIIA 8B4D2 (1:50), mouse monoclonal anti-
Fas2 1D4 (1:20), all four were obtained from the Developmental Studies Hybridoma Bank 
(University of Iowa, Iowa City, IA); rabbit anti-GluRIIC (gift from A. DiAntonio, 1:3000) [33], 
rabbit anti-Dgex8 (gift from M. Schneider, 1:1000) [29], rabbit anti-DYS (gift from A. Wodarz, 
1:1000) [29], rabbit anti-Laminin (gift from L. Fessler, 1:1000) [34] and guinea-pig anti-Cora raised 
against a ~2KB fragment from the 3' half of the coding sequence (bp 2193-4225 of cDNA1, see [35]), 
(gift from R. Fehon, 1:2500).  Alexa 488, Cy3 or Cy5-conjugated anti-rabbit, anti-guinea pig, anti-
goat or anti-mouse were obtained from Molecular Probes and Jackson ImmunoResearch, 
(WestGrove, PA) and used at dilutions ranging from 1:1000 to 1:250.  Images were acquired with a 
Biorad 1024 or a Zeiss LSM 510 Meta confocal microscope. Quantification of DGluRIIA and 
DGluRIIC staining intensities was performed with imageJ. For each channel, a threshold was set and 
used for all images. The sum of pixel intensities (S) above threshold was calculated for each channel 
and the ratio of S (DGluRIIA)/S(DGluRIIC) calculated for each image. Student’s tests were 
performed for statistical analysis. 3D views shown in Fig. 5 were obtained with Volocity software.  

 
Co-immunoprecipitation and immunoblot analysis  Drosophila heads from 24B Gal4/+; UAS-DG-C-
GFP/+ flies where homogenized in lysis buffer (50mM Tris pH8, 100mM NaCl, 1% NP40, 1mM 
EDTA, protease inhibitor cocktail) during 45’ at 4°C. The lysate was centrifuged at 16000 g at 4°C 
for 20 min.. The supernatant was incubated with anti-GFP antibody (A6455, Molecular Probes) O/N 
at 4°C. Next, we added protein-A conjugated sepharose beads (ProteinA Sepharose CL-4B, GE 
Healthcare) at 4°C for 3 hours. After incubation, the complex was precipitated at 4000g for 2 min., 
washed 4 times in lysis buffer, eluted in Laemmli buffer and separated on a 4-12% SDS-Page gel (4-
12% GeBagel, Interchim) followed by transfer onto nitrocellulose membrane (Hybond-C, Amersham 
Biosciences). Membranes were incubated O/N at 4°C with primary antibody diluted in TBS-T (50m 
M Tris, pH 7.4; 150mM NaCl and 0.2% Tween 20) containing 5% nonfat dried milk. Dilutions were 
1:10000 for Guinea-pig anti-Cora, 1:500 for monoclonal anti-alpha Spectrin 3A9 and 1:1000 for 
monoclonal anti-Shaggy (4G-1E, Upstate). Membranes were washed three times for 10 min. with 
TBS-T and incubated with secondary antibodies for one hour at room temperature. Membranes were 
finally washed three times in TBS-T and signal was detected using SuperSignal West Pico 
Chemiluminescent Substrate (Pierce).  For analysis of the specificity of the Cora antibody, 
Drosophila larvae from the following genotypes: Canton S, P{EPgy2}cora

EY07598
/+; 24B Gal4/+ and 

P{lacW}cora
k08713

/cora
14

 were dissected in PBS 1X, EDTA 1mM and then homogenized in lysis 
buffer (50mM Tris pH8, 100mM NaCl, 1% NP40, 1mM EDTA, protease inhibitor cocktail). Proteins 
were separated by SDS-PAGE (8%) and transferred electrophoretically onto nitrocellulose 
membranes (Hybond-C, Amersham Biosciences). Membranes were incubated overnight at 4°C with 
primary antibodies: anti-Coracle, Guinea-pig, 1:10000, then anti-Tubulin DM1A, Mouse, 1:1000, and 
the procedure continued as described above.   
 
Quantitative PCR analysis.  DG (CG18250) transcript levels were measured to compare the strength 
of different dg mutant conditions. The following genotypes were tested Canton S, dg

e01554
 

homozygotes, dg
e01554

/ dg
323

 and dg
e01554 

/dg
62

 transheterozygotes. cDNAs were generated from 1 µg 
total RNAs treated with DNase I by using random hexamers and Moloney murine leukemia virus 
reverse transcriptase (LTI). Real-time PCR was done using Applied Biosystems (Courtaboeuf, 
France) SYBR Green PCR mix according to the manufacturer's instructions. PCR was done as 
follows: 10 minutes at 95°C followed by 40 cycles: 15 seconds at 95°C, 60 seconds at 60°C. 
Housekeeping genes used to normalize dg expression levels were RPL13, TBP and PGK. Sequences 
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of the primers are : RPL13 5'-AGGAGGCGCAAGAACAAATC and 5'-
CTTGCTGCGGTACTCCTTGAG (amplicon 72nt), TBP 5'-CGTCGCTCCGCCAATTC and 5'-
TTCTTCGCCTGCACTTCCA, PGK 5'-TCCTGAAGGTCCTCAACAACATG and 5'-
TCCACCAGTTTCTCGACGATCT, DG couple 1 5'-GAACCGCAGCCGGAAGA and 5'-
GGCCTTGCCCGATGTG, and DG couple 2 5'-GCGACGAAGAGGAGCGCAA and 5'-
CCTGAAAGATGACGGGAATACC.  

Electrophysiology  Two-electrode voltage clamp recordings were obtained at 22°C from VLM 6 in 
segments A2 and A3, of late third instar larvae, as previously described in [36]. All cells selected for 
analysis had resting potentials between -60 and -70 mV and the input resistance was ≥ 4 MΩ. 
Student’s tests were performed for statistical analysis.   
 

Results  

 

Dystroglycan is a postsynaptic component of the Drosophila NMJ 
 
In order to identify proteins of the Dystrophin-glycoprotein complex conserved at the Drosophila 

NMJ, and to study these molecules in a model organism, we undertook a screen of many antibodies 

directed against mammalian DGC proteins, for a specific staining at the third instar larval NMJ. 

The LG5 antibody cross-reacted with Drosophila DG (Fig. 1A-D). This antibody was directed 

against the last 7 C-terminal residues of Human Dystroglycan, which are identical to the 

Drosophila DG C-terminal residues, apart from the penultimate residue (see Material and 

Methods). Since the C-terminal residues are common to the three known Drosophila DG isoforms, 

this antibody certainly recognizes them all. To confirm the data obtained with LG5, we used a 

second polyclonal antibody, Dgex8, directed against the extracellular mucin-like domain of 

Drosophila DG [29]. This domain is subjected to significant levels of glycosylation [37], and is 

encoded by an alternatively spliced exon [27,29,38]. It is present only in the DG-C isoform, and is 

not required for DG function in epithelial polarity [29]. Both LG5 and Dgex8 antibodies gave the 

same result (Fig. 1A and Fig. 1F). They labelled a large area around the HRP-positive varicosities, 

indicating that some of the staining corresponds to postsynaptically localized DG. We used 

transgenic flies that expressed double-stranded RNA directed against dg sequence present in all dg 

isoforms mRNAs (dg-RNAi) [27]. Muscle expression of this dg-RNAi construct with the 24B Gal4 

driver led to a decrease in the NMJ labelling (Fig. 1B), without significant decrease in the extra-

NMJ staining. This indicated that the antibody staining at the NMJ was specific, and that DG was 

indeed expressed in the muscles. The presence of DG at the NMJ was further supported by the 

analysis of dg mutants. Since known null mutants of dg, dg
62

 and dg
323

 [27] are lethal at the late 
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embryonic, first instar larval stages, we used a hypomorph mutation of dg. The Piggybac element 

insertion PBac{RB}e01554 in dg led to a 90% decrease in all dg transcripts (supplemental Fig. 1). 

In third instar larvae transheterozygous for dg
e01554

 and the dg null allele dg
323

, the DG synaptic 

staining was strongly reduced with the LG5 antibody (Fig. 1C) and with the Dgex8 antibody as 

well (supplemental Fig. 1). Finally, when we overexpressed the DG-C isoform in muscle cells, we 

observed a large increase in NMJ DG staining (Fig. 1D), as was already previously reported [39], 

confirming the synaptic localization of this protein. Overexpressed DG also aggregated in discrete 

patches (arrows in Fig. 1D). Altogether, these data show that Dystroglycan, notably the DG-C 

isoform containing the mucin-like domain, is endogenously concentrated at the larval NMJ, mainly 

on the postsynaptic side. To look in more detail at the fine synaptic localization of Dystroglycan, 

we expressed a DG-CGFP tagged isoform in the muscle. Like the PSD-95 homologue Discs-Large 

(DLG) [40], DG-C-GFP is partly excluded from the postsynaptic densities facing the active zones 

(Fig. 1E). These latter were labelled with an antibody directed against Bruchpilot (BRP)[36,41] 

(Fig.1). This suggests that DG-C localization is mainly perisynaptic.  

 
 
 
 
Figure 1: Localization of DG at the NMJ. A-D) DG (A2, B2, C2, D2) and HRP (A3, B3, C3, D3) 
immunoreactivity at the NMJ of muscle 4. Merge of both images with DG in magenta and HRP in 
green (A1, B1, C1, D1). The LG5 antibody was used to analyze DG localization. (A) In wild-type 
flies, DG concentration is clearly visible at type Ib boutons. DG immunoreactivity is much larger than 
motoneuronspecific HRP immunoreactivity, indicating that DG is present in the muscle cell, i.e. 
postsynaptically. (B) In larvae expressing DG-directed RNAi in the muscle using the 24B Gal4 
driver, the NMJ LG5 staining was decreased in intensity. (C) In larvae mutant for dg (dg

e01554
/dg

323
), 

the NMJ LG5 staining was more strongly affected. (D) In larvae overexpressing DG-C isoform in the 
muscles using the 24B Gal4 driver, a clear increase in LG5 immunoreactivity was observed (laser 
intensity was decreased to avoid too much signal saturation in this genotype) both at the NMJ, and 
also in distant patches (arrows). (E) Two serial sections (every 0.7 µm) of a synaptic varicosity of a 
larva expressing a DG-C-GFP construct in the muscle cells (with the 24B Gal4 driver). GFP 
fluorescence (E2) is present in the subsynaptic reticulum (SSR) (arrow) and is partially excluded from 
the sensus-stricto synapses (arrowhead). Synapses are labelled with the active zone marker Bruchpilot 
(BRP)(E3). Merge of both images with DG-GFP in green and BRP in magenta is shown in E1.  
(F) DG staining with anti-Dgex8 antibody, specific of the DG-C isoform (F2) and HRP (F3). The 
Dgex8 immunoreactivity is similar to the LG5 immunoreactivity (A2). Again, Dgex8 
immunoreactivity is much larger than motoneuron-specific HRP immunoreactivity (F1), indicating 
that DG-C protein is present at the postsynapse. In all panels, a muscle 4 NMJ is shown. Scale bar is 
10 µm in A-D, 5 µm in E and 10 µm in F.  
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Dystroglycan controls varicosities Laminin concentration 
 
In vertebrates, loss of DG in muscle cells was reported to suppress Laminin concentration at the 

cholinergic NMJ [19]. We tested if this was also the case at the Drosophila glutamatergic NMJ. 

First, we investigated whether Laminin was indeed present at the Drosophila NMJ. Laminin is a 

heterotrimer consisting of three chains, A, B1 and B2. We used a polyclonal antibody against 

Laminin heterotrimer [34]. We could detect some Laminin (LAM) staining at the muscle surface, 

like in mammalian muscle cells, and could detect LAM immunoreactivity at the NMJ (Fig. 2A). At 

this level of optical resolution, the NMJ localization of LAM fits with a trans-synaptic localization of 

this component of the extracellular matrix. Costaining with the active zone marker Bruchpilot 

revealed that, like DG, LAM was excluded from synapses (Fig. 2A) and restricted to the perisynaptic 

zones. LAM was present around varicosities as well as around the inter-varicosities connectives (Fig. 

2B). In larvae expressing dg-RNAi in muscles, the LAM co ntent around the varicosities was 

decreased so that the varicosities were less distinguishable compared to the connectives (Fig. 2C). 

This situation was similar and even more pronounced in dg mutants (Fig. 2D). We also analyzed the 

consequences of DG overexpression in the muscle cell on the amount and localization of LAM. We 

used the DG-C isoform, containing the mucin domain, which is supposed to play a critical role in 

LAM binding of DG [29,42]. LAM patches, never observed in control conditions, appeared 

extrasynaptically and colocalized with DG-C-GFP (supplemental Fig. 2). This indicated that the DG-

C isoform could indeed recruit LAM in the muscle cell. At the NMJ, the pattern of LAM localization 

was more irregular, with some perisynaptic areas larger, and more intense in LAM 

immunoreactivity, compared to a more homogenous situation in controls (Fig. 2E). Altogether, these 

data show that Laminin localization around varicosities is partly dependent on DG. We then tested 

the interaction between DG and its second well-known partner, Dystrophin, at the synapse.  

Figure 2: Laminin localization at the drosophila NMJ varicosities is influenced by DG A) Serial 
sections of two adjacent varicosities (every 0.7 µm) labelled for BRP (green) and LAM (red) to 
analyze LAM localization. There is no colocalization between the active zone marker BRP and the 
LAM staining, indicating that LAM is mainly perisynatically localized.  BD) Lower magnification of 
NMJ stained for LAM (B2,C2,D2) and HRP (B3,C3,D3). The merge image is shown in B1,C1,D1 
(LAM in red and HRP in blue). (B) In control larvae, LAM is present both in varicosities and inter-
varicosities connectives. (C) In larvae expressing dg directed RNAi in the muscle using the 24B 
Gal4 driver (dg-RNAi/+; 24B Gal4/dg-RNAi), the varicosity LAM staining was decreased in 
intensity, whereas the connective staining remained unchanged. (D) In larvae mutant for dg 
(dg

e01554
/dg

323
), the LAM varicosity staining was strongly affected, but not the connective staining. 

(E) In larvae overexpressing DG-C isoform with the 24B Gal4 driver, no clear increase in LAM 
immunoreactivity was observed at the NMJ. However, larger LAM stretches were observed (see 
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arrows in E1, E2 and in the insert showing a double BRP (green), LAM (red) staining of a synaptic 
bouton in this genotype). In addition LAM patches (arrowhead) appeared in this genotype. N.B. an 
immunoreactive trachea is visible in E1 and E2 (asterisk). In all panels, a muscle 4 NMJ is shown. 
Scale bar is 10 µm.  ctrl = control 

 
 

Dystroglycan controls postsynaptic Dystrophin concentration 
 
DG was shown to be partly responsible for the synaptic concentration of Utrophin at the vertebrate 

cholinergic NMJ [18]. In Drosophila, there is only one gene homologous to utrophin and dystrophin 

genes, called dystrophin [43]. This gene encodes for different protein isoforms. Large isoforms are 

concentrated postsynaptically at the NMJ [44]. To test whether synaptic Dystrophin (DYS) 

localization was dependent on DG, we used an antibody directed against a C-terminal sequence of 

DYS, which detects all known DYS isoforms [29]. As previously described with an antibody 

directed against large isoforms of DYS, we observed a postsynaptic localization of DYS at the NMJ 

(Fig. 3A). DG mutants displayed a strongly reduced DYS staining (Fig. 3B1-3). This reduction was 

not due to a general absence of the postsynaptic apparatus since postsynaptic marker Discs-Large 

(DLG) staining was present in these mutants (Fig. 3B4). This indicates that DG is required for the 

normal postsynaptic DYS localization. To test whether DG was also sufficient for this DYS 

localization, we overexpressed postsynaptically DG-C. In these NMJs, Dystrophin immunoreactivity 

was strongly enhanced around synaptic boutons (Fig. 3C), indicating that postsynaptic DG can 

indeed recruit or stabilize DYS.  
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Figure 3: DG controls synaptic DYS localization Triple staining for HRP (blue), DYS (red) and 
DLG (green) in control (A), dg mutant (B) and DG-C overexpressing (C) larvae. Merge images are 
shown in A1, B1, C1. Single channel stainings are shown in A2, B2, C2 for HRP, A3, B3, C3 for 
DYS and A4, B4, C4 for DLG. In dg

e01554
/dg

323
 mutant larvae, the DYS staining (B3) is almost 

absent compared to control larvae (A3), although the DLG staining is still present (compare A4 and 
B4). When Dg-C is overexpressed with the 24B Gal4 driver, DYS staining is strongly enhanced 
around HRP positive boutons, and also in the entire muscle cell (compare C3 and A3). In all panels, 
a muscle 4 NMJ is shown. Scale bar is 10 µm.  ctrl = control. 

 

Altogether, these data show that DG controls DYS concentration at the glutamatergic NMJ.  

Dystrophin is known to be required for DG sarcolemmal localization in vertebrate muscles [4]. We 

wondered whether DYS was also required for normal DG localization at the Drosophila NMJ. To 

test this hypothesis, we used RNAi interference to target all Dystrophin isoforms in the muscle [29]. 

Expression of the RNAi transgene led to a very strong decrease in postsynaptic DYS 

immunoreactivity (Fig. 4A-C). This lack of postsynaptic Dystrophin was accompanied by a decrease 

in postsynaptic DG (Fig. 4D, F), although not a complete loss of DG. Hence, at the Drosophila 

NMJ, DYS partially controls DG synaptic concentration. Altogether, our data illustrate the presence 

of a synaptic LAM/DG/DYS complex, like in vertebrate neuromuscular junctions. What can be the 

functional consequences of the loss of this complex in absence of DG? At the cholinergic NMJ in 

mammals, DG is involved in synapse function through rapsyn-mediated anchoring of the nicotinic 

acetylcholine receptors [19,45,46]. We wondered whether DG is also required for the clustering of 

glutamate receptors and if so, through which cytoplasmic scaffold. We first looked at the synaptic 

protein Coracle (CORA), reported to control some glutamate receptor subunits localization at the 

Drosophila NMJ [31].  

H
A

L author m
anuscript    inserm

-00277152, version 1



Figure 4: DYS controls Dystroglycan 
postsynaptic concentration. (A-C) 
Double staining for Fas2 (A green, B), 
DYS (A magenta,C) on control (1) and 
UASDYS-RNAi flies crossed with 24B 
Gal4 (2). In larvae expressing the DYS-
RNAi (DYS-RNAi/+; 24B Gal4/+), 
there is almost no DYS 
immunoreactivity detectable at the 
NMJ. (D-G) Triple staining for Fas2 (D 
blue, E), Dystroglycan (D green, F) and 
Coracle (D red, G) in the same 
genotypes. DG postsynaptic labelling is 
reduced in absence of postsynaptic 
Dystrophin=DYS. CORA=Coracle 
immunoreactivity is also reduced, but to 
a much lower extent compared to the 
loss of postsynaptic DG. (H) alpha-
Spectrin (α-SPEC) immunostaining on 
the same genotypes. Scale bar is 10 µm. 
In all panels, a muscle 4 NMJ is shown.  
 
 

Dystroglycan also controls 

intracellular Coracle NMJ 

concentration 
 
Coracle (Cora) is the Drosophila 4.1 

protein homologue. It has been shown 

to be concentrated at the NMJ and to 

control the amount of GluRIIA subunit 

in postsynaptic glutamate receptors  

[31] in late embryos and first instar 

larvae. The cora gene encodes four 

protein isoforms (ranging from 699 to 

1698 amino acids) [35]. In Chen et al. 

[31], the 9C monoclonal antibody 

directed against the FERM domain of 

all Cora isoforms [35] was used, and no 

clear Cora immunoreactivity could be 
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detected at the NMJ of late larval developmental stages. Here, we demonstrated that in third instar 

larvae, Cora was concentrated around the NMJ (Fig. 5A), using a polyclonal guinea-pig antibody 

directed against a sequence present only in large Cora isoforms [35]. We tested the specificity of the 

stainings we obtained in flies with genetically altered levels of Cora protein, where the intensity of 

the staining should parallel the amount of protein. We used the cora
14

 hypomorph mutant [30] and 

the null mutation cora
k08713

 [31] as well as flies overexpressing cora. In cora
14

/cora
k08713

 third instar 

larvae, the NMJ Cora staining was strongly reduced, indicating that this staining was specific and 

that Cora was actually present postsynaptically in the domain rich in subsynaptic reticulum (SSR) 

(supplemental Fig. 3).  We also overexpressed Cora in muscles, using the 24B Gal4 driver and the P 

element insertion P{EPgy2}cora[EY07598] upstream of the translation start of all Cora isoforms. 

This produced an increased staining in the SSR as well as in the whole sarcolemma (supplemental 

Fig. 3).  These data further confirmed the ability of this antibody to recognize Cora. We observed 

that in larvae expressing a dg directed RNAi and in dg mutants, the synaptic concentration of Cora 

was markedly affected (Fig. 5 B,C,E,F). No clear change in intensity was observed for the 

sarcolemmal immunoreactivity. These data showed that DG was required for the NMJ localization of 

Cora. We further tested whether DG was also sufficient to concentrate Cora at the synapse, by 

overexpressing DG-C in the muscle. This led to a very large increase in the amount of postsynaptic 

Cora (Fig. 5D), but not to an overall homogenous increase of Cora immunoreactivity at the muscle 

surface. However, many cytoplasmic Cora clusters could be found, in a way similar to Laminin 

clusters when DG-C was overexpressed (arrows in Fig. 5D). In DG-C-GFP overexpressing larvae, 

the Cora patches were localized at positions where DG-C-GFP could be found, exactly like the LAM 

patches (Supplemental Fig. 2). This further confirms the ability of DG-C to recruit the Cora protein. 

Altogether, these data show that DG controls synaptic Cora localization.   

 
Figure 5: DG controls postsynaptic Cora concentration Double staining for Cora (Magenta) and 
HRP (green)(1) in (A) WT larvae, (B) larvae expressing muscle dg-RNAi (dg-RNAi/+; 24B Gal4/dg-
RNAi), (C) dg

e01554

/dg
323

 mutant larvae and (D) larvae overexpressing DG-C in muscles (24B-
Gal4/UAS-DGC). Arrows indicate patches of Cora protein. Single stainings for Cora and HRP are 
shown respectively in (2) and (3). In all panels, a muscle 4 NMJ is shown. Scale bar is 10 µm.  3D 
views of the preparations shown in A1 and C1 are shown in E and F: we look at the NMJ from the 
inside of the muscle cell. Cora is in magenta and HRP in green.  ctrl = control 
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Dystroglycan controls the abundance of Spectrin cytoskeleton at the NMJ 
 
The 4.1 proteins are described as spectrin-actin binding proteins [47]. The prototypical 4.1 protein is 

the erythrocytal 4.1 protein (4.1R), which is essential for the submembranous actin-spectrin 

cytoskeleton. The protein domain of 4.1R protein responsible for this interaction has been delineated 

and is called the SAB domain. This domain is not conserved in the Drosophila homologue Cora 

[35], which is probably not able to bind actin and spectrin. The spectrin cytoskeleton is composed of 

heteromers of alpha and beta spectrin subunits. Previous studies have shown that this cytoskeleton is 

also present at the NMJ [48]. Since we observed a clear colocalization of Cora and Spectrin (α-Spec) 

at the NMJ postsynaptic side (supplemental Fig. 3), we looked whether loss of Cora in the dg mutant 

conditions influenced the synaptic spectrin cytoskeleton. In dg loss of function conditions, there was 
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a decrease in the postsynaptic staining intensity of the spectrin cytoskeleton, as assessed with an anti-

alpha-Spectrin antibody (α-Spec; Fig. 6B, C) compared to the wild-type situation (Fig. 6A). 

However, this cytoskeleton was still clearly visible. In addition, DG postsynaptic overexpression led 

to an increase in postsynaptic alpha-Spectrin immunoreactivity, which was not completely penetrant 

(Fig. 6D).  Hence, our data show that DG controls postsynaptic Cora concentration, and, to a lesser 

extent, the postsynaptic spectrin cytoskeleton.  To address whether Cora and Spectrin proteins 

belonged to the protein complexes interacting with DG, we performed immunoprecipitation of a DG-

GFP protein expressed in muscles. Both Cora and alpha-Spectrin proteins co-immunoprecipitated 

with DG-GFP, whereas a control protein like the GSK-3 homologue Shaggy (Sgg) did not co-

immunoprecipitate (Fig. 6E). In conclusion, Cora and alpha-Spectrin are part of a protein complex 

including DG. 
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Figure 6: DG controls postsynaptic Spectrin concentration and both Cora and Spectrin co-
immunoprecipitate with DG. Double staining for alpha-Spectrin (α-Spec; Magenta) and HRP 
(green)(1) in (A) wild-type larvae, (B) larvae expressing muscle dg-RNAi (dg-RNAi/+; 24B 
Gal4/dg-RNAi), (C) dg

e01554

/dg
323 

mutant larvae and (D) larvae overexpressing DG-C isoform in the 
muscles (24B-Gal4/UAS-DGC). Single stainings for alpha-Spectrin are shown in (2).  Scale bar is 10 
µm. (E) Coimmunoprecipitation was performed with a polyclonal anti-GFP antibody on protein 
extracts from flies expressing DG-C-GFP. S corresponds to the supernatant and P to the pellet. Cora 
and alpha-Spectrin co-immunoprecipitate with DG-C-GFP, but not Shaggy (Sgg), a cytoplasmic 
protein kinase. 

DG effect on Cora and alpha-Spectrin is not merely a consequence of the loss of 

Dystrophin 

 
The most parsimonious way to explain how DG can affect Cora and alpha-Spectrin NMJ 

concentration is: DG controls the F-actin cytoskeleton via Dystrophin; Coracle as well as alpha-

Spectrin, known to be actin binding protein, are delocalized when the postsynaptic F-actin 

cytoskeleton is disrupted in absence of Dystrophin in the DG loss of function condition. To test this 

hypothesis, we tried to look at the postsynaptic F-actin cytoskeleton with rhodamine-phalloidin 

staining, but could not reliably see its size due to the underlying actin-myosin contractile apparatus. 

Still, some postsynaptic F-actin cytoskeleton could be observed in dg mutants (data not shown). We 

thus tested whether the loss of Dystrophin also led to a decrease in Cora and alpha-Spectrin 

postsynaptic immunoreactivity. We performed this experiment, keeping in mind that the loss of 

Dystrophin also affected DG immunoreactivity (Fig. 4). We could see that an almost complete loss 

of NMJ Dystrophin obtained when expressing a DYS RNAi construct always had smaller effects on 

Cora and α-Spectrin immunoreactivity compared to a loss of DG function, which affected only 

partially DYS staining (compare Fig. 4 and Fig. 5). These results suggest that DG controls 

postsynaptic Cora and alpha-Spectrin concentration independently of Dystrophin (supplemental 

Figure 4).   

 

Coracle reciprocally controls DG localization 
 
If DG controls in parallel DYS and CORA synaptic concentration, and DYS controls reciprocally 

DG, we wondered whether CORA also played such a reciprocal function on DG. We looked at the 
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DG NMJ staining in the cora
14

/cora
k08713 

mutant. This mutant reproduced the dg phenotype at the 

NMJ, in that postsynaptic CORA concentration was markedly affected (Fig. 7B), although 

presynaptic HRP staining (Fig. 7A) and postsynaptic DLG staining (Fig. 7C) did not change 

intensity. In this cora hypomorph mutant, postsynaptic DG staining was reduced (Fig. 7E). This 

indicated that CORA controlled DG postsynaptic localization and that the functional interactions 

between DG and CORA were reciprocal. Associated with the postsynaptic DG loss, we could 

observe, as expected, a decrease in alpha-Spectrin immunoreactivity (Fig. 7D) and in Dystrophin 

staining (Fig. 7E).  

Figure 7: Cora controls Spectrin, Dystroglycan, Dystrophin but not DLG postsynaptic 
concentration (A-C) Triple staining for HRP (A), CORA (B) and DLG (C) in control (1) and 
cora

14

/cora
k08713 

larvae (2). CORA concentration at the NMJ is largely decreased in the cora mutant, 
whereas synaptic HRP and DLG stainings show the same signal intensity. This indicates that CORA 
synaptic loss in the cora mutant is not the direct consequence of a total disruption of NMJ structure. 
(D-F) Stainings for alpha-Spectrin (α-Spec, D), Dgex8 (E) and Dystrophin (F) in control (1) and 
cora

14
/cora

k08713 

larvae (2). (D) In cora mutants, alpha-Spectrin postsynaptic concentration 
decreases, but does not completely disappear, like in dg mutants. (E) Dystroglycan staining appears 
thinner in cora mutants. Inserts show higher magnification of a synaptic bouton with presynaptic 
HRP in magenta and DG staining in green. The thinner appearance of the NMJ in cora mutants is 
due to a decrease in postsynaptic DG staining compared to WT larvae. (F) In cora mutants, DYS 
labelling is reduced, but is still visible, contrarily to DG mutants, in which it disappears more 
strongly.  Scale bar is 20 µm.   
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DG influences the amount of GluRIIA subunits in postsynaptic glutamate receptor 

clusters 

 
The Drosophila NMJ is a glutamatergic synapse. The postsynaptic glutamate channel receptors are 

thought to be composed of four subunits: GluRIIC, IID, IIE and either the GluRIIA or GluRIIB 

subunit [33,49-52]. Since Cora was shown to control the amount of GluRIIA, and since the amount 

of postsynaptic Cora was largely reduced in dg mutants, we expected to see a decrease in the 

amount of GluRIIA subunit present in the postsynaptic glutamate receptors. We quantified the 

immunoreactivity for GluRIIA compared to the immunoreactivity for GluRIIC and could indeed 

see a significant decrease in the relative amount of GluRIIA subunit (Fig. 8), although we could 

never see a complete loss of this subunit. These data show that DG influences the relative subunit 

composition of glutamate receptors at the NMJ. We then analyzed electrophysiologically the 

consequences of the loss of postsynaptic DG.  
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Figure 8: DG influences glutamate receptor subunit composition Triple staining for HRP (1), 
DGluRIIC (2) and DGluRIIA (3) in control (A) and dg

e01554

/dg
323 

mutant larvae (B). DGluRIIA 
immunoreactivity is reduced in the dg mutant whereas DGluRIIC and HRP immunoreactivities are 
unchanged. (C) Quantification of the ratio of DGluRIIA versus DGluRIIC staining intensities (n=6 
for yw and dg mutant, and n=8 for dg-RNAi/+ and dg-RNAi/+; 24B Gal4/+). (* p<0.5; ** p<0.01). 
Error bars represent SEM.  

Loss of postsynaptic Dystroglycan leads to a decrease in synaptic quantal content 
 
We performed intracellular, two-electrode voltage clamp recordings from muscle 6 of segments A3 

at the larval NMJs of WT and dg
e01554

 hypomorphic mutants, or of 24B/+ and dg-RNAi/+; 24B/+ 

larvae (Fig. 9). In dg mutants, or in flies expressing dg-RNAi in muscles, the evoked junctional 

currents (EJCs) were decreased by approximately 40% (w control: 73.95±3.47 nA, n=11; dg mutant: 

53.86±3.87 nA, n=10; 24B/+ control: 72.80±4.45 nA, n=10; dg-RNAi/+; 24B/+: 36.02±2.75 nA, 

n=11) (Fig. 9A and 9B). This effect could be due either to a decrease in the sensitivity of the 

postsynaptic glutamate receptor field, which should be reflected in a decrease of miniature junctional 

currents amplitudes (mEJCs). On the other hand, the number of vesicles released per action potential 

(“quantal content”) could be reduced. mEJCs amplitude was not diminished when DG was decreased 

(w control: 0.92±0.034 nA, n=11; dg mutant: 1.11±0.064 nA, n=10; 24B/+ control: 0.80±0.024 nA, 

n=9; dg-RNAi/+; 24B/+: 0.76±0.036 nA, n=10) (Fig. 9C). On the contrary, there was a slight 

enhancement in the dg mutant, but not reproduced in dg-RNAi larvae. However, estimation of 

quantal content (EJC/mEJC) revealed a reduction of about 40% in dg mutant and dg-RNAi larvae (w 

control: 81.1±4.1, n=11; dg mutant: 49.2±3.8, n=10; 24B/+ control: 89.8±6.4, n=9; dg-RNAi/+; 

24B/+: 50.6±5.2, n=10) (Fig. 9D). Hence, postsynaptic DG seems to be able to positively control the 

amount of presynaptic vesicles released upon stimulation. We further verified that the effect 

observed in dg-RNAi/+; 24B/+ flies was not due to a non specific presynaptic expression of the 

RNAi, by comparing this result with flies expressing the RNAi in neurones with the elav-Gal4 

driver. In elav/+; dg-RNAi/+ larvae, the evoked junctional currents (EJCs) were only slightly 

decreased compared to control genotypes (elav/+; dg-RNAi /+: 63.65±5.41 nA, n=9) (Fig. 9B). In 

these larvae, the mEJCs amplitude was not affected (0.86±0.025 nA, n=5) (Fig. 9C) and the quantal 

content was not significantly diminished compared to both the w and the 24B/+ control genotypes 

(71.86±11.40 nA, n=5) (Fig. 9D). Since larvae expressing dg-RNAi in motoneurones do not show as 
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strong a phenotype as larvae expressing dg-RNAi in muscles, this indicates that postsynaptic 

Dystroglycan controls presynaptic vesicle release.  

 
Figure 9: NMJ electrophysiological defects due to the loss of DG function A) Example traces of 
evoked postsynaptic currents (EJCs) from NMJs of wild type (w

1
) and dg mutant dg

e01554
 larvae. B)  

Mean EJC amplitude for wild type (w
1
 larvae), dg mutant dg

e01554
, Canton S crossed with 24B Gal4 

(24B Gal4/+), dg-RNAi crossed with 24B Gal4 (dg-RNAi/+;24B Gal4/+) and dg-RNAi crossed with 
elavC155 Gal4 (elav Gal4/+; dg-RNAi/+). B) mini EJC amplitudes and C) quantal content for the 

same genotypes. The number of 
measured larvae is indicated within 
each histogram bar. (* p<0.5; *** 
p<0.001). Error bars represent SEM.   

 
 

Discussion  

Synaptic localization of DG 

 

The widely accepted hypothesis about 

the function of the DGC complex is its 

protective role in the sarcolemma 

against muscle contraction induced size 

changes. Here we analyzed the 

synaptic function of a core member of 

the DGC, Dystroglycan. We showed 

that Drosophila DG was concentrated 

at the NMJ, and that most DG 

immunoreactivity at the NMJ was 

postsynaptic. We also showed that a 

proportion of synaptic DG contained 

the mucin-like domain (MLD), which 

is the most heavily glycosylated 
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domain in vertebrate DG. Haines et al reported recently that the MLD containing Drosophila DG 

isoform was indeed glycosylated [39]. Thus, like the vertebrate cholinergic NMJ, the Drosophila 

NMJ is enriched in DG, and notably in glycosylated forms of this protein.  These data are in 

accordance with the previously described concentration of Dystrophin at the Drosophila NMJ [44], 

suggesting the presence of all DGC members at the postsynapse.  It is possible that the NMJ defects 

observed in the dg mutants used in this study are a consequence of a general muscle dysfunction, due 

to the loss of DG at extrasynaptic sites. Indeed, muscle dysfunction has been observed in dg null 

mutants that are lethal at the embryonic and first instar larval stage [39]. However, the mutants 

analyzed here are hypomorphs and the allelic combination used, dg
e01554

/dg
323

, is viable. The larvae 

crawl, pupate and give rise to fertile adults, which do not show any wing position phenotype 

corresponding to flight muscle degeneration. Although we cannot rule out that there are some subtle 

muscle defects at extrasynaptic sites, our data illustrate that synaptic electrophysiological and 

morphological defects are already present in these mild loss of function conditions.

Laminin-DG-DYS complex is conserved at the Drosophila glutamatergic NMJ 

 

A function of the lanA gene, encoding a Laminin A subunit, in stabilizing the initial 

motoneuron/muscle contact during synaptogenesis was published earlier [53]. Here, we show that 

Laminin is still present during late larval stages, and that it is concentrated around synapses in 

varicosities. Our data indicate that, like in mice where DG is required for synaptic Utrophin, Laminin 

α5 and Laminin γ1 concentration [13], Drosophila DG controls synaptic Laminin and Dystrophin 

concentration. In addition, Dystrophin was known to be required for DG sarcolemmal localization in 

vertebrate muscles [4], and both Dystrophin and Utrophin account for part of the clustering of DG at 

the NMJ [54,55]. Here, we show that Dystrophin also controls synaptic DG concentration. Thus the 

interdependence between Laminin, DG and Dystrophin at the NMJ seems to be conserved 

phylogenetically. Importantly, in dystrophin/utrophin double mutants, a significant amount of DG 

remains at the synapse, indicating that other proteins control, in parallel, its synaptic localization [54, 

55]. Our observations indicate that, similarly, the Utrophin-Dystrophin homologue in flies does not 

account for the whole synaptic localization of DG, and we identify Coracle as a new, additional 

synaptic anchor for DG.  
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The 4.1 protein Cora at the NMJ 

 
Looking for any new potential partners of DG, we studied Cora localization in late larval stages at 

the NMJ. A previous report described a function for Cora in early larval stages [31], but did not 

show any clear synaptic localization of Cora in late larval stages, using a monoclonal antibody [35] 

recognizing all Cora isoforms. Instead, a strong immunoreactivity in NMJ associated glial cells was 

reported. We used a polyclonal antibody recognizing only the large Cora isoform [35]. With this 

antibody, we had no immunoreactivity in any NMJ associated glial cell, but we could easily detect a 

postsynaptic concentration of Cora, which partially disappeared in a cora hypomorph mutant, and 

was increased when Cora was overexpressed in the muscle. These data indicated that the observed 

staining was indeed Cora.  The Localization of protein 4.1 members in vertebrate muscle fibers is 

not well documented.  

It has been shown that protein 4.1R isoforms were indeed present in the muscle cells, notably at the 

cell periphery (probably the sarcolemma) [56]. Interestingly, in DMD patients, the peripheral 

localization of protein 4.1R isoforms was lost, although the sub-sarcolemmal spectrin cytoskeleton 

was still present [56]. This set of data already indicated that protein 4.1 sarcolemmal localization 

was dependent on the DGC complex. Here, we show that this is the case at the NMJ, and that DG is 

the principal component involved in Cora localization, since loss of postsynaptic DYS gave much 

weaker phenotypes compared to loss of postsynaptic DG. In addition, we show that Cora co-

immunoprecipitates with DG, indicating the presence of the two proteins in the same complex, 

although further biochemical analysis will be required to assess whether they interact directly or 

indirectly.  Unexpectedly, we observed that Cora was required for the normal postsynaptic 

localization of DG and, to a lesser extent, of DYS. This result was observed using a hypomorph cora 

mutant in which the C-terminal domain is partially deleted. In this mutant, synaptic amount of Cora 

was strongly reduced (Fig. 7 and supplemental Fig. 3).  Further structure-function studies will be 

required to understand 1) which domain of Cora is required for its synaptic localization and for its 

interaction with DG, 2) which part of DG C-terminal tail is involved in Cora interaction. Previous 

studies have shown that the juxtamembrane region of the C-terminal DG tail was interacting with 

Ezrin, a protein containing a FERM domain, like Cora [57,58]. It is possible that the same DG 

domain interacts with Cora.  Since Cora was known to control synaptic GluRIIA abundance [31], an 

expected consequence of the loss of synaptic Cora in dg mutant NMJ was a reduction in the amount 

of GluRIIA subunit at the NMJ. We found such a reduction, but to a mild degree (relative 
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quantification to the amount of GluRIIC subunit had to be done to decrease the effect of preparation 

variance). This small effect may be due to the fact that dg-induced reduction of synaptic Cora is not 

as strong as a complete cora loss of function, which was the situation analyzed originally. The small 

effect observed on DGluRIIA probably explains why there was no change in the amplitude of 

mEJCs in dg loss of functions. Indeed, DGluRIIA is the dominant subunit compared to DGluRIIB 

and a significant loss of DGluRIIA should lead to a decrease in mini amplitude [51].  

Dystroglycan and the spectrin cytoskeleton 

 

Loss of synaptic Dystroglycan resulted in a clear decrease in postsynaptic spectrin cytoskeleton, as 

assessed with alpha-Spectrin immunoreactivity. Although the spectrin defect may be a consequence 

of the loss of synaptic Cora, a more direct interaction between DG and the spectrin cytoskeleton 

remains a possibility. Hence, the link between DG, Cora and spectrin cytoskeleton remains to be 

further defined. The postsynaptic spectrin cytoskeleton was shown to play a role in the repartition of 

postsynaptic receptor fields [48]. Indeed, loss of postsynaptic immunoreactivity for both alpha and 

beta-Spectrin led to a disorganization of postsynaptic receptor fields. We looked for such a defect in 

the dystroglycan loss of function conditions, but could not find any. This is probably due to the fact 

that the loss of spectrin immunoreactivity in these mutants was not complete.   

 

Presynaptic glutamate release defect in postsynaptic DG deficient larvae 

 

We demonstrated that DG played a functional role in neuromuscular synaptic transmission. Indeed, 

the glutamate release was decreased by approximately 40% in absence of muscle DG. The main 

specificity of the insect NMJ, compared to the vertebrate NMJ is the presence of glutamate as a 

neurotransmitter instead of acetylcholine. Hence, these synapses are not only NMJ models, but also 

models of glutamatergic synapses, which are by far the most frequent synapses found in the 

vertebrate brain. A previous study of DG function in brain synapses illustrated an alteration of LTP 

in DG
-CNS

 mice, but no modification of the amplitude of synaptic responses evoked by low 
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frequency stimulation of Schaeffer collaterals, and no changes in paired-pulse facilitation [59].  

Here, we could detect a reduced synaptic response at low frequency, indicating a function of DG in 

basal glutamatergic synaptic transmission.  One surprising result in our electrophysiology 

experiments was the fact that defects in quantal content of the dg mutant were also present, with the 

same intensity in flies expressing a 24B Gal4 driven dg-RNAi. This indicated that loss of 

postsynaptic DG led to a functional change in the other synaptic compartment, the presynapse. Such 

a presynaptic effect associated with postsynaptic modifications is not new, since the NMJ function 

displays homeostasis, and that decrease in postsynaptic responsiveness is often associated to increase 

in neurotransmitter release and vice-versa in order to maintain constant EJCs [60]. The molecular 

mechanisms involved in this homeostatic control are largely unknown. Here, in dg mutants, 

homeostatic control is likely absent since mini amplitude (receptor field) is not altered in absence of 

postsynaptic DG, but glutamate release is modified. This suggests that DG-deficient muscles 

inappropriately signals to the presynaptic release machinery. A similar trans-synaptic effect of loss 

of muscle Dystrophin onto presynaptic quantal content was observed [44].  What can be the 

mechanisms involved? One possibility is that postsynaptic DG directly controls the levels of 

synaptic ECM molecules such as Laminin. These proteins, by interacting with presynaptic receptors, 

would affect the structure of the presynapse, e.g. the amount, size or molecular composition of active 

or periactives zones. This hypothesis is strongly supported by the finding in mouse, that a synaptic 

Laminin-calcium channel interaction organizes active zones in motor nerve terminals [61]. Another 

presynaptic Laminin receptor could be the synaptic vesicle protein SV2 [62]. Looking for 

modifications at the presynapse, we did not detect any obvious change in the number and size of 

active zones, using Bruchpilot immunoreactivity as a marker (unpublished observations) and did not 

detect any modification in the immunoreactivity of the periactive zone marker Fas2 (unpublished 

observations). Still, the regulation of synaptic Laminin by DG that we demonstrate here, together 

with the presynaptic electrophysiological phenotype we observed, make the hypothesis of Laminin 

bridging postsynaptic DG and the presynapse, at least in periactive zones, very likely.  

These findings, i.e. the new components of a Dystroglycan complex, as well as the unexpected 

trans-synaptic role of DG pave the way for understanding the role of the DGC in the formation, 

maintenance and plasticity of glutamatergic synapses.    
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Supplemental  Figure 1: dg gene structure, dg mutants and qRT-PCR analysis A) Gene structure 
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of dg gene compiled from flybase data and [27]. The two null alleles dg
323 

and dg
62

 are deletions 
comprising the first exon. The Piggybac element PBac{RB}e01554 is localized within the ninth exon, 
subjected to alternative splicing. B) To analyze how the Piggybac element altered dg transcription, we 
perfomed qRT-PCR experiments with couples of oligonucleotides designed against sequences 
common to all transcripts, either in the extracellular domain (couple 1), or in the intracellular tail 
(couple 2).  In both the homozygote condition, or in transheterozygote with the null alleles, the 
Piggybac element led to a loss of more than 90% of transcripts. C) and D) Specificity of NMJ DG 
staining observed with the anti-Dgex8 antibody on muscle 4 NMJs. Dgex8 (panels 1 and 2) or Discs-
Large (panels 1 and 3) immunoreactivity in yw

CS
 control (C) and dg

1554
/dg

323
 mutant larvae (D). The 

Dgex8 NMJ immunoreactivity almost completely disappears in the mutant condition whereas Discs-
Large immunoreactivity is still present. Scale bar is 10 µm.  

 

Supplemental Figure 2:  DG-C-GFP can recruit Lam and Cora at extrasynaptic patches (A-C) 
Double staining against GFP (A, C) and Lam (A, B) in larvae overexpressing DG-CGFP in the 
muscles with the 24B Gal4 driver. In all panels of this figure, a single confocal optical section, which 
crosses the sarcolemma, is taken (D). The bottom right part of each panel corresponds the 
extracellular space and the up left part to the sarcoplasma. Lam colocalizes with DG-C-GFP patches 
at the sarcolemma (see arrows in A). (E-G) Double staining against GFP (E, G) and Cora (E, F) in 
larvae overexpressing DG-C-GFP in the muscles with the 24B Gal4 driver. Cora colocalizes with 
DG-C-GFP patches at the sarcolemma (see arrows in E). (H-J) Double staining against Cora (H, I) 
and Lam (H, J) in wild-type larvae, without any DG overexpression. There are no extrasynaptic 
patches of Cora and Lam in these larvae. Scale bar is 10 µm.   
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Supplemental Figure 3:  Cora is concentrated at the third instar larval NMJ and colocalize with 
Spectrin. Double staining for CORA (red) and HRP (blue)(1) on (A) WT larvae, (B) cora

14
/cora

k08713 

mutant larvae and (C) P{EPgy2}cora[EY07598]/+; 24B Gal4/+ larvae, which overexpress all CORA 
isoforms in muscles. Muscle 4 NMJs are shown. Single stainings for CORA and HRP are shown 
respectively in (2) and (3). Scale bar is 10 µm. (D) Immunoblot of proteins isolated from yw

CS
, 

cora
14

/cora
k08713

 and P{EPgy2}cora[EY07598]/+; 24B Gal4/+ larvae. This blot was stained with the 
polyclonal Guinea-pig anti-CORA antibody. The wild-type larvae display 2 bands of about 210 and 
240 kDa. The signal intensity is clearly reduced in cora hypomorph mutants, whereas it is enhanced 
when CORA is overexpressed with the 24B-Gal4 driver.  A second staining of the same blot with an 
anti-Tubulin antibody indicated that the protein loading was similar in all lanes. Relative molecular 
mass size markers (kDa) are indicated at right. (E) Triple staining for HRP (blue), CORA (red) and 
alpha-Spectrin (α-SPEC; green) on WT third instar larvae (E1). A muscle 4 NMJ is shown. Single 
stainings for HRP, CORA and alpha-Spectrin are displayed respectively in E2, E3 and E4. A plot of 
the intensity of each labelling along a line crossing a terminal bouton (see in E1) is represented in E5. 
Note that the extent of alpha-Spectrin and CORA stainings around the synaptic bouton -labelled with 
HRP- is similar. Scale bar is 10 µm.   
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Supplemental Figure 4:  Model of protein interactions with DG (Dystroglycan) at the 
postsynaptic side of the Drosophila NMJ.  
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