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Abstract

We identified the Spatial (Stromal Protein Associated with Thymii and Lymph-node) gene from

an adult thymus mouse library of cDNA clones. By RT-PCR, we reported that Spatial was highly

expressed in restricted areas of the central nervous system. Here, we characterize the precise

cellular localization of Spatial during mouse brain development in the cerebellum, hippocampus

and cortex. Five different transcript isoforms have been described for Spatial and among those,

only Spatial-ε and -β present a tightly controlled expression. In the cerebellum, Spatial

expression is detected in the external precursor granular layer and persists as these cells migrate

and differentiate to form the internal granular layer. It is also expressed in differentiating Purkinje

cells with a specific somatodendritic distribution. Spatial expression in the hippocampus is

spatially and temporally regulated: it is first expressed in the CA3 field, then in CA1 and later in

the dentate gyrus. Interestingly, Spatial-β expression tightly overlaps with the beginning of

neuronal differentiation in both structures. Using cultured hippocampal neurons, we show that

Spatial also exhibits a somatodendritic distribution and it is concentrated in some synaptic

regions. Moreover, the vesicle-like cellular distribution of Spatial protein in dendrites is similar to

that described for the kinesin motor protein KIF17. Immunofluorescence analyses show that

Spatial co-localizes with KIF17 in dendrites of hippocampal neurons in primary culture.

Additionally, co-immunoprecipitation experiments of endogenous proteins from hippocampus

confirmed that Spatial and KIF17 physically interact. These findings suggest that Spatial may

play a role in neuronal morphogenesis and synaptic plasticity through its interaction with the

kinesin motor KIF17 in dendrites.
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Introduction

During development, organ differentiation occurs through a tight regulation of specific

genes. Most of these developmental genes are common to different organs. Indeed, it is known

that molecules, considered characteristic of one system, are used by another as signalling

substances. For instance, cytokines in the thymus are implicated in thymocyte maturation and, in

the brain, are necessary for the development and differentiation of neurons [1].

Using DNA chip technology we isolated the Spatial (Stromal Protein Associated with Thymii

and Lymph-node) gene by an approach based on differential screening between different knock-

out mice models exhibiting distinct thymic immunodeficiencies. This analysis led to the

identification of three adult variants of the Spatial gene expressed in the thymus (GenBank

accession nos. AF257502, AF257503 and AY243457) [2, 3]. In addition, we also described two

other isoforms isolated in the testis (GenBank accession no. AF521592 and AF521591) [4].

According to the size of alternative spliced variants, we have respectively named Spatial

isoforms: Spatial-α (1035 bp), Spatial-β (1002 bp), Spatial-γ (933 bp) for short isoforms

identified in the thymus and Spatial-δ (1353 bp) and Spatial-ε (1454 bp) for the long isoforms

identified in the testis [3]. Thus, this gene generates at least five alternative spliced variants: three

short isoforms (Spatial-α, -β and -γ) and two long isoforms (Spatial-δ and -ε) with a tissue-

specific distribution [3, 4]. These isoforms do not exhibit obvious structural or protein

homologies conserved with well defined protein families [3, 5]. Thus, the biological function of

Spatial remains completely unknown. In the adult mouse thymus, Spatial is expressed in the

subcapsular region, which is made up of polarized epithelial cells [2]. In the adult mouse testis,

Spatial is a postmeiotic gene associated with drastic morphological changes of germ cells [5].

More specifically, in round spermatids, its distribution strongly correlates with the formation of

the nascent flagellum and during the elongation process, with the manchette involved in the

shaping of the nucleus. Thus, Spatial is closely correlated with spermatid differentiation. Besides

its expression in the thymus and the testis, analysis by RT-PCR of a wide panel of mouse tissues

showed that Spatial is also expressed in the central nervous system (CNS) more particularly in

the cerebellum and hippocampus as well as to a lower extend in the cortex [4].

Interestingly, fundamental homologies in (1) the structural microenvironment between the brain

and the thymus [1] and in (2) migration and differentiation processes between the testis and some

compartments of the nervous system suggest that certain mechanisms and pathways are
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conserved between these organs. We also showed that Spatial interacts with kinesin KIF17b, a

testis-specific isoform of the brain kinesin-2 motor protein KIF17 [5, 6]. This interaction is

restricted to highly organized cytoskeletal structures such as the manchette and the principal

piece of the sperm tail. Although the role of KIF17b in these structures is still unknown, the

function of the kinesin-2 motor KIF17 in other highly organized cytoskeletal structures, such as

the cilia and dendrites, has been well established [7-9]. Indeed, KIF17 was shown to transport

organelles, vesicles, channels, protein complexes and RNA to specific subcellular compartments

in neurons [7-10]. These results raise the possibility that Spatial may also interact with KIF17

during brain development.

Here, we describe a detailed characterization by quantitative RT-PCR and Western blot analyses

of the expression of different Spatial isoforms which exhibit a developmental and tissue-specific

distribution. In the developing cerebellum, Spatial is expressed by both granule and Purkinje

neurons. In the hippocampus, we show that Spatial is sequentially expressed in the CA3 and CA1

areas and later in the dentate gyrus. Using markers of specific subcellular compartments in

neurons, we show both in vivo and in vitro that Spatial is likely to act in the somatodendritic

region of neurons rather than in axons. We also demonstrate that Spatial proteins appear in some

synaptic regions as identified by the synaptophisin marker. Finally, we show that Spatial and

KIF17 interact physically in vivo and that they co-localize in dendrites of cultured hippocampal

neurons. Our results suggest that Spatial may be involved in cerebellar and hippocampal

development affecting neuronal differentiation, morphogenesis and synaptic plasticity.

Materials and methods

Animals

All analyses were performed on C57BL/6 mice maintained under specific-pathogen free

conditions. Mouse embryos were staged counting the morning after conception as embryonic day

(E) 0.5. Embryos were analyzed starting day E16. Adult mice were used between 6 and 8 weeks

of age. All experimental and surgical procedures were approved by the veterinary office of the

Ministry of Agriculture, France (authorization number: 13–27).

In situ hybridization
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In situ hybridization was carried out on E16 mouse embryos that were fixed by immersion

overnigth in 4% paraformaldehyde (Sigma Aldrich). Postnatal and adult brains were fixed by

perfusion with 4% paraformaldehyde and post-fixed for 4 h at 4°C. The Spatial cDNA fragment

(1.3 kb) was subcloned into the pGEM-T vector (Promega). Sense and antisense riboprobes were

prepared by in vitro transcription using T7 and SP6 polymerases, respectively, with digoxigenin-

UTP (Boehringer Mannheim). The in situ hybridization of sections was performed using a

standard protocol [11]. Then, sections were counterstained with hematoxylin (Sigma Aldrich) to

localize transcript expression. Images were taken using Zeiss, axiophot 2 microscope with Nikon

digital camera DXm1200.

Quantitative TaqMan RT-PCR

Quantitative RT-PCR was performed on the cerebellum and the hippocampus at different stages

of development to evaluate the distribution of short and long Spatial isoforms by using the ABI

PRISM 7000 Sequence Detection System. Random hexamers and the TaqMan reverse

transcription reagents from the RT reaction mix (Applied Biosystems) were used to reverse

transcribe total RNA. The PCR step was performed with TaqMan universal PCR master Mix and

assays-on-demand gene expression probes (Applied Biosystems). Primers and the TaqMan probe

used to detect specifically short isoforms were: forward primer: 5'-

TTGGAACCAGCCCCTGTTT-3', reverse primer 5'-GTTCTCCGGCTTCGTCTCT-3' and FAM

5'-CCTTTGGACTAGTCACCTCAT-3' NFQ. Primers and the TaqMan probe used to detect

specifically long isoforms were: forward primer: 5'-GCTTCAAGAGCC TCAAGAGACA-3',

reverse primer 5'-GGTGGTGACCTAGTCTTCTTCAG-3' and FAM 5'-

ACTGTAGGCTGCCTCTTG-3' NFQ. The 18S-rRNA was amplified from all samples on each

plate as a housekeeping gene to normalize expression between different samples and to monitor

assay reproducibility. A non-template control was included for each target analyzed. Relative

quantification of all targets was calculated by using the comparative cycle threshold method [12].

Western blot

Proteins were extracted by using the Nuclear Protein Extraction Kit (Panomics). Protein

concentrations were measured using the Pierce BCA protein assay. Protein samples were run on

SDS-polyacrylamide gel (Invitrogen) and transferred to nitrocellulose membranes (BioRad).
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Incubation with the purified Spatial polyclonal antibody (1:2000) was performed overnight at 4°

C. This antibody was produced by immunizing rabbits against the mouse recombinant 6×His-

Spatial-α protein that sshares a conserved sequence with all Spatial isoforms and further purified

on a protein G column (Eurogentec). Mouse polyclonal anti-β-actin was used as loading control

(Santa Cruz Biotechnology). The anti-KIF17 antibody (clone M-20) was purchased from Santa

Cruz Biotechnology. Proteins were visualized using horseradish peroxidase-conjugated

secondary antibody (1:1000; Amersham Pharmacia Biotech) and the enhanced

chemiluminescence (ECL) detection system (Pierce).

Two-dimensional gel analysis

Two dimensional electrophoresis was done according to the method of O’Farrel using an

immobilized pH gradient system (IPG-PHOR, Pharmacia Biotech) [5]. Seven cm strips were

rehydrated 12 h in 8 M urea, 2 % (w/v) CHAPS, 0.5 % (v/v) IPG buffer, 2.8 mg/ml DTT and

bromophenol blue containing 300 µg of adult cerebellum protein extracts. The isoelectric

focusing was performed at 500 V for 30 min, 1000 V for 30 min and 8000 V for 1 h, over a pI

linear range of 3 to 10. SDS-PAGE was performed according to the method of Laemmli using 10

% (w/v) slab gels (PROTEAN II, Bio-Rad laboratories) [13]. Proteins were separated in a second

dimension following their molecular mass using constant voltage of 160 V at 20°C. The migrated

proteins were detected by Coomassie staining. Standard proteins were used to calculate molecular

weight and pI values.

Immunofluorescence

Mice of different ages and pregnant female were deeply anaesthetized with a mixture of

Rompun/Imalgen 500 and intracardiacally perfused with a solution of 4% paraformaldehyde

(PFA) in PBS, pH 7.2. Brains were dissected out, post-fixed for 48 h in 4% PFA at 4°C, and then

stored in PBS. Immunofluorescence was performed on floating sections. Serial sagittal sections

of 50 µm were performed with a Vibratome (Leica). Sections were first incubated for 2 h at room

temperature with DMEM 10% FCS (Fetal Calf Serum) to reduce non-specific labeling. Then,

they were incubated overnight at 4°C with Spatial polyclonal antibody (1:100), synaptophysin

(SY38 1:10, Chemicon), MAP2 (clone HM-2; 1:500; Sigma), KIF17 (clone M-20; 1:200),

antiphosphorylated NF-H (clone SMI31; 1:300, Chemicon) or GFAP (clone G-A-5; 1:200,
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Sigma) antibodies. They were then washed in PBS before incubation with the corresponding

Alexa fluorescent secondary antibodies (Molecular Probes) for 45 min at room temperature.

Sections were counterstained with 4’, 6’-diamidino-2-phenylindole (DAPI) at 1 µg/ml for 5 min

at room temperature (Calbiochem) and mounted with Mowiol fluorescent mounting medium

(Calbiochem). Controls were performed either by omitting the first antibody or by replacing the

first antibody with a non-immune serum. Fluorescent images were acquired with the Zeiss LSM

510 confocal microscope. Raw images were processed only for intensity and contrast adjustments

using LSM 5 Image browser.

Immunoprecipitation

To prepare resin immobilized antibodies, polyclonal antibodies for Spatial and control IgG (20

µg) were diluted with coupling buffer (0.1 M NaHCO3 buffer containing 0.5 M NaCl, pH 8.3)

and were incubated with cyanogen-bromide activated resin for 4 h (Sigma). Unreacted ligand was

washed away with the coupling buffer and resin unreacted groups were blocked with 0.2 M

glycine, pH 8.0 for 2 hours. The resin was then washed extensively to remove the blocking

solution, first with basic coupling buffer, then with acetate buffer 0.1 M, pH 4.0 containing 0.5 M

NaCl. This wash cycle of high and low pH solutions was carried out 3 times. For

immunoprecipitation, mouse hippocampal extract (1 mg) was incubated overnight with resin

immobilized antibodies in a final volume of 1 ml of immunoprecipitation buffer (TBS, 0.1%

Tween 20) in the presence of proteinase inhibitor mixture (Sigma). The resin was then collected

by centrifugation at 2000 g for 30 sec. and washed four times with 1 ml of immunoprecipitate

buffer. To recover precipitated proteins, the resin was resuspended overnight at 4°C in 20 µl of

SDS gel loading buffer without β-mercaptoethanol to not disturb the structure of the antibody.

After a brief spin, the supernatant was collected and boiled for 5 min with SDS gel loading buffer

containing β-mercaptoethanol and proteins were separated by 10% SDS-polyacrylamide gels

(Invitrogen). For immunoprecipitation with KIF17 antibody, the resin was replaced by 50 µl of

protein G-agarose beads (Zymed Laboratories) and precipitated proteins were treated with the

same washes with TBS, 0.1% Tween 20 and elution with SDS gel loading buffer containing β-

mercaptoethanol as mentioned above.

Primary cultures of mouse hippocampal neurons
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The hippocampal formation was dissected from 16 to 18 days mouse brain embryos and

dissociated using trypsin (Invitrogen). Dissociated cells were plated on coverslips (Marienfield)

coated with poly-l-lysine (Sigma, 0,1 mg/ml) at a density of 70 000 cells/cm in minimal essential

medium (MEM) supplemented with 10% NU serum (BD Biosciences), 0.8% glucose, 1mM

sodium pyruvate, 2mM L-Glutamine, and 10 IU/ml penicillin–streptomycin. On days 7, 10 and

13 of culture incubation, one-half of the medium was changed to MEM with 2% B27 supplement

(Invitrogen). Immunohistochemistry was performed as already described using anti-MAP2 (clone

HM-2; 1:500; Sigma), anti-phosphorylated NF-H (SMI31, 1:500, Sigma) and anti-synaptophysin

(SY38 1:10, Chemicon).

 Results

Spatial-ε and -β isoforms are differentially expressed during cerebellar development

In order to define the precise expression pattern of Spatial, we performed in situ hybridization

(ISH) analyses at different stages of cerebellar development using a probe that detects all

isoforms (Figs. 1A-E). Spatial mRNA expression was analyzed at embryonic day 18 (E18) where

it is detected in granule cell precursors (GCPs) located in the external granular layer (EGL) (Fig.

1A, arrow). This expression is stronger in the anterior side of the cerebellum and this differential

expression is maintained up to early postnatal stages (P0-P3, Figs. 1B,C). At later stages of

postnatal development, the newly post-mitotic granule cells leave the EGL and migrate inwards

to form the internal granular layer (IGL) where granule neurons terminally differentiate. At P8,

the expression of Spatial is still strong in the EGL but begins to be observed in the IGL (Fig. 1D,

asterisk). In the adult cerebellum, Spatial is strongly expressed by granular cells of the IGL (Fig.

1E1). Furthermore, at higher magnification we found that in addition to granular cells (Fig. 1E2,

asterisk), Spatial is also expressed although at lower levels, by Purkinje cells (Fig. 1E2, encircled

regions). Together these results show that in addition to Purkinje cells, Spatial is expressed by

granule cells as they proliferate, migrate and differentiate.

In order to precisely determine the expression profile of long and short isoforms of the Spatial

gene during cerebellar development, we performed a quantitative TaqMan RT-PCR at different

stages of development from E18 to the adult stage (Fig. 1F,G). The expression of Spatial
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isoforms was measured relative to the expression of the housekeeping 18S-rRNA gene. Long

isoforms are detected at similar levels between E18 and P3 stages (Fig. 1F). At P8, this

expression increases approximately 8-fold and then decreases to reach a basal level in the adult.

In contrast, short isoforms are weakly expressed between E18 and P3 stages and then this

expression is increased and maintained at later stages of development to reach a plateau in the

adult (Fig. 1G). Altogether, this analysis shows a differential expression between the long and

short isoforms suggesting a different function at different times of cerebellar development.

We next investigated which isoforms of the Spatial protein are expressed in the cerebellum. We

examined the expression of Spatial in the adult cerebellum using two-dimensional SDS-PAGE.

To detect Spatial proteins, we used after Western blot the polyclonal anti-Spatial antibody

generated in our laboratory against all Spatial protein isoforms [3-5]. Two proteins at 52 kDa and

34 kDa were detected, corresponding respectively to the Spatial-ε long isoform with an

isoelectric point (pI) of around 6.5 and the Spatial-β short isoform with a pI of around 9.00 (Fig.

1H). This result is consistent with previous bioinformatic analyses showing the biochemical

properties of the different Spatial isoforms [3].

We further studied the protein expression pattern of Spatial isoforms by Western blot during

mouse cerebellar development (Fig. 1I). Two major cross-reactive proteins were also observed at

52 and 34 kDa corresponding to Spatial-ε and -β respectively, which is consistent with the two-

dimensional SDS-PAGE result. Quantitative analysis of the blot indicated that the level of

Spatial-ε protein gradually increases from early stages of development (E18-P0) to adult while

the Spatial-β isoform is detected later, around P3 and becomes stronger at P30 (Supplementary

data, Fig. 1). In addition, the expression of these two isoforms is maintained in the adult. None of

these proteins is detected with the pre-immune serum confirming the specificity of the antibody

(data not shown, [5]). Thus, Spatial-ε and -β isoforms are differentially expressed during

cerebellar development and the temporal protein expression pattern of these isoforms strongly

correlates with their respective mRNA levels.

Spatial is expressed in the somatodendritic compartment of Purkinje cells and in glomeruli of the

IGL

To confirm ISH observations and specify the subcellular localization of Spatial proteins during

cerebellar formation, immunofluorescence analyses were performed using the anti-Spatial
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polyclonal antibody (Fig. 2). As previously observed by ISH, Spatial is strongly expressed in the

EGL at P8 (Fig. 2A, arrow). At higher magnification, we observed that Spatial is not only

expressed by mitotically active cells forming the outer EGL [11] but also by Purkinje cells (Figs.

2B1,B2, encircled regions) and granule cells of the developing IGL (Fig. 2B, asterisk). A

costaining with a GFAP antibody (Fig. 2C1) shows that Spatial is restricted to neurons as it is not

expressed in GFAP positive structures (see higher magnification in Fig. 2C2). At this stage of

development, Spatial is also detected in cell bodies of Purkinje cells not yet well aligned as in the

adult (Fig. 2D1, arrowheads). To highlight the subcellular localization of Spatial in the

developing IGL and determine whether it is localized in glomeruli structures composed of

synaptic terminals, we performed a co-staining analysis using synaptophysin as a glomeruli

marker (Fig. 2D2-D4). As shown in figure 2D4, (higher magnification of the box in D3), Spatial

is detected in granule cell bodies in the forming IGL (arrow) and also in the synaptophysin

positive glomeruli structures (asterisk)[14].

Additionally, we have carefully characterized the expression of Spatial protein in the adult

cerebellum, where it is strongly expressed in the IGL and Purkinje cells, which is consistent with

the ISH results (Fig. 2E1-G4). To highlight the subcellular localization of Spatial in these

neurons, the MAP2 dendrite marker, and the neurofilament (NF) axonal marker, were used [3]. In

Purkinje neurons, Spatial is detected in the elaborate dendritic trees specifically identified by

MAP2 (Figs. 2E1-E4). In contrast, Spatial is not expressed in axon of Purkinje cells since no co-

localization with the NF marker was observed (Figs. 2F1-F4). In the IGL, Spatial is expressed in

the differentiated granule cells and concentrated in glomerular synaptic structures detected with

the synaptophysin marker (Figs. 2G1-G4). However, Spatial and synaptophysin signals do not

overlap, as they are clearly distinguishable as shown in the Fig. 2G4. Similar results were

obtained with the GABA α- receptor of the major inhibitory neurotransmitter in the CNS, which

also labels these glomerular structures (data not shown). Altogether, these results show that

Spatial is expressed exclusively in dendritic extensions of Purkinje neurons and in glomerular

structures of granule neurons in the IGL.

Spatial presents a differential distribution during hippocampal development

During the development of the CNS, Spatial mRNA expression is also detected in the

hippocampal formation (Fig. 3). At E16, its expression is restricted to the CA3 layer (Fig. 3A).
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Then, starting at P0, a weak expression is observed in the CA1 layer (Fig. 3B) and at P8, Spatial

is detected in the entire hippocampal formation: in CA3 and CA1 pyramidal layers and the

dentate gyrus (Fig. 3C). The same expression pattern is conserved at adult stage (data not shown).

Quantitative TaqMan RT-PCR analysis at different stages of development (E16 to P8) showed

that both the long and short isoforms are expressed (Fig. 3D). The expression of long isoforms

does not vary significantly until P0 and then it slightly increases at P8. In contrast, short isoforms

are expressed at E16 and P8 but not detected at P0. We further characterized the expression of

Spatial protein isoforms by Western blot from E16 to P8 stages (Fig. 3E). The Spatial-ε long

isoform is detected at E16 and P0 and its expression significantly increases at P8. In addition to

Spatial-β, the Spatial-γ short isoform is also detected at E16 and P8 stages in contrast to P0 stage

where only a faint signal is observed. However, these two short isoforms were detected at lower

levels than those observed for the Spatial-ε long isoform. Thus, as in the cerebellum, the protein

expression pattern of Spatial is consistent with the quantitative RT-PCR analysis.

Thereafter, we determined by immunofluorescence analyses the distribution of Spatial proteins in

the hippocampus at the adult stage (Fig. 4). We found that Spatial is strongly expressed in the

three regions of the hippocampal formation (CA3, CA1 and dentate gyrus) (Fig. 4A) as shown by

ISH. Spatial proteins are specifically detected in the cytoplasm and dendritic processes of both

CA3 (Fig. 4B) and CA1 (Fig. 4C) pyramidal cells. We further confirmed this somatodendritic

distribution of Spatial proteins in vivo in the CA3 pyramidal cells by co-staining with the MAP2

marker (Figs. 4D1-D3). The same distribution was also observed in CA1 pyramidal cells (data

not shown). Moreover, as described at P8, Spatial expression is restricted to neurons as no co-

localization of Spatial with glial markers such as GFAP (Figs. 4E1-E3) and Galc was observed in

vivo (data not shown). Next, we analyzed the distribution pattern of Spatial in the synaptic

regions by a co-immunostaining with anti-Spatial and anti-synaptophysin antibodies (Figs. 4F1-

F3). At high magnification, we observed that Spatial proteins are localized in some synaptic

regions (in the box).

In the dentate gyrus, we observed dramatic changes in Spatial expression during its development.

At P16, the most superficially located granular cells strongly express Spatial. This external layer

is composed of differentiated granule cells where Spatial exhibits a somatodendritic distribution

(Figs. 4G1-G3, arrow). In contrast, cells proliferating in the subgranular layer located in the inner

side do not express Spatial (Figs. 4 G1-G3, asterisk). In the adult, all granule cells of the dentate
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gyrus continue to express Spatial (Figs. 4H1-H3).

We further confirmed the restricted somatodendritic pattern of Spatial in vitro on cultured

hippocampal neurons. Spatial proteins were also shown to be tightly co-localized with MAP2 in

the somatodendritic compartment of hippocampal pyramidal cells (Figs. 5 A1-A3). In contrast,

mainly no colocalization was observed with the NF (SMI31) axonal marker showing that Spatial

is not a specific marker of axonal processes (Figs. 5 B1-B3). We further investigated the presence

of Spatial proteins in synaptic compartments on cultured hippocampal neurons by using the

synaptophysin marker (Figs. 5 C1-C3). At high magnification, we observed that Spatial proteins

are concentrated in some synaptic regions (Figs. 5 D1-D3, arrowheads).

Altogether, these data show that Spatial exhibits a somatodendritic distribution in pyramidal cells

of CA3 and CA1 layers as well as in differentiating granule cells in the dentate gyrus and it is

present in some synaptic regions.

Spatial association with the kinesin motor KIF17

In addition to its distribution in dendrites restricted to specific neuronal cell types in the CNS,

Spatial is also expressed in the spermatozoa flagellum [5]. Dendrite and flagella share similar

molecular motor components which are proposed to mobilize cargo proteins along microtubules

[15]. One of these molecular motors is the kinesin KIF17 known to transport neuronal proteins to

dendrites [15, 16]. The KIF17 testis specific isoform, kinesin KIF17b [6], associates with Spatial-

ε isoform in highly organized cytoskeletal arrays in the manchette as well as the spermatozoa

flagellum [5]. In order to determine if an interaction between Spatial and KIF17 is also present in

the CNS, we performed immunoprecipitation experiments using mouse hippocampal proteins

(Fig. 6A). We found that the anti-Spatial antibody coimmunoprecipitates KIF17 with the Spatial-

ε and -β as predicted (Fig. 6A, left panel) while control IgGs do not. This result indicates that

Spatial and KIF17 physically interact in vivo. To further investigate this interaction and

determine the specificity of Spatial isoforms in the KIF17 interaction, co-immunoprecipitation of

endogenous proteins from total hippocampus extracts was performed with anti-KIF17 antibody

(Fig. 6A, right panel). These experiments showed that anti-KIF17 antibody efficiently

immunoprecipitates Spatial-ε and -β. Thus, these results suggest that KIF17 interacts with the
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Spatial-ε and -β in the hippocampus in vivo.

Next, we studied whether Spatial and KIF17 co-localize in similar structures using primary

cultures of hippocampal neurons (Fig. 6B). Double staining with the anti-KIF17 and anti-Spatial

antibodies showed a co-localization of these proteins in a vesicle-like distribution in dendrites. At

higher magnification, the majority of punctate vesicles labeled with anti-Spatial antibody co-

localize with anti-KIF17b labeling. We further investigated the association between these two

proteins in vivo by immunofluorecence on brain sections (Figs. 6C-D). As previously shown,

KIF17 has been detected in abundance in the gray matter, especially in pyramidal cells of the

hippocampus [9]. Interestingly, in the hippocampal CA3 region, we observed at high

magnification that the characteristic vesicle-like profile staining obtained with the anti-KIF17

antibody colocalizes with Spatial proteins (Fig. 6C).

In addition to the cerebellum and hippocampus, Spatial was also observed in the cerebral cortex

where KIF17 is also specifically expressed (Supplementary data Fig. 2) [9]. Interestingly, we

observed that Spatial and KIF17 also co-localize in this brain area (Fig. 6D). Altogether, co-

immunoprecipitation and co-staining analyses demonstrate that Spatial and KIF17 physically

interact in the brain.
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Discussion

The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-

α, -β and -γ) and two long isoforms (Spatial-ε and -δ) with a tissue specific distribution [3]. This

gene is expressed in highly polarized cell types, such as epithelial cells in the thymus, germ cells

in the testis and neurons in the brain. Although its biological function remains unknown, its

unique distribution suggests that it may be involved in cell morphogenesis. Indeed, we recently

showed that in the testis, Spatial proteins are distributed in highly organized cytoskeletal

structures surrounding the nascent flagellum and in the manchette during spermatids

differentiation [5]. We provided first evidences of a function of Spatial in spermatid

differentiation as a new cargo of kinesin KIF17b, in a microtubule-dependent mechanism specific

to the manchette and the principal piece of the sperm tail. In a previous RT-PCR analysis on a

wide panel of mouse tissues, we showed that Spatial is also expressed in restricted regions of the

CNS, most in the cerebellum and hippocampus [4]. In the present paper, we characterize in detail

Spatial expression pattern during the development of the mouse brain.

In the cerebellum, Spatial expression is detected at early stages in immature granule neurons,

which are generated in the EGL. At later stages, it is detected in differentiating granule cells

migrating through the molecular layer and reaching their destination in the IGL within 4-5 days

after their generation. Biochemical analyses showed that only the Spatial-ε long isoform is

present in these mitotic granule neuron precursors at early stages (E18-P3). Later, when post-

mitotic granule cells migrate and differentiate to form the IGL, the expression of Spatial-ε

persists and the Spatial-β short isoform is induced. Interestingly, the beginning of Spatial-β

expression overlaps with the beginning of post-mitotic granule cells differentiation which appears

around P4 [17]. Then, Spatial expression appears in the IGL showing its highest expression at P8.

In addition, at around P8 Purkinje cells undergoing differentiation also begin to express Spatial

proteins in their cell bodies and arborescent dendrites which form the molecular layer [18]. At

this stage, the appearance of Spatial expression in the differentiating Purkinje cells coincides with

the increase of Spatial-β mRNA levels up to 3.5-fold. All together, these observations suggest

that during postnatal development of the cerebellum, the Spatial-β short isoform could play a

crucial role during granule and Purkinje neurons differentiation.
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During the formation of the hippocampus, Spatial presents a sequential expression in the

Ammon’s horn and the dentate gyrus. At early postnatal stages, Spatial is expressed in the CA3

and CA1 areas, while from P8 onwards it is also detected in the DG. This sequential expression

can be due to the fact that the Ammon's horn develops during embryonic development, between

E14 and E16, while the DG starts to be formed around E18 and continue to develop until P20. In

the developing DG, the granule cell layer exhibits an “outside-in” gradient of development, with

the earliest generated cells found inside and the most mature neurons outside [19]. Proliferating

cells in the subgranular layer located on the inner side do not express Spatial. In contrast, Spatial

is detected in post-mitotic granule cells that continuously migrate and differentiate into mature

neurons to form the superficial granule layer [20]. This particular expression in granule cells

during differentiation reinforces the hypothesis that Spatial is involved in neuronal

morphogenesis which also continues in the adult [20]. In addition, mRNA and biochemical

analyses of Spatial expression during hippocampal development are in agreement with a potential

involvement of Spatial isoforms in morphogenesis. Spatial-ε expression persists during all

developmental stages of the hippocampus. However the developmental pattern of Spatial-β and

Spatial-γ short isoforms is correlated with neuronal morphogenesis and neurite formation in this

region. For pyramidal cells of Ammon’s horn, the highest rate of neurogenesis occurs at late

embryonic stages (E14-E16) which correspond to the beginning of Spatial short isoform

expression. In granule cells of the dentate gyrus, the highest rate of neurogenesis occurs between

P1 and P9 and by P20 this process is nearly complete[19]. Interestingly, it is during this intensive

period of neurogenesis that Spatial short isoform is re-expressed. This reappearance of Spatial

reinforces the hypothesis that Spatial short isoforms could be involved in neuronal

morphogenesis. Using cultured hippocampal neurons, we demonstrated that (1) Spatial exhibits a

somatodendritic pattern and (2) is concentrated in some synaptic regions. Moreover, hippocampal

CA1–CA3 pyramidal cells, granular DG cells as well as cerebellar granule and Purkinje cells

retain high levels of Spatial expression in the adult brain. Therefore, Spatial might also contribute

to the synaptic plasticity in these cells enabling long-term potentiation processes such as learning

and memory [21, 22]. Receptors and other proteins synthetized in the cell body are often

transported to pre/postsynaptic sites by the kinesin superfamily of proteins (KIFs) [23]. KIF17, a

homodimeric microtubule anterograde motor protein, when overexpressed, enhances spatial and

working memory in mice [9, 24]. Interestingly, Spatial shows the same cellular distribution as
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KIF17 which is specific to the grey matter [9]. These two genes are both expressed in the

cerebellum, hippocampus, and cerebral cortex. In addition, they are both specifically localized in

neuronal dendrites. We identified the Spatial-KIF17 co-localization in dendrites of cultured

hippocampal neurons with a punctate and discontinuous staining also shown for other subunit

trafficked by KIF17, as glutamate receptors (GluR5) [25] and N-methyl-d-aspartate receptor

(NR2B) [26]. We also showed the co-localization of endogenous Spatial and KIF17 in vesicles in

vivo specifically in the hippocampus and the cerebral cortex. KIF17 is associated with Spatial

through interaction with Sparial-ε and Spatial-β isoforms. We could expect that Spatial does bind

to a KIF17 through a specific motif conserved between these isoforms since the extreme N

terminus of Spatial-ε and -β shares a sequence (amino acids 19-259) with 70.8% identity. Further

studies based on amino acid substitutions in this region will be necessary to find the domain by

which Spatial and KIF17 interacts. Moreover, since Spatial short isoform expression overlaps

with the start of granule and pyramidal cells differentiation, we can also suggest that Spatial-β

could co-assemble with Spatial-ε and be transported from the soma to the dendrites in a kinesin

dependent fashion to play a role in cell morphogenesis. In addition, a piece of evidence suggests

that Spatial-β extension targeting is accomplished through the involvement of Spatial-ε since

long isoforms contain a particular carboxy-terminal motif (RVHP; amino acids 291-294 for

Spatial-ε), in fitting with the RVxP motif, involved in the extension localization of some proteins.

For instance, in the case of the cyclic nucleotide-gated (CNG) channels subunit, CNGB1b, that

interacts with KIF17 in olfactory sensory neurons [7], it was shown that both the RVxP motif of

CNGB1b and KIF17 interaction are required for ciliary targeting of these protein channels.

Additional experiments based on (1) amino acid substitutions in this motif and (2) KIF17b

inhibition are required in order to demonstrate the mechanisms for Spatial extension targeting.

In conclusion, we report Spatial expression in the CNS and more specifically during the

development of the mouse cerebellum and hippocampus. Although Spatial short isoforms are

likely to play a role in neuronal morphogenesis throught the formation of a Spatial-β/-ε/KIF17

complex, defining how KIF17 could contribute and modulate the localization and activity of

Spatial in the CNS needs to be further investigated.
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Legends

Fig. 1- Spatial expression during cerebellar development. (A-E) Spatial is predominantly

expressed by granule cells during cerebellar development. Mouse embryonic (E18), postnatal

(P0, P3, P8) and adult cerebellar sagittal sections were hybridized with an antisense Spatial

riboprobe. (A-D) Spatial expression is detected at late embryonic (E18) and postnatal stages in

the EGL as indicated by the arrow. (A-C) From E18 to P3, Spatial is expressed in a gradient

along the anterior-posterior axis, being more strongly expressed in the anterior part of the

cerebellum. At P8, Spatial is more uniformly expressed along the entire EGL and starts to be

expressed in the forming IGL (asterisk, D). In the adult, Spatial expression is observed in granule

cells within the IGL (E1). The panel E2 represents a higher magnification of the expression

pattern observed in the IGL at the adult stage (asterisk) and in Purkinje cells (circled cells). Scale

bars in (A-E1): 400 µm; (E2): 20 µm. (F, G) Spatial isoforms are differentially expressed during

mouse cerebellar postnatal development. Quantitative TaqMan RT-PCR analysis was performed

for long and short Spatial mRNAs during mouse postnatal cerebellum development. In each

stage, the expression level of cDNAs was normalized to the expression level of the housekeeping

gene 18S-rRNA. The ratios of long and short Spatial mRNAs/18S-rRNA from each stage were

standardized to Spatial expression in the adult (Ad.) which was considered as 1. (H) Western blot

analysis of two-dimensional SDS-PAGE of Spatial from adult cerebellum extracts reveals

Spatial-ε (pI 6.5, MW 52 kDa) and Spatial-β (pI 9, MW 34 kDa) isoforms. (I) Western blot

analysis performed on mouse cerebellum extracts from different stages of postnatal development

revealed two proteins at 52 and 34 kDa corresponding to Spatial-ε and -β, respectively.

Fig. 2- Tissular and subcellular localization of Spatial proteins during cerebellum development.

(A-D4) Cerebellar sagittal sections at P8 stage were immunostained with the anti-Spatial

antibody. (A) Spatial is strongly detected in the EGL and more weakly in the forming IGL. (B)

Higher magnification of the right lower boxe in A shows that Spatial is expressed in cell bodies

of mitotic granule cells of the EGL (arrow), Purkinje cells (encircled areas) and granule cells of

the IGL (asterisk). (C1,C2) Double immunostaining with anti-Spatial and anti-GFAP antibodies

shows that Spatial does not colocalize with the GFAP astrocytes marker. C1 is a higher

magnification of the same area as the upper left square in Fig. 2A. C2 is a higher magnification of
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the square in C1. D1-D3 shows the staining of Spatial and the synaptic vesicle marker

synaptophysin. (D4) This higher magnification shows the expression of Spatial in cerebellar

glomeruli stained with the synaptophysin marker (asterisk) and the cytosolic localization of

Spatial proteins in granule cells (arrow). (E1-G4) Adult cerebellar sections were immunostained

with the anti-Spatial antibody. (E1-E4) Co-immunostaining of Spatial and the dendritic marker

MAP2 shows that Spatial is expressed in the elaborate dendritic tree of Purkinje cells (E4, higher

magnification of the area boxed in E3). In contrast, co-immunostaining of Spatial and the axonal

marker neurofilament (NF) shows that Spatial is not expressed in axonal processes of Purkinje

cells and granule cells of the IGL (F1-F3; F4: higher magnification of the box in F3). (G1) Co-

immunostaining of Spatial and the synaptic synaptophysin marker. (G2-G4) A higher

magnification of the IGL shows the expression of Spatial in glomeruli structures (arrowheads).

Cells nuclei are visualized by a DAPI counterstaining. Scale bars in (A): 200 µm; (B): 50 µm;

(C1): 25 µm; (C2): 10 µm; (D1-D3): 20 µm; (D4): 10 µm; (E1-E3): 50 µm; (E4): 10 µm; (F1-

F3): 100 µm; (F4): 30 µm; (G1): 50 µm and (G2-G4): 20 µm.

Fig. 3- Spatial displays a sequential distribution during perinatal development of the

hippocampus. (A-C) Spatial expression was analyzed by ISH on mouse brain sagittal sections at

E16, P0 and P8 stages. (A) Spatial expression is first detected in the CA3 layer at E16. (B) At P0,

it is also observed in the CA1 layer and at P8, Spatial is strongly expressed in the dentate gyrus

(DG) and then in the entire hippocampal formation (C). Scale bars in (A, B): 100 µm; (C): 400

µm. (D) Quantitative TaqMan RT-PCR analysis was performed for long and short Spatial

mRNAs during mouse hippocampus development. In each stage, the expression level of cDNA

was normalized to the expression level of the housekeeping gene 18S-rRNA. The ratios of long

and short Spatial mRNAs/18S-rRNA from each stage were standardized to the E16 stage Spatial

expression which was considered as 1. (E) Western blot analysis performed on mouse

hippocampus extracts prepared at different stages of development, revealed three proteins at 52,

34 and 32 kDa corresponding to Spatial-ε, -β and -γ, respectively.

Fig. 4- Spatial displays a somatodendritic localization in the hippocampal neurons of the CA3,

CA1 and DG layers. (A) Immunofluorescence analysis on adult brain sections showed that

Spatial proteins are expressed both in the CA3 and CA1 layers, in addition to the DG. (B,C) At
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higher magnification, Spatial staining is visible in the cytoplasm and processes of the CA3 and

CA1 pyramidal cells. (D1-D3) A double immunostaining with anti-Spatial and anti-MAP2

antibodies shows that Spatial colocalizes with the MAP2 somatodendritic marker in the CA3

area. (E1-E3) A double immunostaining with anti-Spatial and anti-GFAP antibodies shows that

Spatial does not colocalize with the GFAP astrocyte marker. The inset in E3 shows a high power

view of the box. (F1-F3) A double immunostaining with anti-Spatial and anti-synaptophysin

antibodies of the CA3 region shows that Spatial is present in some synaptic area. The inset in F3

shows a high power view of the box. (G1-G3) At P16 in the DG, Spatial is strongly detected in

the external layer containing neurons under active differentiation (arrow) while no expression is

detected in proliferating neurons of the internal layer (asterisk). (H1-H3) In the adult, Spatial

continues to be expressed in the DG where neurogenesis persists. A DAPI counterstaining was

used to visualize the structure of the DG. Scale bars in (A): 200 µm; (B-C): 50 µm; (D1-D3) and

(F1-F3): 100 µm; (E1-E3) upper panel: 20 µm; lower panel: 5 µm; (F1-F3): 20 µm; (G1-G2): 100

µm; (H1-H2): 50 µm.

Fig. 5- In primary cultures of hippocampal neurons Spatial displays a somatodendritic pattern and

it is present in some synaptic regions. (A1-A3) A co-immunostaining with anti-Spatial and anti-

MAP2 antibodies shows that Spatial strongly colocalizes with the MAP2 somatodendritic

marker. (B1-B3) In contrast, co-immunostaining of Spatial and the axonal marker NF (SMI31)

shows that Spatial is faintly detected in axonal processes of hippocampal neurons (arrow). The

panel C exhibits a co-immunostaining of Spatial and the synaptic synaptophysin marker. (D1-D3)

A high magnification shows that Spatial colocalizes in some synaptic areas (arrows). Scale bars

in (A-C): 10 µm; (D): 5 µm.

Fig. 6- Spatial interacts with the kinesin-motor KIF17. (A) Spatial co-immunoprecipitates with

KIF17. (Left panel) The Spatial-KIF17 complex was immunoprecipitated from mouse

hippocampal lysates using anti-Spatial antibody. The complex precipitated contained both

Spatial-ε, -β and KIF17 as assessed by immunoblotting with anti-KIF17 and anti-Spatial

antibodies respectively. (Right Panel) A reverse co-immunoprecipitation of endogenous KIF17

shows its association with Spatial through Spatial-ε and -β as assessed by IB with anti-KIF17 and

anti-Spatial antibodies, respectively. In contrast, rabbit IgG did not pull down these proteins.
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Molecular weight markers are shown to the left of the blots. Asterisks indicate heavy-chain

immunoglobulins. (B) Spatial colocalizes with the kinesin-motor KIF17. After 15 days of culture,

hippocampal neurons were co-immunostained with anti-Spatial and anti-KIF17 antibodies.

Nuclei cells are visualized by a DAPI counterstaining . The lower panel represents a higher

magnification showing the colocalization of Spatial and KIF17 in the same vesicles (arrowheads).

(C-D) Spatial colocalizes with KIF17 in the adult mouse brain. High magnifications of the

hippocampal CA3 region (C) and cerebral cortex (D) co-immunostained with anti-Spatial and

anti-KIF17 antibodies are shown. Nuclei cells are visualized by a DAPI counterstaining (blue).

Arrowheads indicate the colocalization of Spatial and KIF17 in the same vesicles inside the cell

body. Scale bars in (B), upper panel: 10 µm; lower panel: 2 µm; (C): 7 µm; (D): 10 µm.

Supplementary Fig. 1- Quantitative analysis of the expression of Spatial-ε and -β proteins during

mouse cerebellar development. We quantified using the Image J software the expression of

Spatial-ε and -β proteins normalized to the β-actin used as a loading control in the Western-blot

shown in Fig. 1I. Spatial-ε and -β exhibit a differential expression characterized by a late

expression of Spatial-β detectable at P4 in contrast to Spatial-ε which is expressed earlier.

Supplementary Fig. 2- In the adult neocortex, Spatial was also detected by ISH (A, B) and

immunofluorescence (C, D) analyses. We observed on these brain sagittal sections a strong

expression of Spatial restricted to large pyramidal neurons in layer III. (D) A higher

magnification of the box in C shows that Spatial is localized in the cytoplasm of these cells. Scale

bars (Α): 400 µm; (B): 200 µm; (C): 150 µm; (D): 50 µm.
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