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Abstract 
Purpose  
Identification of a molecular signature predicting the relapse of tamoxifen-treated 

primary breast cancers should help the therapeutical management of ER-positive 

cancers.  

Experimental Design 
A series of 132 primary tumors from patients who received adjuvant tamoxifen were 

analysed for expression profiles at the whole genome level by 70-mer oligonucleotide 

microarrays. A supervised analysis was performed to identify an expression signature. 

Results 
We defined a 36-gene signature that classified correctly 78% of patients with relapse 

and 80% of relapse-free patients (79% accuracy). Using 23 independent tumors, we 

confirmed the accuracy of the signature (78%), whose relevance was further 

demonstrated by using published microarray data from 60 tamoxifen-treated patients 

(63% accuracy).  

Univariate analysis using the validation set of 83 tumors demonstrated that the 36-

gene classifier was more efficient to predict disease-free survival than the traditional 

histo-pathological prognostic factors and as effective as the Nottingham Prognostic 

Index or the “Adjuvant!“ software. Multivariate analysis demonstrated that the 

molecular signature was the only independent prognostic factor. Comparison with 

several already published signatures demonstated that the 36-gene signature was 

among the best to classify tumors from both training and validation sets. Kaplan-Meier 

analyses emphasized its prognostic power both on the whole cohort of patients and on 

a subgroup with an intermediate risk of recurrence as defined by the St Gallen criteria.  

Conclusion 

This study identifies a molecular signature specifying a subgroup of patients who do 

not gain benefits from tamoxifen treatment. These patients may therefore be eligible 

for alternative endocrine therapies and/or chemotherapy.  
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Introduction 
Breast cancer is the most common female cancer in the Western World and the 

leading cause of death by cancer among women. Although the mortality rate is now 

stabilized or decreasing, breast cancer incidence is still on the rise through all 

European countries [1]. 

About two thirds of breast cancers are hormone (estrogen)-dependent as they are 

positive for estrogen receptor (ER) and/or progesterone receptor (PR). Estrogen being 

a major activator of proliferation in these tumors, its receptor and downsteam signaling 

are excellent targets for the hormonal therapy in patients with ER+ (and/or PR+) 

breast cancers. Over the past three decades, the anti-estrogen tamoxifen, which 

prevents the binding of estrogen to its receptor, has been the golden standard for the 

endocrine treatment of all stages of these cancers. In particular, large-scale 

randomized trials have shown that, in early stage ER+ breast cancers, a 5-year course 

of tamoxifen, started immediately after surgery, reduces recurrence by 51% and 

mortality by 28% [2].  

However, success of tamoxifen therapy is limited by intrinsic or acquired tumor 

resistance. Approximately 40% of patients with ER+ breast cancers will not respond to 

tamoxifen. This is mostly due to the fact that this selective estrogen receptor modulator 

is not a pure anti-estrogen and, indeed, shows some agonist activity. The balance 

between agonist and antagonist properties differs among cell types and seems to 

depend on several molecular events that can influence ER signaling. These include 

the level of co-activators and co-repressors and the impact of cross-signaling in growth 

factor transduction pathways [3].  

Recently, third-generation aromatase inhibitors (AIs) have been shown to be more 

effective than tamoxifen to treat both advanced and early hormone-sensitive breast 

cancers in menopausal women [4]. However, the absolute reduction in relapse-free 

survival for adjuvant AIs over tamoxifen is modest and the issue of long-term adverse 

effects in particular in bone, remains to be addressed. Moreover, AIs are also prone to 

develop resistance, although different mechanisms may be responsible for that.  

As a consequence, the ability to accurately predict the response to tamoxifen should 

facilitate the choice of the best endocrine treatment and improve the management of 

primary ER+ breast cancers. Attempts to identify individual predictive markers failed to 

do that, so far. Recent publications on large-scale analysis of gene expression in 
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breast cancers have underscored the considerable potential of DNA array technology. 

Hierarchical clustering of gene expression patterns has been successfully used to 

identify subtypes of breast tumors that exhibit distinct clinical behaviors [5-8] 

Supervised classifications of gene expression profiles have been performed to identify 

poor prognostic signatures, predictive of recurrence in primary breast cancers [9-11]. 

Such analysis has been used to identify genes which can help to discriminate between 

responders and non-responders to chemotherapy agents in breast cancer [12, 13]. 

Similar approaches have been tentatively used to define gene expression signatures 

that are predictive of recurrence in breast cancer patients treated with tamoxifen [14-

16]. However, the study by Jansen et al. concerned metastatic breast cancers (i.e. the 

response to a recurrent disease) while that of Ma et al. reported a two-gene signature 

whose performance has been debated [17-19]. Both studies used a limited cohort of 

tumors as a training set (46 and 60 tumors, respectively). Finally, the study by Paik et 

al. defined a recurrence score predictor for lymph node-negative breast cancer [15] 

which also predicted the magnitude of chemotherapy benefit [20]. However, this 

classifier was constructed from 250 candidate genes that were previously selected 

from the published literature. Finally, several studies have also reported molecular 

prognostic signatures able to classify ER+ breast cancer whatever the patient 

treatment [21-25]. 

In order to identify a gene expression signature that might predict recurrence of 

tamoxifen-treated primary breast cancers, we performed a genome-wide microarray 

analysis of ER+ and/or PR+ primary breast tumors from 132 patients, who had been 

treated with adjuvant tamoxifen. This analysis led to the identification of a 36-gene 

molecular signature that is highly predictive of clinical outcome. 

 

Patients and methods 
Patients and Treatment 

132 primary breast carcinomas were analysed in this study as a training set and 23 

extra tumors as a validation set (Supplemental Table S1). These carcinomas were 

obtained from patients who had undergone initial surgery between 1989 and 2001 at 

the Cancer Research Center of Val d’Aurelle in Montpellier, the Bergonié Institute in 

Bordeaux or the Department of Obstetrics and Gynecology of Turin. For the 155 

patients, the median follow-up time was 65.9 months.  
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Fresh tissues were formalin-fixed and paraffin-embedded immediately after surgical 

removal. The remaining of each tumor was snap-frozen in liquid nitrogen and stored at 

– 80° C. Frozen sections were stained with Haematoxylin and Eosin to select samples 

with at least 50% of tumor cells. ER and PR status were determined by using a radio-

ligand binding assay or by immuno-histochemistry. All, but 8 tissue specimens, were 

ER+, and 6 out of the 8 ER- tumors were PR+.  

None of the patients did receive neo-adjuvant systemic therapy. All patients were 

treated with tamoxifen (20 mg daily) for 5 years after surgery. 121 patients received 

also adjuvant radiotherapy. Recurrence was observed in 52 patients (48 distant 

metastases and 4 local recurrences) with median relapse time of 37.1 months. Tumors 

from those patients were defined as R tumors (R for relapse), whereas tumors from 

patients who showed no recurrence were defined as RF tumors (RF for relapse-free). 

 

RNA Isolation, Amplification and Labeling 

Frozen breast samples (40 mg) were homogenized using the FastPrep System from 

Q-Biogene (MP Biomedicals, Illkirch, France). Total RNA was extracted and cleaned 

up from the lysate with use of the Qiagen RNeasy Mini Kit. The RNA purity and 

integrity was controlled by way of the Bioanalyser 2100 (Agilent Technologies, CA, 

USA).  

Gene expression profiling was performed using 70-mer oligonucleotide microarrays. 

The 22,680 oligonucleotide probes (Oligo Set 2.1 from Qiagen-Operon), which 

represent 21,329 human specific genes, were spotted on Aminolink chips at the 

Genopole Montpellier-LR [26]. 

For each sample, 2 µg of total RNA was reverse-transcribed and amplified by using 

the RNA amplification kit from Ambion, TX, USA. Fifteen µg of amplified RNA were 

labelled by direct chemical coupling to the Cy5 NHS ester (Amersham Biosciences, 

NJ, USA). Labelled RNAs were purified, fragmented and used as probes to hybridize 

microarrays. One-color design has been shown to be as performant as two-color 

design and it allowed easier normalization between samples [27]. 

 

Microarray Gene Expression Analysis 

Fluorescent images of hybridized microarrays were obtained with Axon 4000B scanner 

(Molecular Devices, CA, USA) and analyzed using Genepix 6.0. The mean of 

replicated spots was calculated for each gene by using the Acuity 4.0 software.  
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Gene expression signals were first normalized between arrays to the same median 

expression level (by dividing the intensity measurement for each gene on a given array 

by the median intensity of all genes across the array). Before analysis, a filter 

procedure eliminated non-informative genes on the basis of being significantly 

measured (i.e., expression level higher than two-fold the mean expression of the 

negative control spots in at least 40% of the samples). Then, we selected the 5,415 

genes whose expression varied by at least three-fold from the median value in at least 

1% of the samples. Expression data were then log-2 transformed. 

The Significance Analysis of Microarrays (SAM) [28] was used to identify genes whose 

expression level best discriminated patients without (relapse-free, RF) and with 

relapse (R). This analysis was performed on the 132 tumors of the training set (86 RF 

and 46 R). A thousand permutations were generated to estimate the False Discovery 

Rate (FDR) value. Differences were considered as significant, when the FDR was less 

than 5% with a minimum 1.51 fold-change and when the SAM score was greater than 

(or equal to) ± 2.52. 

A classifier that can predict recurrence under tamoxifen treatment was constructed by 

using the Prediction Analysis of Microarrays (PAM) [29] on the training set. A 

resampling approach was used, as described in van’t Veer et al. [30]. As shown on 

Figure S1 (Supplementary data), the training set was splitted into 2 parts, a learning 

set (85 patients) and a test set (47 patients). The learning set was used to construct 

the classifier, while the test set was used to estimate its performance. The split 

procedure was repeated 100 times. For each learning set, a minimal molecular 

signature was estimated by a leave-one-out cross-validation and its performance was 

estimated by the average proportion of misclassification for each associated test set. 

As the composition of the learning set changes in each iteration, the 100 minimal 

signatures obtained were obviously not identical. The final predictive signature 

corresponded to the most frequently selected genes (see results).  

To confirm the molecular signature obtained by PAM, we used another classifier, the 

K-Nearest Neighbor (KNN) [31] with the same resampling of the training set.  

A hierarchical pairwise average-linkage clustering [32] was performed on the basis of 

the expression of the signature genes with median centered gene expression values 

and Pearson correlation as similarity metric.  
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We classified the training set tumors according to the five subgroups defined by Sorlie 

et al. [7] on the basis of the highest correlation to the respective centroid as indicated 

in Supplementary Methods. 

To evaluate the performance of the consensus predictive signature, we used 23 

independent tumors (17 RF and 6 R) as an external validation set as well as gene 

expression data from the study of Ma et al. [14]. These data were obtained, like in our 

study, on 70-mer oligonucleotide microarrays and concerned 60 tamoxifen-treated 

patients (32 RF and 28 R). 41 patients (Supplemental Table S2) belonged to the 

intermediate-risk group according to the St Gallen criteria [33]. Raw data were 

downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo, accession number 

GSE1378). The Cy5 intensities were selected, normalized by median centering and 

log-2 transformed.  

To compare the performance of the 36-gene signature with those of intrinsic subtype 

[7], 70-gene profile [9], wound-response [11], two-gene ratio [34], GGI [22] and MPI 

[24], we evaluated the prognostic value of each expression-based model as indicated 

in Supplementary Methods, on both the training set (132 tumors) and a pooled 

validation set (83 tumors including the 23 tumors from our microarray study and the 60 

tumors from the Ma’s study). 

 

Statistical analyses 
Specificity, sensitivity and accuracy of the classifier as well as positive and negative 

predictive values were calculated as follows: 

 

Sensitivity=A/(A+C); Specificity=D/(B+D); Accuracy=(A+D)/(A+B+C+D) 

Positive Predictive Value=A/(A+B); Negative Predictive Value=D/(C+D) 

 

Univariate and multivariate analyses were performed both on the training and the 

validation sets. All the input parameters (tumor grade, ER and PR status, tumor size, 

patient age, lymph node status, Nottingham prognostic index, Adjuvant! software and 

predictive classifier) were converted to a binary format (see below). Parameters found 

Relapse-free patients Patients with relapse

Relapse-free predicted A = True Positive B = False Positive

Relapse predicted C = False Negative D = True Negative
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to be significant in univariate analysis were selected to perform the multivariate 

analysis by logistical regression.  

NPI score was caculated as follows: tumor size (cm)*0.2 + grade + lymph-node stage 

(negative nodes=1; 1 to 3 positive nodes=2; ≥4 positive nodes=3), with 3.4 as 

threshold. Values for the Aduvant! (http://www.adjuvantonline.com/index.jsp) were 

calculated for 10-year mortality with 0.2 as threshold. 

 

Results 
Identification of the differentially expressed genes   
Patients were classified in two groups according to the occurrence of relapse (R) or its 

absence (relapse-free, RF) within the 5 years of tamoxifen treatment. To identify which 

genes were differentially expressed in R tumors versus RF, we used a SAM analysis 

of the 5,415 filtered genes (see Methods). Three hundred and one genes showed 

significant differences in their expression levels between R and RF tumors, with a false 

discovery rate below 5%. Then, the 48 most discriminating genes were selected on the 

basis of their fold-change and SAM score values (Supplemental Table S3). Among 

those genes, 17 were overexpressed (positive SAM score) and 31 underexpressed 

(negative SAM score) in tumors from patients with relapse. 

 

Determination of a 36-gene predictive signature 

To define a minimal expression signature, which could be used as a molecular 

classifier to predict recurrence of tamoxifen-treated patients, gene expression data 

were analyzed using a PAM algorithm. We used the 5,415 filtered genes instead of the 

301 SAM selected genes as it has been demonstrated that building a classifier after 

selecting differentially expressed genes induced an overfitting bias [35]. To determine 

the consensus molecular signature, we tested different signature lengths according to 

the level of gene occurrence in the 100 different minimal signatures. The error rate for 

R tumors decreased from 41% to 26% when the gene number was increased from 26 

to 36 genes and remained steady from 36 to 71 genes (data not shown; for the 71-

gene list, see Supplemental Table S4). Since contracted signatures are favored for 

predictive tests in clinical practice, we selected the 36 genes, which were present in 

more than 60% of the 100 PAM iterative signatures, as the optimal molecular 

signature (Table 1). This 36-gene signature classified the training set tumors with 80% 
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sensitivity, 78% specificity and 79% accuracy. The positive and negative predictive 

values of relapse were 87% and 68%, respectively. 

Among the 36 signature genes, 26 belonged to the SAM selection of 48 genes (Table 

1), the remaining 10 genes coming out in the overall 301-gene list (not shown). A 

similar overlap between SAM and PAM analyses of expression data has been recently 

reported [36]. 

To confirm the reliability of this signature, we used a KNN classifier. As for the PAM, a 

minimal predictive signature was defined for each iteration. The optimal consensus 

signature was obtained with 52 genes that were present in more than 47% of the 100 

KNN iterative signatures (Supplemental Table S4). According to this 52-gene 

signature, the training set was classified with 83% sensitivity, 74% specificity and 80% 

accuracy. Interestingly, 29 genes were common with those of the 36-gene PAM 

signature (Table 1), thus, underlining the robustness of the 36-gene predictive 

signature.  

We then performed hierarchical clustering of the 132 tumors of the training set based 

on the 36-genes signature. As shown in Figure 1, the resulting dendrogram showed 

two main clusters: the R cluster of tumors from patients with relapse (34 of the 46 R 

tumors) and the RF cluster of tumors from relapse-free patients (71 of the 86 RF 

tumors). In conclusion, there was a strong agreement between the tumor classification 

obtained through the PAM classifier and the hierarchical clustering of the tumors 

through the predictive 36-gene set. 

We have classified the 132 tumors according to the previously reported molecular 

subtypes. Forty-two tumors of the 132 tumors from the training set coud not be 

classified in any subtype. Interestingly, 46 of the 58 tumors (79%) which were 

classified as luminal A were found in the relapse-free branch of the dendrogram and 

22 of the 31 tumors (71%) which were classified as luminal B were found in the 

relapse branch.  

 

Validation of the 36-gene predictive signature 
The 36-gene predictive signature, as defined by the PAM analysis, was validated by 

an external set of 23 patients (6 R and 17 RF) that were enrolled independently. 

Fourteen of the 17 RF (82% sensitivity) and 4 of the 6 R patients (67% specificity) 

were correctly classified with a 78% accuracy.  
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To confirm the performance of our classifier with a larger validation cohort, we used 

gene expression data obtained by Ma et al. on tamoxifen-treated patients [14]. We 

chose this data set as it was obtained on a 70-mer oligonucleotide microarray close to 

the one we used. We mapped our 36-genes signature on the Ma dataset by using 

Hugo gene symbols. Thirty-five out of the 36 signature-genes were available in this 

study (BC015719 was missing). The omission of this gene did not affect prediction of 

clinical outcome that was evaluated on our training set. The 60 independent tumors 

from the Ma cohort were classified with a 63% accuracy (69% sensitivity, 57% 

specificity), confirming the relevance of our classifier. 

 

Correlations to the clinical outcome 

Univariate analysis of standard clinical prognostic factors (including the NPI and the 

Adjuvant! classifiers) and predictive 36-gene signature in terms of disease-free 

survival was performed both on the training and validation sets. When the training set 

(132 patients) was used, the SBR grade, PR level, lymph node status, NPI, Adjuvant! 

and the 36-gene signature were significantly associated to shortened disease-free 

survival (Table 2A). Nevertheless, the predictive signature appeared to be the 

strongest predictive factor with 2 to 4-times higher odds ratios compared to other 

prognostic factors or indices. When performed on the validation set (83 patients), only 

the 36-gene signature and the NPI and Adjuvant! classifiers were found to be 

significant with almost similar odds ratios (Table 2B).  

However, multivariate analysis that was performed both on the training and validation 

sets by using the parameters found to be significant in the univariate analysis, 

demonstrated that the 36-gene signature was the only independent prognostic factor  

(Table 2A and 2B).  

Theses analyses confirmed that the molecular signature that we have identified was 

more efficient than the usual histo-pathological parameters to predict the clinical 

outcome of tamoxifen-treated breast cancers. 

As shown on Figure 2, Kaplan-Meier analysis emphasized the prognostic power of the 

36-gene signature both on the 83 patients from the validation set and on a subgroup of 

60 out of these 83 patients who exhibited an intermediate risk of recurrence according 

to the St Gallen criteria (Supplemental Table S1 and Table S2). This finding 

demonstrates that the 36-gene signature may be useful to discriminate patients of 
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good and poor prognosis in this intermediate-risk group of patients to define the best 

therapeutical approach. 

 

Comparison of the 36-gene signature with already published signatures 
We have compared the performance of the present 36-gene signature with those of 6 

gene-expression-based models that have been described for breast cancer, namely, 

intrinsic subtype, 70-gene profile, wound-response, two-gene ratio, gene expression 

grade index (GGI) and molecular prognostic index (MPI).  

As shown on Table 3A, univariate analysis in terms of disease-free survival that was 

performed on the training set (132 tumors) demonstrated that 5 out of the 7 evaluated 

signatures classified correctly the tumors, the 36-gene, GGI and MPI signatures being 

the most efficient. Similar analyis performed on the validation set (83 tumors) 

confirmed the performance of the 36-gene signature that was as efficient as the two-

gene ratio to classify tumors (Table 3B).    

 
Functional analysis of the predictive signature 
With the exception of 1 EST and 4 genes with unknown function, all of the 36 genes 

appeared relevant to cancer (Table 1). Indeed, the functional annotation showed that 

they were involved in the control of mitosis, cell cycle and cell proliferation, DNA 

replication and repair, cell signalisation, adhesion/migration, cell death/survival, ER 

transcriptional activity, immune response or metabolism.  
Among these 36 genes, 23 were underexpressed and 13 were overexpressed in 

tumors from patients with recurrent disease in agreement with their putative function in 

oncogenesis. As shown in Table 4, four of the underexpressed genes were involved in 

cellular adhesion or invasion, 3 could be implicated in immune response or 

inflammation and 2 others were putative negative regulators of ER. Moreover, 7 genes 

have been reported as candidate tumor suppressor genes (TSG), namely, AUTS2, 

GJA1/CX43, MTUS1/ATIP1, PCM1, ITM2B, LRRC17/P37NB, LZTFL1. 

Among the upregulated genes, 7 were involved in the control of mitosis and cell cycle, 

4 have been implicated in DNA replication and/or DNA repair and one gene, MMP1, 

has been demonstrated to be a key promoter of cellular invasion.  

Interestingly, CX43 and ITM2B which have been proposed to have a pro-apoptotic 

function were down-regulated in tumors from recurrent patients while p15(PAF), which 

has been reported as a anti-apoptotic factor, was up-regulated in these tumors. Also, 
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CX43, FMO5 and PCM1 have been reported as members of an apoptotic gene 

module whose overexpression specified low-grade ER+ breast tumors from patients 

with a better survival outcome [37]. All of them were found down-regulated in tumors 

from patients with relapse in this study. 

 

Discussion 
The main problem encountered in gene expression profiling studies is the relatively 

small overlap between independently reported molecular signatures. Noteworthy, the 

present 36-gene signature includes 11 genes (30%) that are members of a 

proliferation cluster present in several previously pulished classifiers. This major 

proliferation signature has been shown to specify poor-prognosis subsets of ER+ 

breast cancer [15, 21-25]. It includes AURKB, CCNB2, CDC2, PRC1, RRM2, TPX2 

and UBE2C genes [22, 23], which are present in our signature, along with 

BIRC5/survivin, KI-67, MYBL2, STK6/15, and CCNB1, belonging to the Paik’s 21-gene 

classifier [15]. Several members of this proliferation gene cluster are also found in the 

van’t Veer’s 231-gene poor prognostic signature [9], namely, BIRC5, CCNB2, PRC1, 

RRM2 and STK6/15. Another gene, TK1, is found to be a member of this cluster both 

in this and distinct studies [9, 21]. ASF1B [38], ASPM [22, 38] and p15(PAF) [24, 39] 

have been also reported in proliferation gene clusters correlated to cancer 

aggressiveness [22, 38].  

Interestingly, similarity between these distinct gene signatures may further concern 

members of the same functional family or different partners of the same pathway(s). 

For example, CCNB2 and AURKB (STK12) may be substituted by CCNB1 and 

AURKA (STK6/15), respectively. Moreover, AURKB interacts with survivin [40] and 

TPX2 targets AURKA to the mitotic spindle [41].  

Although the presence of such a proliferation cluster seems to be a hallmark of several 

prognostic signatures, the 11 members of this cluster from our 36-gene signature did 

not exhibit a prognostic power by itself (data not shown). This later finding 

demonstrates that the ER-related genes of the present signature could be essential to 

confer its prognostic power. 

Indeed, our 36-gene signature included at least 18 genes (50%) that were related to 

estrogens either as ER targets or ER regulators. Six genes, namely CRIM1, CX43, 

FMO5, P37NB/LRRC17, STC2 and WFDC2 have been shown to be induced by 
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estrogens and the expression of these genes has been correlated with ER+ status [42-

44]. Interestingly, STC2 or FMO5 expression was associated with good prognosis in 

ER and/or PR+ breast cancer patients, who were treated with adjuvant hormone 

therapy [43, 44]. Conversely, TK1 overexpression, shown to occur in ER negative 

breast tumors [45] and in our cohort of R tumors, has been reported to be a marker of 

poor clinical outcome of tamoxifen therapy [46]. ABCC3 has been shown to be E2-

repressed [47] and was overexpressed in tumors from patients with recurrence. Eight 

other genes of the 36-gene signature (i.e., AURKB/STK12, CCNB2, CDC2, MMP1, 

PRC1, RRM2, TPX2 and UBE2C) have been reported to discriminate ER+ from ER- 

breast cancers [8, 23, 42]. Finally, 2 other genes, PNRC2 and PKIB, are possibly 

involved in the regulation of the ER activity. PNRC2 is mostly known to be a co-

activator of nuclear receptors, including ER, and it has also been suggested to 

antagonize the growth factor-mediated MAP kinase activation of ER [48]. On the other 

hand, down-regulation of PKIB, a protein kinase A (PKA) inhibitor, might be associated 

with tamoxifen resistance. Indeed, such an association has been reported for 

PKAR1α, another PKA negative regulator whose down-regulation favored the 

phosphorylation of ER, converting tamoxifen from an ER antagonist into a growth 

stimulator [49]. Also, OTUD7B encodes a deubiquinating enzyme that has been 

demonstrated as a negative regulator of NFkappaΒ, a prognostic marker associated to 

tamoxifen resistance [50]. 

In our study as in that by Paik et al. [15], the classifiers were able to predict the clinical 

outcome of tamoxifen-treated breast cancers and thus they could be considered as 

general prognostic classifiers. Whether our 36-gene signature may further specify 

responsiveness to tamoxifen remains to be investigated. However, the presence of 

several estrogen-related genes in this signature suggests that it could be the case. In 

any case, this molecular signature allows to discriminate a subset of patients who do 

not gain benefits from tamoxifen treatment. Those patients might be potential 

candidates for alternative endocrine therapies and/or chemotherapy. As a main 

finding, we demonstrate the prognostic power of our signature on a subgroup of 

patients who exhibited an intermediate-risk of relapse according to the St Gallen 

criteria. In other words, the 36-gene signature can be helpfull in tailoring the 

therapeutical decision in this particular patient subset. 

Despite their value, expression signatures, which have been obtained by studying 

retrospective cohorts, need to be confirmed by prospective studies.  
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In summary, our findings demonstrate the utility of large-scale gene expression 

profiling to define a molecular signature that can predict the recurrence of tamoxifen-

treated primary breast cancer more efficiently than the usual clinical and histo-

pathological prognostic factors. Moreover, our data bring new insights on putative 

master genes involved in cancer progression and resistance to endocrine therapy.   
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Legends to Figures 

 
Figure 1 : Hierarchical clustering analysis of the 132 tumors from the training set 
using the 36-gene predictive signature.  

The 132 tumors from 86 relapse-free (RF) and 46 patients with relapse (R), as 

indicated on the top of the figure, were divided into two main clusters, corresponding to 

the two branches of the dendrogram: the R and RF clusters. The 36 genes from the 

predictive signature are indicated on the right. 

 
Figure 2 : Kaplan-Meier survival curves for time to recurrence according to the 
36-gene classifier. 
Kaplan-Meier disease-free survival curves based on the 36-gene signature : A, for the 

cohort of 83 patients from the validation set; B, for the 60 out of these 83 tumors who 

belong to the St Gallen intermediate-risk group. The p-values were calculated by using 

the log-rank test. 
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Table 1 : The list of 36 genes forming the minimal signature as defined by PAM analysis

Accession 

number
Gene Name PAM Occur

SAM 

score 

(R/RF)

Fold- 

Change 

(R/RF)

Gene Title Functional pathway

NM_017761 PNRC2* 0.98 -3.67 0.60 Proline-rich nuclear receptor coactivator 2 ER activity regulation

AK027663 STC2* 0.98 -3.36 0.43 Stanniocalcin 2 Cell growth 

NM_014736 KIAA0101/p15(PAF)* 0.97 3.46 1.69 PCNA-associated factor DNA repair; Anti-apoptosis

NM_000165 GJA1/CX43* 0.96 -3.04 0.45
Gap junction protein, alpha 1, 43kDa (connexin 

43)

Cell growth; Adhesion; 

Apoptosis

BC015719 OTUD7B* 0.94 -3.03 0.60 OTU domain containing 7B Signalisation; Inflammation

AK023933 ZBTB44* 0.92 -2.70 0.69 Zinc finger and BTB domain-containing protein 44 Unknown function

NM_018154 ASF1B* 0.89 3.29 1.67
ASF1 anti-silencing function 1 homolog B (S. 

cerevisiae)
DNA repair

AL137566 - 0.89 -2.87 0.54 - -

AF085233 SGK3/SGKL* 0.89 -2.52 0.51 Serum/glucocorticoid regulated kinase 3 Signalisation

NM_002421 MMP1 0.88 2.79 2.27 Matrix metalloproteinase 1 Invasion

NM_004701 CCNB2* 0.88 2.78 1.43 Cyclin B2 Mitosis; Cell cycle

NM_006103 WFDC2/HE4 0.87 -3.07 0.45
WAP four-disulfide core domain 2; Epididymal 

secretory protein E4
Immune response 

NM_012112 TPX2* 0.84 3.04 1.54 Microtubule-associated homolog (Xenopus laevis) Mitosis; Cell cycle

NM_001034 RRM2* 0.84 2.81 1.69 Ribonucleotide reductase M2 polypeptide DNA repair

NM_017680 ASPN/SLRR1C 0.83 -2.46 0.46 Asporin; Small leucine-rich repeat class 1 Adhesion

NM_006197 PCM1* 0.82 -3.04 0.56 Pericentriolar material 1 Cell growth; Mitosis

NM_007019 UBE2C/UBCH10* 0.82 2.85 1.49 E2 ubiquitin-conjugating enzyme Mitosis; Cell cycle

NM_004217 AURKB/STK12* 0.80 3.07 1.52 Aurora B kinase Mitosis; Cell cycle 

NM_001461 FMO5* 0.78 -2.52 0.57 Flavin containing monooxygenase 5 Metabolism

AF326917 AUTS2* 0.77 -2.70 0.57 Autism susceptibility candidate 2 Unknown function

NM_014056 HIGD1A/HIG1* 0.76 -2.97 0.49
HIG1 domain family, member 1A;                                    

Hypoxia-inducible gene 1
Anti-apoptosis

NM_003981 PRC1* 0.74 3.04 1.56 Protein regulator of cytokinesis 1 Mitosis; Cell cycle

AK001379 ASPM* 0.73 2.98 1.61
Abnormal spindle-like microcephaly-associated 

protein
Mitosis; Cell cycle

AB033114 MTUS1/ATIP1* 0.72 -2.78 0.63
Mitochondrial tumor suppressor 1; Angiotensin II 

receptor-interacting protein
Cell growth; Signalisation

AL133047 SH3D19* 0.72 -2.90 0.65 SH3 domain protein D19 Signalisation

NM_006570 RRAGA* 0.72 -3.37 0.63 Ras-related GTP-binding A Signalisation

NM_032471 PKIB 0.70 -2.57 0.47 Protein kinase A inhibitor beta
ER activity regulation; 

Signalisation

NM_016441 CRIM1* 0.68 -2.34 0.65
Cysteine-rich motor neuron 1; Cysteine rich 

transmembrane BMP regulator 1
Adhesion

AF444143 SPG3A/ATL1* 0.68 -2.83 0.55
Atlastin-1; Spastic paraplegia 3A; GTP-binding 

protein 3

Signalisation; Vesicle 

trafficking

NM_021999 ITM2B/BRI2* 0.67 -2.98 0.60
Integral membrane protein 2B; Transmembrane 

protein BRI
Apoptosis

NM_020038 ABCC3/MRP3 0.65 2.72 2.04
ATP-binding cassette, sub-family C (CFTR/MRP) 

member 
Multidrug resistance

NM_005824 LRRC17/P37NB* 0.65 -2.30 0.60 Leucine rich repeat containing 17 Unknown function

NM_020347 LZTFL1* 0.64 -2.71 0.69 Leucine zipper transcription factor-like 1 Unknown function

NM_003890 FCGBP 0.64 -2.45 0.53 Fc fragment IgG binding protein Immune response

NM_003258 TK1* 0.63 2.43 1.33 Thymidine kinase 1 DNA replication

NM_001786 CDC2/CDK1* 0.63 2.43 1.32
Cell division cycle 2, G1 to S and G2 to M;                                                      

Cyclin-dependent kinase 1
Mitosis; Cell cycle

Genes present in more than 60% of the 100 PAM iterative signatures are listed and the respective occurrence values (PAM Occur) are indicated. 

SAM scores and Fold-changes defined upon SAM analysis are indicated (R, patients with relapse; RF, relapse-free patients). Genes with a 

minimum 1.51 fold-change and a SAM score ! ± 2.52 are in bold characters. Genes were overexpressed in R tumors when fold-change was

 ! 1 and down-regulated when fold-change was " 1. Genes that are common to the PAM and to the KNN signatures are marked with a star (*). 
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Table 2 : Univariate and Multivariate Analysis of 36-gene Signature and Usual Pronostic Factors in Relation to DFS

Predictive Factors

Odds Ratio 95% CI P Odds Ratio 95% CI P

A - Training set (132 patients)

36-gene signature: RF v. R 14.61 6.07 to 35.19 6.3 . 10
-11 17.89 5.62 to 56.94 1.05 . 10

-6

SBR Grade : I/II v. III 4.60 1.87 to 11.27 0.0008 1.46 0.37 to 5.74 0.59

Tumor size: < 20mm v.  ! 20mm 1.99 0.86 to 4.57 0.11 - - -

PR: ! 20 fmol/mg v. <20 fmol/mg 3.68 1.49 to 9.07 0.005 2.73 0.68 to 10.91 0.16

Age: ! 55 years v. <55 years 1.87 0.57 to 6.10 0.31 - - -

ER: ! 20 fmol/mg v. < 20 fmol/mg 1.07 0.26 to 4.51 0.95 - - -

Node status: pN0 v. pN+ 4.58 2.03 to 10.33 0.0001 3.05 0.75 to 12.45 0.12

NPI : " 3.4 v. > 3.4 7.16 2.33 to 22.04 0.0001 3.27 0.64 to 16.82 0.16

Adjuvant ! : < 20% v. ! 20% 4.71 2.08 to 10.67 0.0002 1.22 0.31 to 4.76 0.78

B- Validation set (83 patients)

36-gene signature: RF v. R 3.96 1.56 to 10.05 0.004 3.01 1.01 to 9.14 0.05

SBR Grade : I/II v. III 2.02 0.76 to 5.39 0.17 - - -

Tumor size: < 20mm v.  ! 20mm 2.16 0.83 to 5.60 0.12 - - -

PR: ! 20 fmol/mg v. <20 fmol/mg 2.16 0.72 to 6.52 0.18 - - -

Age: ! 55 years v. <55 years 2.41 0.62 to 9.30 0.22 - - -

ER: ! 20 fmol/mg v. < 20 fmol/mg 4.65 0.46 to 46.69 0.21 - - -

Node status: pN0 v. pN+ 2.37 0.92 to 6.10 0.08 - - -

NPI : " 3.4 v. > 3.4 5.96 1.25 to 28.33 0.013 2.27 0.35 to 14.35 0.38

Adjuvant ! : < 20% v. ! 20% 4.90 1.75 to 13.69 0.002 2.64 0.78 to 8.91 0.12

DFS, disease-free survival; RF, relapse-free; R, relapse; PR, progesterone receptor; ER, estrogen receptor; NPI, Nottingham

prognostic index ; v., versus ; P, p value. Univariate and multivariate analyses were performed by logistic regression. 

Multivariate analysis was performed using the parameters found to be significant in univariate analysis.

Univariate Analysis Multivariate Analysis
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Table 3 : Comparison of the 36-gene signature with other molecular signatures

Predictive Factors

Odds Ratio 95% CI P

A - Training set (132 patients)

36-gene signature 14.61 6.07 to 35.12 6.4 . 10
-11

Intrinsic subtypes 3.59 1.39 to 9.28 0.009

70-gene profile 2.73 1.3 to 5.75 0.008

Wound response 1.91 0.93 to 3.95 0.08

Two-gene ratio 0.68 0.42 to 1.76 0.68

GGI 5.99 2.57 to 13.96 1.0 . 10
-5

MPI 6.95 3.12 to 15.47 7.6 . 10
-7

B - Validation set (83 patients)

36-gene signature 3.96 1.56 to 10.05 0.004

Intrinsic subtypes 2.73 0.68 to 11.05 0.17

70-gene profile 1.84 0.75 to 4.45 0.19

Wound response 2.46 1.01 to 6.03 0.05

Two-gene ratio 3.94 1.55 to 9.97 0.004

GGI 1.88 0.77 to 4.60 0.17

MPI 2.00 0.83 to 4.82 0.13

Univariate analysis was performed using logistic regression (RF v. R); DFS, disease-free survival; 

RF, relapse-free patients; R, patients with relapse.

Univariate Analysis in terms of DFS
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Table 4 : Functional classes of genes from the 36-gene predictive signature

Functional class 36-gene signature

Cell growth inhibition CX43 *, MTUS1 *, STC2

DNA replication and repair ASF1B, P15PAF, RRM2, TK1

Mitosis and cell cycle ASPM, AURKB, CCNB2, CDC2, PCM1 *, PRC1, TPX2, UBE2C

Adhesion/migration ASPN, CRIM1, CX43, MMP1

Metabolism ABCC3, FMO5

Signalisation  MTUS1, OTUD7B, PKIB, RRAGA, SGK3, SH3D19, SPG3A

Immune response FCGBP, OTUD7B, WFDC2

ER activity PKIB, PNRC2

Cell death/survival CX43, HIGD1A, ITM2B *, P15PAF, RRAGA

Unknown function AUTS2 *, LRRC17 *, LZTFL1 *, ZBTB44

Genes overexpressed in R tumors (patients with relapse) are in red, those underexpressed are

in green. Genes are in bold characters when assigned to their main functional class.

Putative tumor suppressor genes (TSG) are marked with a star (*).
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