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Abstract 

 

Viral and non-viral vectors have been developed for gene therapy, but their use is 

associated with unresolved problems of efficacy and safety. Efficient and safe methods of 

DNA delivery need to be found for medical application. Here we report a new monopolar 

system of non-viral electro-gene transfer into the thymus in vivo that consists of the local 

application of electrical pulses after the introduction of the DNA. We assessed the proof of 

concept of this approach by correcting ZAP-70 deficient severe combined immunodeficiency 

(SCID) in mice. The thymic electro-gene transfer of the pCMV-ZAP-70-IRES-EGFP vector 

in these mice resulted in rapid T cell differentiation in the thymus with mature lymphocytes 

detected by three weeks in secondary lymphoid organs. Moreover, this system resulted in the 

generation of long-term functional T lymphocytes. Peripheral reconstituted T cells displayed a 

diversified T cell receptor (TCR) repertoire, and were responsive to alloantigens in vivo. This 

process applied to the thymus could represent a simplified and effective alternative for gene 

therapy of T cell immunodeficiencies. 
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Introduction 

 

The thymus is the primary site of generation of functional T lymphocytes. After 

maturation, T cells are released into the bloodstream and lymph fluid and then migrate to 

secondary lymphoid organs, mainly the spleen and lymph nodes. T lymphocytes play a crucial 

role in adaptative immune responses by recognizing antigens derived from pathogens or 

tumor cells. Adaptative immune responses may be impaired in several ways, including the 

natural mutations characterized by blocks in T cell development that have been described in 

mice and humans. These disorders are known collectively as SCIDs, because the clinical 

consequence is a devastating predisposition to infections and cancers. At least 9 different 

forms of human SCIDs have now been recognized and can be grouped according to genes 

involved such as γc, ADA, Artemis, ZAP-70, JAK-3, IL7Rα, CD45, RAG-1 and RAG-2 [1]. 

Gene therapy appears to be an appealing treatment by inserting corrective transgenes into 

abnormal cells [2]. Recombinant viruses are effective vectors for transferring genes into 

haematopoietic precursors. However, the main limitations reside in the possible development 

of opportunist cancers and in the potential toxicity in peripheral lymphocytes of the gene 

expression system controlled by retroviral long terminal repeats (LTRs) [3]. 

Gene therapy thus requires more efficient alternative therapeutic methods, using non-

viral vectors in conjunction with an effective and safe physical process. Applying an electric 

field to cells and tissues significantly increases DNA uptake and gene expression [4]. 

Electroporation is usually performed by locally injecting DNA to the site of interest followed 

by the application of an electrical field. In vivo, electroporation has been already performed 

on several tissues, notably muscle and liver [5]. However, to our knowledge the thymus has 

never been electrotransfected. Therefore, in vivo electroporation of thymus appears to be a 

promising method to circumvent severe immunodeficiencies. Classical processes are 
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aggressive using bipolar and even multipolar electrodes, often involving incisions, and the 

success of gene transfer may be compromised by aggressive surgical procedures [4]. 

Here, we describe a new method of electroporation without any incision, using a 

monopolar device to target the thymus in vivo. We stably electro-gene transferred thymocytes 

during their maturation in the thymus. We found the corresponding mature transfected T 

lymphocytes correctly localized in T zones of lymph nodes and spleen one month following 

treatment. We evaluated the usefulness of this approach to treat thymus-linked SCIDs using a 

murine model of ZAP-70 deficiency. ZAP-70 is a protein tyrosine kinase crucially involved in 

T cell differentiation. Its absence results in a SCID phenotype with a block at the CD4+CD8+ 

double-positive early stage of differentiation [6]. ZAP-70 gene transfer by in vivo thymic 

electroporation in ZAP-70-/- mice results in the reconstitution of CD4+ and CD8+ single-

positive thymocytes and the long-term detection of a high number of peripheral T 

lymphocytes displaying a diversified TCR repertoire and normal functional properties. 

 

Results 

 

A simple procedure to electroporate the thymus in vivo 

The target organ is the mouse thymus. To transfect this deep organ directly in vivo 

without surgical intervention, we developed an electroporation procedure based on a 

monopolar device using a single needle as anode to inject the plasmid DNA and apply the 

electric field (Figure 1A). The needle size was calibrated according to the animal size and 

thymus localization. On an anaesthetized mouse, a crocodile clip corresponding to the 

cathode, establishes skin contact on the paw opposite to the injection site. We introduced the 

needle between the first and the second rib keeping the angle of the needle at 45° from the 

longitudinal axis (Figure 1A, inset). Thereafter, a volume of 10μl of highly concentrated 

plasmid DNA was slowly injected in one thymic lobe and the current was immediately 
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delivered. The second lobe was then treated in the same way. This technique allows 

electrotransfection of the thymus without affecting vital proximal organs such as the heart and 

lung, since all mice survived the intervention. Impact points on each thymic lobe were 

observed following electroporation (Figure S1A). Therefore, we established a safe simple 

procedure to electroporate the thymus in vivo. 

 

Optimization of electrical parameters 

Previous in vivo electroporation analyses on the most widely targeted tissue which is skeletal 

muscle have shown that an effective conditions is 5 pulses of 1Hz, at 100µsec, with 10µg of 

DNA [7]. Based on “muscle" parameters in combination with different voltages ranging from 

0 to 900V, we determine the optimal voltage to electrotransfect the thymus by transfecting the 

pCMV-luciferase (pCMV-luc) expression vector (Figure 1B). Maximal gene expression 24 

hours after electroporation was achieved at 300V. The amount of luciferase was increased 30-

fold compared to the control condition (0V). Moreover, we confirmed the transfection 

efficacy by in vivo bioluminescence (Figure S1B). 

To assess whether these parameters result in a stable transfection, we investigated 

luciferase expression one month after injection or electroporation at 300 and 600V of pCMV-

luc plasmid (Figure 1C). We observed a complete absence of luciferase expression at 0 and 

600V. In contrast, at 300V the luciferase expression was still detected although decreased five 

fold relative to 24 hours post-electroporation. This decrease can be partly explained by two 

physiological processes of the thymus. Firstly, the T cell maturation in the thymus takes about 

one month and mature T lymphocytes then migrate towards secondary lymphoid organs [8]. 

Secondly, approximately 90% of thymocytes are eliminated by apoptosis during selection 

mechanisms [9]. Altogether, these results showed that the in vivo thymic electroporation at 

300V leads to an efficient and stable transfection. 
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Differentiating thymocytes are transfected in vivo 

We determined the distribution of transfected thymic cells by confocal microscopy. 10 

μg of pCMV-Enhanced Green Fluorescent Protein (EGFP) expression vector was injected or 

electroporated at 300V (Figure 2). Detailed observation of thymic sections revealed no 

necrosis or any sign of tissue damage near the injection site, suggesting that the procedure 

was well tolerated (data not shown). As expected, sections of the non-injected thymus 

exhibited no EGFP signal (Figure 2A). In contrast, after 24 hours, a weak uniform staining 

was observed at 0V (Figure 2B); while at 300V the signal was stronger and numerous clusters 

of transfected cells were visualized (Figure 2C). These results were also confirmed by 

immunohistochemistry experiments (Figure 2D). One month later, the level of transfected 

cells strongly decreased, which is consistent with luciferase results described above (Figure 

2E, F). Moreover, transfected cells were localized in several distinct clusters localized around 

venules of the cortico-medullary region suggesting that transfected cells could be thymocytes 

at the end stage of maturation on their way to be exported to the periphery. 

Three independent experiments were performed to confirm this hypothesis, by co-

staining lymphocytes using the CD3 marker which labeled nearly the whole thymocyte 

populations (DN to SP). We observed that 3.6+0.8% of T cells are transfected in the cortex 

and 1.9+0.7% in the medulla 24 hours after electroporation (Figure S2). After one month, we 

still detected 1.1+0.4% of T cells in the medulla and at the cortico-medullary junction, but 

none in the cortex. This observation is consistent with the fact that mature thymocytes 

congregate near blood vessels to be exported to the periphery [10]. 

To immunophenotype EGFP transfected thymocytes, we analyzed EGFP expression 

within the four main thymocyte subpopulations (CD4-CD8- double-negative (DN), CD4+CD8+ 

double-positive (DP) stage, CD4+CD8- and CD4-CD8+ single-positive (SP) by flow cytometry 

after 24 hours (Figure 2G). We found similar percentages of transfection obtained by confocal 

microscopy (6.72% of DN, 2.82% of DP and 4.4% of CD4+ and CD8+ SP cells). As expected, 
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we did not observe any significant transfection in the 0V condition. Moreover, we deduced 

that thymocytes in cell cycle may be preferentially transfected such as DN thymocytes that 

undergo extensive proliferation [11] and SP thymocytes that expand the newly selected T 

repertoire [12]. Finally, while thymocytes are difficult to transfect using a non viral system, 

our method allows their transfection with reasonable success, and the expression of the 

transfected gene is observed in the main thymocyte subpopulations. 

 

Transfected T cells are detected in secondary lymphoid organs one month after in vivo 

thymic electroporation 

To determine whether transfected thymocytes develop into mature T cells, we 

analyzed spleen sections by two methods one month after thymic electroporation (Figure 3). 

Numerous EGFP cells were detected in the white pulp as shown by a DAPI counterstaining in 

confocal microscopy (Figure 3A, B), and confirmed by immunohistochemistry using an anti-

EGFP antibody (Figure 3C). This observation is consistent with successful transfection of 

thymocytes in the thymus, and shows that transfected mature thymocytes were exported to the 

spleen. Moreover, a detailed observation showed that some transfected T cells are localized 

around a central arteriole suggesting that these cells are fresh immigrants [13] (Figure 3B; 

inset). The same analysis was also performed in lymph-nodes by labeling high endothelial 

venules with the PNAd antibody that recognizes the peripheral node addressin [14] (Figure 

3D). We observed that incoming EGFP transfected T cells were found around venules. 

These secondary lymphoid organs are organized in both T and B cell zones. To ensure 

that transfected T cells had correctly migrated into T cell zones, a co-staining analysis was 

performed on spleen and lymph-nodes sections by using anti-B220 and anti-CD3 antibodies 

to detect B and T cell areas, respectively (Figure 3E). B cell areas were mostly EGFP negative 

while T cell zones show numerous EGFP positive cells. We quantified the number of EGFP 
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transfected lymphocytes using the CD3 marker and observed 1.0+0.2% of cells in lymph 

nodes and 1.5+0.2% in the spleen (Figure 3F). 

Consequently, T cells were stably electroporated in the thymus, since significant 

numbers of transfected T lymphocytes were detected around homing sites and in T zones of 

secondary lymphoid organs one month later. 

 

Restoration of thymic development in ZAP-70-/- mice after electroporation  

We assessed the usefulness of this new approach to correct a thymus-linked 

immunodeficiency. We chose the murine model of Zeta-chain (TCR) Associated Protein 

kinase (ZAP-70) deficient SCID, which exhibits a relatively late block in T cell development 

at the CD4+CD8+ DP stage [6,15]. We constructed the mouse ZAP-70/internal ribosome entry 

site/enhanced GFP (ZAP-70-IRES-EGFP) cassette under the transcriptional control of the 

cytomegalovirus (CMV) promoter. In this context, ZAP-70 and EGFP expression is 

concordant. Thymi of ZAP-70-/- mice were electroporated with this expression vector at the 

optimal voltage of 300V with a pulse length of 20ms because longer pulse lengths improved 

transfection of muscle [16] as confirmed by our results for this gene in the thymus (data not 

shown). Transfection efficacy was evaluated after 48 hours by analyzing levels of ZAP-70 

mRNA and protein in total thymocytes by RT-PCR and western-blot, respectively (Figure 4A, 

upper panel). As expected, the ZAP-70 mRNA (left panel) and protein (right panel) were 

clearly detected in wild-type (WT) thymocytes while no expression was observed in ZAP-70-/- 

thymocytes. In contrast, total thymocytes from in vivo electroporated thymus expressed the 

ZAP-70 transgene, albeit more weakly than the endogenous protein in WT mice. ZAP-70 and 

EGFP ectopic expression were further studied by determining their distribution pattern by 

confocal microscopy (Figure 4A, lower panel). Numerous transfected cells that co-expressed 

ZAP-70 and EGFP proteins were detected in the thymus, confirming the successful 

transfection. 
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We then assessed the capacity of this transfection to restore thymocyte development. 

The CD4 and CD8 thymocyte profile was analyzed in WT and in electroporated ZAP-70-/- 

mice after one and two weeks as well as in ZAP-70-/- mice (Figure 4B). One week after 

electroporation, 2.1% of CD4 SP and 0.7% of CD8 SP were detected while after two weeks 

5.8 and 4.4% were observed for CD4 and CD8 SP thymocytes, respectively. These results 

indicate that ZAP-70 expression driven from the electroporated pCMV-ZAP-70-IRES-EGFP 

DNA plasmid is capable of correcting the differentiation block in ZAP-70-/- mice. 

 

Restoration of thymocyte development in ZAP-70-/- mice results in appearance of 

mature T cells in the periphery 

In an attempt to determine whether in vivo gene transfer in ZAP-70-/- thymi results in 

the appearance of mature T cells in the periphery, spleens were analyzed 3 weeks after thymic 

electroporation for the presence of CD4+ and CD8+ T lymphocytes (Figure 4C; upper panel). 

We detected considerable numbers of T lymphocytes in electroporated mice, reaching 11 and 

7% for CD4 and CD8 T cells, respectively. Moreover, the same samples were also analyzed 

for the presence of CD3+ T lymphocytes (Figure 4C; lower panel). Similar results showing the 

appearance of a high level of T cells (24.5%) in electroporated mice compared to ZAP-70-/- 

mice (3.7%) were obtained. Identical results were also obtained in lymph nodes (data not 

shown). We observed by confocal microscopy using an anti-CD3 antibody that a large 

numbers of transfected T lymphocytes were detected specifically in the splenic white pulp 

(Figure S3A, upper panel). These cells are ZAP-70 positive, as shown by western blot 

analysis (Figure S3A, lower panel). Moreover, we showed that newly generated T cells 

exhibit a characteristic CD44hi CD62lo activated phenotype occurring during T cell 

reconstitution of immunodeficient mice (Figure S3B) as found by Adjali and all [17]. 

Altogether, these data demonstrate that the correction in ZAP-70 expression by 

electroporation results in the presence of mature T cells correctly localized in the periphery. 
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T lymphocytes exhibit a diversed receptor repertoire in reconstituted ZAP-70-/- mice 

To evaluate the quality of T cell repertoire in reconstituted mice, we used a 

quantitative PCR method that allows real time monitoring of PCR product appearance 

according to its relative abundance. We analyzed V alpha genes, which are highly expressed, 

such as V1, V2 and V3 and those that are less frequent, such as V5, V8, V14 and V17 [18]. 

The relative abundance of the transcripts was normalized to the CD3ε transcript. As expected 

in ZAP-70-/- thymic samples, TCRV transcript products were not detectable or present in very 

low amounts (Figure 5A, upper panel) while in the spleen they were not detected (Figure 5A, 

lower panel). Interestingly, in reconstituted ZAP-70-/- mice, all the TCRV transcripts tested 

were detected in thymus or spleen (Figure 5A). Moreover, we analyzed the size of the CDR3 

of TCR transcripts for alpha chain in reconstituted mice, which showed polyclonal T cell 

population expressing a wide TCR repertoire as found in WT mice (Figure S4). 

To monitor the persistence of T cells in reconstituted mice, we analyzed the CD4 and 

CD8 profile in the thymus and spleen ten months after thymic electroporation (Figure 5B). As 

expected, SP thymocytes were not detectable anymore in the thymus (CD4+: 0.7%; CD8+: 

0.1%) (Figure 5B, left panel) while both types of T cells were still present in the spleen 

(CD4+: 7.5%; CD8+:7.4%) exhibiting a diversified TCR repertoire (Figure 5B, right panel, C). 

In addition, FACS analyses showed that TCR bearing Vα2 and several Vβ (Vβ5.1-5.2, 

Vβ8.1-8.2 and Vβ11) persist among mature CD8 and CD4 splenic T cells eighteen months 

following reconstitution (Figure 5D, S5). Representative FACS dot plots are also shown in 

supplementary Figure 5. 

This indicates that T lymphocyte populations produced after in vivo thymic 

electroporation resulted from a wide variety of transfected thymocytes, which underwent 

thymic selection to generate a long-term diversified TCR repertoire. 

 

H
A

L author m
anuscript    inserm

-00266019, version 1
H

A
L author m

anuscript    inserm
-00266019, version 1



11 

T lymphocytes exhibit normal functional properties in reconstituted ZAP-70-/- mice 

To evaluate in vivo the functionality of CD8 and CD4 T cells in long-term 

reconstituted mice, mice were vaccinated with DNA encoding the full-length ovalbumin 

(OVA) protein (Figure 6A, B). The percentage of circulating T lymphocytes was evaluated in 

each condition to monitor the persistence of T cells over sixteen months in reconstituted mice 

(Figure 6A, upper panel). Three weeks later, the anti-OVA CD8 response was analyzed on 

circulating T cells by in vitro stimulation with a specific OT-I peptide. In sixteen months 

reconstituted mice, CD8+ T cells exhibit a capacity similar to WT to produce IFN-γ, reflecting 

a normal CD8 response (Figure 6A, lower panel). CD4+ T cells functionality was evaluated 

by anti-OVA IgG titration (Figure 6B). Sixteen months reconstituted mice produced a similar 

antibody level as WT vaccinated mice, showing that CD4+ T cells have the capacity to give a 

cooperative help signal to B cells. All together, these results indicate that both CD8 and CD4 

T cells possess normal functional properties. 

 

To assess the capacity of the reconstituted C57/BL6 ZAP70-/- mice to mount an 

allogeneic immune response, wild type and seven and sixteen month reconstituted mice were 

compared for their ability to reject fully histoincompatible BALB/c skin grafts (Figure 6C-I). 

The reconstituted mice rejected their allogeneic grafts between day 10 and day 14, as fast as 

the wild-type control (Figure 6C). Histological examination of rejected skin allografts 

revealed a marked difference between the seven month reconstituted C57/BL6 ZAP-70-/- 

(Figure 6E, H) and untreated ZAP-70-/- recipients (Figure 6F, I) as well as the syngeneic 

control (Figure 6D, G). Indeed, infiltration of CD3+ cells in the skin dermis were found in the 

former but were virtually absent in the latter. Thus, the reconstituted C57/BL6 ZAP70-/- are 

able to develop an allogeneic response comparable to wild-type C57/BL6 mice. We can 

conclude that reconstituted C57BL/6 ZAP-/- mice possess T lymphocytes with normal in vivo 
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functional properties, enabling them to respond to an OVA DNA vaccine and rapidly reject 

fully MHC-mismatched BALB/c skin grafts. 

 

Discussion 

Various methods based on the use of viruses as biological vectors have been 

developed over the years for the delivery of DNA. However, after decades of research and 

development, gene therapy still lacks a safe and efficient method permitting DNA delivery. 

The use of electric pulses to deliver in vivo therapeutic molecules to organs has seen rapid 

development over the last few years and represents an increasingly attractive non-viral 

method. The exponential increase in number of publications on the subject over the last 10 

years testifies to this interest. By using bibliographic resources, using electroporation and 

gene therapy as key words, we found that electrotransfer has been applied to all easily 

accessible organs and also to internal organs when combined with surgery [19]. However, the 

thymus, the primary lymphoid organ in which several natural mutations have been 

characterized to induce a blockage in T cell development, has never been targeted by electro 

gene delivery for gene therapy.  

The thymus is the organ in which haematopoietic precursors develop into competent T 

lymphocytes. To correct immunodeficiencies linked to natural mutations, transducing the 

therapeutic gene with a retroviral vector into hematopoietic stem cells (HSCs) has provided a 

proof of concept for gene therapy. However, because vectors are composed of retroviral 

portions including the LTR sequence that can activate additional viral sequences present in 

the vector, the development of alternative methods has been encouraged [2,3,20]. 

The method of electroporation we develop herein is based on a monopolar device to 

target the thymus in vivo without any incision. The classical procedure is simplified for two 

reasons: first, a single electrified needle is used to inject the plasmid and apply the electrical 

field, and second no surgical intervention is required. The method is also simpler and more 
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economical than viral approaches. It allows the reduction of risks because only DNA is 

electrotransferred into the thymus. The electrical parameters that we defined lead to the 

targeting of thymocytes at various stages of differentiation. It has been shown that dividing 

cells are highly transfectable compared to quiescent ones, suggesting that DNA enters the 

nucleus upon the disassembly of the nuclear envelope during mitosis. Therefore, 

synchronizing the electrotransfer protocol with mitosis has been shown to improve gene 

delivery [21-23]. In our case, we do not need to synchronize since thymocytes are 

continuously in cell cycle. This biological process increases the efficiency of thymocyte 

electroporation within the thymus. Thus, these encouraging results led us to investigate the 

usefulness of this method for correcting T cell combined immunodeficiencies as proof of 

concept. 

The efficacy of this approach is in large part due to the reconstitution of a SCID 

phenotype where thymocyte development is blocked at the CD4+CD8+ double-positive stage 

[6]. We demonstrated that a direct electroporation of the ZAP-70 gene into thymi of ZAP-70-/- 

mice allows effective and rapid T cell reconstitution. Only two weeks later, CD4 and CD8 SP 

thymocyte differentiation occurred and significant numbers of T lymphocytes were present in 

the spleen and lymph nodes. Then, this non-viral approach achieved with nonsurgical 

intervention resulted in a significantly enhanced T cell reconstitution due to the direct 

targeting of the thymus. This observation is consistent with two recent studies which showed 

that intrathymic injection of either a ZAP-70 expressing lentiviral vector or WT HSCs 

enhances the kinetics of reconstitution [17,24]. 

The efficacy of reconstitution by our method is also characterized in periphery by the 

detection of significant numbers of CD4 and CD8 T lymphocytes that exhibit a diverse TCR 

repertoire. The TCR repertoire observed in the reconstituted mice is characterized by a large 

pool of both alha and beta chains, although some discrete differences in the uses of V regions 

are observed in comparison to wild type mice. For instance in 10 months old reconstituted 
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mice, Vα1 and Vα5 were not detected, and Vβ11 appeared under represented. The balance of 

the V uses in the repertoire is regulated during the ontogeny of the thymus  [25,26]. In as 

much as the transfection is carried out in young adult mice, thus later than the first steps of 

TCR alpha rearrangement in the thymus of wild type mice, the difference observed in the use 

of V genes in reconstituted mice may reflect changes in the regulation of TCR rearrangement 

and expression. Whatever the relative frequencies of the various V, the high degree of 

junctional variability at the CDR3 provides enough diversity to restore a fully functional TCR 

repertoire. Obviously in this model where thymocyte development is blocked at the DP stage, 

only transfected T lymphocytes can migrate and be functional at the periphery. Over the long-

term, a peripheral partially diversified TCR repertoire was sufficient to provide functional T 

cells that mount in vivo immune responses to skin allografts and this response is specific to 

the alloantigens encountered (data not shown). Moreover, we monitored the persistence of 

long-lived T cells in periphery more than sixteen months after thymic electroporation and 

verified that both CD8 and CD4 T cells respond properly to an OVA DNA vaccine. Our data 

suggest that T cells persist for long periods in the periphery after their reconstitution by 

electro-gene transfer.  

It is also important to note that the electroporation does not impair a normal immune 

response, as shown by this study and as well as by previous work on in vivo electroporation of 

splenic T lymphocytes [27]. However, the safety of gene transfer by electroporation in terms 

of potential insertional mutagenesis remains to be fully investigated [28]. We propose that 

thymic electroporation represents an interesting method for immunodeficiency gene therapy, 

which evidently requires optimization for clinical application, such as a systematic study to 

identify the optimal electropulsing sequence, injection periodicity and the ad hoc device for 

human electro-gene transfer.  

We believed that this study is an exciting proof-of-principle that may advance the field 

of nonviral gene therapy. In addition, electrotransfer may also be used to efficiently deliver to 

H
A

L author m
anuscript    inserm

-00266019, version 1
H

A
L author m

anuscript    inserm
-00266019, version 1



15 

the thymus a wide range of potentially therapeutic agents in addition to DNA, including 

proteins, oligonucleotides and siRNAs. An important feature of the monopolar electro-gene 

transfer resides in its potential application to other deep organs without surgery. 
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Materials and methods 

 

Mice. C57/BL6 WT (Iffa Credo), BALB/c WT (Charles River) and C57/BL6 ZAP-70-/- (The 

Jackson Laboratory) [6] mice were bred and maintained under specific-pathogen-free 

conditions. All experiments were done in agreement with the French and European ethical 

rules. Thymic in vivo electro-gene transfer was performed at 3-6 weeks of age. Forty and 

twenty C57/Bl6 mice were transfected with pCMV-luc and pCMV-EGFP constructs, 

respectively. After 24 hours a subset of mice was sacrificed, thirty for the pCMV-luc and five 

for pCMV-EGFP for short term analysis, the other mice were sacrificed after one month for 

long-term analysis. T cell reconstitution experiments in ZAP-70-/- mice were performed in five 

independent assays including at least five mice.  

 

Expression plasmids. Two expression vectors containing the cytomegalovirus (CMV) 

promoter inserted upstream of the coding sequence of the firefly luciferase (Promega), and 

enhanced green fluorescent protein (Clontech laboratories) were used for the optimization of 

electrical parameters. For T cell reconstitution experiments, the pCMV-ZAP-70 plasmid 

(kindly provided by AM Lellouch; CIML, Marseille, France) was used to insert the ZAP-70 

gene into the pCMV-IRES-EGFP (Clontech laboratories). Each plasmid was amplified in 

DH5α bacteria andpurified on Qiagen columns by the lipopolysaccharide free method 

(Qiagen). A plasmid concentration of 5µg/µl was maintained as a stock in 0.9% NaCl. The 

National Center for Biotechnology Information (NCBI) unigene cluster IDs 

(http://www.ncbi.nlm.nih.gov) for the ZAP-70 gene mentioned in the text is Mm.8038. 
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Electroporation procedures. Animals were anaesthetized by intraperitoneal injection with a 

mixture of ketamine (100mg/kg body weight; Imalgene 500; Rhone-Merieux) and xylazine 

(10mg/kg body weight; Rompun 2%; Centravet). A 10μl formulation containing 10μg of 

pCMV-luc or pCMV-EGFP DNA was injected with an insulin syringe in each thymic lobe 

and the current was immediately delivered, with a standard square wave electroporator BTX 

T820 (BTX, Inc). 10µg of DNA was tested with various values of voltage (0-900V) and 5 

pulses of 100μsec. For T cell reconstitution experiments, a 10µl formulation of 30µg of 

pCMV-ZAP-70-IRES-EGFP DNA was injected in each thymic lobe and then an electrical 

current of 5 pulses of 20ms at 300V was immediately applied. At the end of the experiment 

the animals were kept warm until recovery. 

 

Thymic protein extraction and luciferase assay. The thymus was recovered and 

homogenized in 0.5ml of lysis buffer (Promega) and centrifuged 10min at 11000rpm. Then, 

the supernatant was assayed for total proteins and luciferase activity with the luciferase assay 

kit from Promega for the measurement of light production during 10sec interval in a TD20 

luminometer (Turner design). The level of luciferase expression was quantified using 

commercial luciferase from Photinus pyralis (Boehringer-Mannhein). 

 

Bioluminescence imaging. BALB/c mice were anesthetized with 4% isofluorane before the 

intraperitoneal injection of 125 mg/kg body weight of luciferin (sodium salt; Promega). Ten 

minutes after the luciferin injection, photons emitted from luciferase within the animal and 

transmitted through its tissues were collected and integrated for a 5min period images 

acquired using the NightOWL LB 981 CCD camera (Berthold Technologies GmbH & Co). 

Pictures were taken, onto which the pseudocolor image representing the spatial distribution of 

the detected photons was superimposed. The signal intensities from manually derived regions 

of interest (ROI) were obtained and data were expressed as photon flux (counts/s). 
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Background photon flux was defined from a ROI of the same size placed in a non luminescent 

area nearby the animal and then subtracted from the measured luminescent signal intensity. 

 

Immunofluorescence. To identify the distribution and cells expressing the transfected gene, 

sections of 8μm were prepared by cryosectioning after embedding the organs in OCT (Sakura 

Finetech) and mounted on glass slides. Sliced samples were kept in a humidified chamber and 

were not allowed to dry during staining. Sections were fixed with 4% paraformaldehyde 

(Sigma Aldrich) in phosphate buffer for one hour. Frozen sections were stained with anti-

B220 hybridomas (RA6-6B2), anti-CD3 hybridomas (OKT3) (kindly provided by Dr. B 

Malissen, CIML, Marseille, France), unconjugated anti-peripheral LN addressin (PNAd) 

antibody (MECA-79) (Pharmingen) and anti-ZAP-70 (Santa Cruz biotechnology). Alexa 

546–goat anti–rat IgG and Alexa 546–goat anti-rabbit (Molecular Probes) were used as 

secondary antibodies. As negative control, WT thymus, spleen and lymph-nodes were used in 

all experiments. Tissues were counterstained with 4’, 6’-diamidino-2-phenylindole (DAPI) at 

1 µg/ml and mounted with Mowiol fluorescent mounting medium (Calbiochem). Skin 

sections were also stained with the anti-CD3 hybridomas (OKT3) and the anti-keratin 5 

(AF138; Covance Research, Berkeley, CA). 

 

Microscopy and Digital Imaging. Fluorescent images were acquired by a Zeiss LSM 510 

confocal microscope with a 515-525 nm bandpass filter set to view EGFP, a 560 nm longpass 

filter set to view alexa 546 and a 420 nm longpass filter set to view DAPI. All images were 

exposed using the same exposure time under the same magnification. Quantitative analysis of 

transfected cells distribution into thymus and secondary lymphoid organ sections was 

performed using ImageJ software (National Institutes of Health, Bethesda, Md) [29]. 
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Immunohistochemistry. Dessicated frozen sections were fixed with 4% paraformaldehyde 

(Sigma Aldrich) in phosphate buffer for one hour. Immunohistochemistry analysis was 

performed using the rabbit ABC staining system (Santa Cruz Biotechnology). Endogenous 

peroxidase activity was quenched by incubating slides for 10min in 1% hydrogen peroxide 

diluted in deionized H20. Sections were incubated for one hour in 1.5% blocking serum in 

PBS for blocking non-specific binding performed before antibody incubation. Rabbit anti 

GFP polyclonal antibody (BD Biosciences) incubation was performed for 30min at room 

temperature. Single-color histochemical detection was performed using an avidin-peroxidase 

conjugate system, and the antibody-enzyme complex was visualized with 3’3’-

diaminobenzidene (DAB). Incubation times were carefully monitored to prevent saturation, 

thus favoring visualization of differences in expression levels. Sections were counterstained 

using Mayer’s hematoxylin solution (Sigma Diagnostics), dehydrated through graded ethanol 

and cover slipped using Eukitt mounting medium (Sigma Aldrich) for examination. Skin 

sections were also counterstained using hematoxylin-eosin solutions. Images were taken using 

Zeiss, axiophot 2 microscope with Nikon digital camera DXm1200. 

 

Flow cytometry. One to two million thymocytes were first incubated with the 2.4G2 

hybridoma supernatant to block nonspecific binding of labeled antibodies. Then, the cells 

were stained with a mixture of PE-labeled CD4 and APC-labeled CD8 mAbs (BD 

Pharmingen). Viable cells were examined using a FACScalibur flow cytometer and data 

analyzed with Cell Quest software (Becton Dickson). For intracellular IFN-γ staining, blood 

cells stimulated overnight with OT-I OVA peptide (chicken OVA peptide 257–264 

SIINFEKL) were first stained for PE-labeled CD4 and PerCP-labeled CD8 mAbs (BD 

Pharmingen) surface markers, followed by fixation in BD Cytofix/Cytoperm (BD 

biosciences). Staining was then performed with APC-conjugated anti-IFN-γ Ab (BD 

Biosciences) in 1X BD Perm/Wash buffer. Cells were washed in 1X BD Perm/Wash buffer 
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twice before resuspension in FACS buffer and analysis. For the repertoire analysis, PE-

labeled TCRVα2, TCRVβ5.1-5.2, 8.1-8.2 and 11 were used in combination with PerCP-

labeled CD8 and APC-labeled CD4 antibodies (BD Pharmingen). 

 

RT-PCR. Total RNA was purified using TRIzol reagent (Gibco-BRL). Single-strand cDNA 

was synthesized by reverse transcription on 0.3–5μg of total RNA using oligo(dT)25 and 

SuperScript II (Gibco-BRL) in a final volume of 20μl. PCR reaction was performed in a PTC 

200 Peltier Thermal Cycler (MJ research Inc) using 2μl of the RT reaction product in a final 

volume of 50μl, using the following conditions: 94°C for 3 min (1 cycle), 30 cycles of 94°C 

for 30 s, 66°C for 40 s, 72°C for 1 min, and 72°C for 10 min (1 cycle). Of the amplification 

product, 10μl were resolved on a 1% agarose gel. The sequence primers used to detect 

specifically ZAP-70 are: forward primer: 5’-GCACATATGCACTGTCCCTGGTCTA-3’and 

reverse primer 5’-GGGTCGCTGTAGGGACTCTCGTACA-3’ while EGFP was amplified 

with forward primer: 5'-AGTCCAAAGGCAGAGCCCCA-3' reverse primer 5'-

CGCTGTCACCTTCGAGGTTA-3' and the housekeeping gene GAPDH with forward 

primer: 5'-AACGACCCCTTCATTGAC-3' and reverse primer 5'-TCCACGAC 

ATACTCAGCAC-3'. 

 

Western-blots. To analyze the protein expression of ZAP-70, thymi and spleens were 

crushed and cytosolic proteins of T cells were isolated by using the Nuclear Protein 

Extraction Kit (Panomics). Protein concentrations were measured using the Pierce BCA 

protein assay. Samples were electrophoresed on 10% SDS-polyacrylamide gel and transferred 

to Nitrocellulose membranes (BioRad) following incubation with the rabbit polyclonal anti-

ZAP-70 or the mouse polyclonal anti-β-tubulin (Santa Cruz biotechnology). Proteins were 

visualized using horseradish peroxidase-conjugated secondary antibody (Amersham 

Pharmacia Biotech,) and the enhanced chemiluminescence detection system (Pierce). 
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Real time PCR. Total RNA from thymus or spleen samples was isolated using TRIzol 

reagent. Reverse transcription was done with SuperScript II RNase H- kit (Life Technologies) 

according to the manufacturer’s instructions. Each sample was tested for G3PDH as a 

housekeeping gene, for CD3ε to determine T lymphocyte levels and for several T cell 

receptor variable alpha genes (TCRV) to evaluate the diversity of T cells. PCR of cDNA 

sample was carried out on a Light Cycler apparatus (Roche Diagnostics) under the following 

conditions: 95°C 10 min, 30 cycles (95°C 15sec, 59°C 10sec, 72°C 15sec). The amplification 

efficiencies of the different PCR reactions were determined as described27. The values for the 

yield ranged from 85 to 87% among the different primer combinations. Melting curves of 

PCR products were determined according to the manufacturer’s instructions (Roche 

Diagnostics). The specificity of the unique amplification product was established by melting 

curve analysis and by migration on agarose gels. Each sample was analyzed in duplicate in 

separate experiments. For CDR3 length distribution, TCRValpha1 diversity analysis was done 

using a TCR VA1 specific primer together with a specific TCR constant alpha primer as 

described27. Run off extensions were performed with the following internal TCR constant 

alpha specific fluorescent anti-sense primer (5’CCATGGAATCTGGAACGTTCATC3’). 

 

Immunization and ELISA techniques. For DNA vaccination, mice were immunized in 

inguinal lymph node [30] with 10µg of plasmid pDNK-OVA encoding the full-length OVA 

(kindly provided by Dr. P. Schuler). Plastic plates with 96 flat-bottomed wells were coated 

overnight at 4°C with 10µg/ml of OVA to allow for the selective detection of high-affinity, 

OVA-specific IgG antibodies in the tested sera. Plates were washed with PBS, 0.05% Tween-

20 and then blocked with 1% BSA+5% sucrose. After washing, dilutions of the test sera were 

added and incubated overnight at 4°C. Bound antibody was detected using anti-mouse gamma 

specific Alkaline phosphatase conjugated IgG (Amersham Pharmacia Biotech). Plates were 
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developed with p-nitrophenyl-phosphate (Sigma-Aldrich), and absorbance was read at 405 

nm.  

 

Skin grafting. Grafting tail skin onto the left flank of recipients was performed as previously 

reported [31,32]. Briefly, skin grafts of approximately 1 cm diameter were prepared from tails 

of female mice and grafted onto the flanks of female recipients according to an adaptation of 

the method of Billingham and Medawar [33]. Petroleum gauze was placed over the graft, and 

sticking plaster was applied around the trunk. The bandages were removed after 10 days, and 

the grafts were monitored daily until day 30 and then every 2 days. Control syngeneic grafts 

(C57BL/6 donor skin on C57BL/6 recipient) always remained in excellent condition for more 

than 100 days.  
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Figure Legends 

 

Figure 1: Monopolar electroporation of the thymus in anaesthetized mice. (A) Bold 

dotted lines indicate the angle of axis legs. The needle (optimal size: 3mm) is inserted 

between the two first ribs, under the ribcage, following the angle of the paw parallel to the 

benchtop. The stimulating syringe, delivering electric pulses and plasmid DNA, represents the 

anodic electrode. The cathodic pole is represented by a crocodile clip attached to the paw of 

the side opposite to the injection point. The inset represents a schematic representation of the 

needle insertion through the ribcage to inject the thymus. (B) Luciferase activity in the thymus 

24 hours after injection with or without electroporation. 10μg of luciferase DNA plasmid in a 

volume of 10μl was injected into each thymic lobe of 10 mice for 0V, 10 mice for 300V and 5 

mice for all other voltages. Whatever the electric intensity applied, all mice survived. (C) 

Luciferase activity 24 hours (h) and one month after injection in the thymus without or with 

electroporation at 300 and 600V, respectively. Four mice were analyzed for each condition. 

 

Figure 2: Distribution and immunophenotype of EGFP transfected thymocytes in 

electroporated thymi. Sections of thymi that were: (A) non injected; (B) injected without 

electroporation after 24 hours and (C) electroporated at 300V after 24 hours were analyzed for 

the EGFP expression signal by confocal microscopy. Each image was captured and processed 

under the same conditions with a 10X objective. (D) 20X view of immunohistochemistry 

analysis using an anti-EGFP antibody of a thymus electroporated with the EGFP DNA 

plasmid at 300V after 24 hours. (E) After one month, a nuclear counterstain (DAPI, blue) 

shows that these transfected cells are localized around blood vessels near the cortico-

medullary junction (CMJ). (F) 20X view of immunohistochemistry analysis using an anti-

EGFP antibody shows numerous transfected cells in the medulla after one month. Arrows 

indicate the EGFP expression signal. Abbreviations: c=cortex, m=medulla, v=venule. (G) 
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Thymocyte profile stained with CD4 and CD8 monoclonal antibodies was analyzed by flow 

cytometry after 24 hours thymic electroporation. The percentage of cells within each quadrant 

is indicated. The different populations of thymocytes expressing EGFP protein in wild-type, 

0V and 300V electroporated thymus were analyzed. The percentage of EGFP transfected cells 

is indicated within the quadrant of each population. 

 

Figure 3: Detection of EGFP positive T lymphocytes in T zones of the spleen and lymph-

nodes one month after thymic electroporation. (A) Fluorescence analysis at 100X view of 

a splenic internal region reveals EGFP positive cells. (B) A nuclear counterstain (DAPI, blue) 

shows that these positive cells are localized in the white pulp. Insets represent a higher 

magnification at 400X view of the central arteriole area (ca) where a cluster of EGFP positive 

cells is observed. (C) 100X view of spleen immunohistochemistry analysis using an anti-

EGFP antibody shows the distribution of transfected cells (arrows). (D) EGFP positive cells 

are localized near high endothelial venules (HEVs) stained with an anti-PNAd antibody (red) 

in lymph-nodes. (E) Sections of lymph-nodes and the spleen were analyzed by confocal 

microscopy after staining with a B cell specific antibody (B220) and an anti-CD3 antibody 

that specifically reacts with T lymphocytes. Multiple representative clusters of EGFP 

transfected cells were found mainly in T zones of different lymph-nodes and spleen sections. 

(F) Percentages of EGFP transfected CD3 positive T lymphocytes present within T zones of 

lymph-nodes and the spleen were calculated as described in methods. The mean percentage 

and the standard deviation of 3 individual organs (n=3) were calculated. Abbreviations: 

wp=white pulp, rp=red pulp, ca=central arteriole, v= vessel. 

 

Figure 4: T cell reconstitution in ZAP-70-/- mice following in vivo thymic electroporation 

with the pCMV-ZAP-70-IRES-EGFP DNA plasmid. (A) The upper panel shows ZAP-70 

mRNA (left panel) and protein (right panel) levels in total thymocytes from WT, in vivo 
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electroporated thymus at 300V after 48 hours and in ZAP-70-/- deficient mice assessed by RT-

PCR and western-blot, respectively. The lower panel shows the distribution of ZAP-70 and 

EGFP proteins analyzed 48 hours after in vivo electroporation of the pCMV-ZAP-70-IRES-

EGFP DNA plasmid by confocal microscopy (upper panel, 100X view). A higher 

magnification of transfected thymocytes is also presented (400X view). (B) Thymocyte 

profiles stained with CD4 and CD8 monoclonal antibodies were analyzed in WT and ZAP-70-

/- mice electroporated at 300V with the pCMV-ZAP-70-IRES-EGFP DNA plasmid after one 

and two weeks as well as in ZAP-70-/- mice. (C) three weeks after thymic electroporation, the 

presence of splenic T cells was monitored using CD4 and CD8 monoclonal antibodies (upper 

panel). Percentages of CD4+ and CD8+ T lymphocytes from WT and reconstituted mice as 

well as ZAP-70-/- mice are indicated. The CD3+ T lymphocytes profile was also analyzed by 

using a CD3 monoclonal antibody (lower panel). The percentages of positively stained cells 

are indicated in each histogram. 

 

Figure 5: TCR repertoire diversity in ZAP-70-/- electroporated mice. (A) Quantification 

of TCR V alpha transcripts in thymi and spleens between WT, untreated ZAP-70-/-, and ZAP-

70-/- mice electroporated at 300V. Two and three weeks after electroporation, thymic (upper 

panel) and splenic (lower panel) cDNAs were respectively amplified using oligonucleotides 

specific for CD3ε and for a set of oligonucleotides specific for each of the V alpha genes in 

conjunction with a primer specific of the constant region of TCR alpha chain. Histograms 

correspond to a representative amplification of two separate experiments. (B) Thymocyte 

profile stained with CD4 and CD8 monoclonal antibodies was analyzed by flow cytometry 

after 10 months thymic electroporation (left panel). The persistence of CD4 and CD8 T 

lymphocytes in the spleen was monitored by flow cytometry 10 month after thymic 

electroporation (right panel). (C) Quantification of TCR V alpha transcripts in spleens 

between WT, untreated ZAP-70-/-, and ZAP-70-/- mice with thymi electroporated at 300V 
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after 10 months. Splenic cDNA was amplified using oligonucleotides specific for CD3ε and 

for a set of oligonucleotides specific for each of the V alpha genes in conjunction with a 

primer specific of the constant region of TCR alpha chain. Histograms correspond to a 

representative amplification of two separate experiments. (D) TCRVα2 and indicated TCRVβ 

usage by splenic CD8 and CD4 T cells was evaluated by FACS analysis in eighteen month 

reconstituted mice compared to age-matched WT mice. Abbreviations: wks=weeks, mo= 

months. 

 

Figure 6: In vivo responsiveness of reconstituted T lymphocytes in reconstituted ZAP-/- 

mice. One year old reconstituted mice were vaccinated with a plasmid encoding for the full 

length OVA. (A) The percentage of circulating T lymphocytes was evaluated in each 

indicated condition (upper panel) to monitor the long-term persistence of T cells in 

reconstituted mice. The function of CD8+ T cells was assessed by an antigen presentation 

assay of OT-I peptide and the percentage of produced IFN-γ was determined by intracellular 

FACS staining (lower panel). (B) The CD4+ T cell response following immunization was 

indirectly evaluated by measuring the level of anti-OVA IgG produced in reconstituted vs. 

WT mice (right panel). (C-I) Reconstituted C57BL/6 ZAP-/- mice rapidly rejected fully MHC-

mismatched BALB\c skin grafts. (C) Survival curves for allogeneic BALB/c skin grafts on 

C57BL/6 seven and sixteen months following reconstitution  ZAP-/- recipients ( ) show 

rejection between day 10 and day 14, as fast as the allogeneic control ( ). However, survival 

curves for syngeneic C57BL/6 skin grafts are similar in both the C57BL/6 WT ( ) and the 

untreated ZAP-/- recipients ( ) to allogeneic BALB/c skin grafts on untreated ZAP-70-/- mice 

( ), which don’t show any graft rejection. Histological sections were performed of syngeneic 

(C57BL/6) skin that was grafted on WT C57BL/6 recipients (D, G) and allogeneic (BALB/c) 

skins which were grafted on a seven months electroporated ZAP-/- recipient (E, H) and on an 

untreated ZAP-/- recipient (F, I). These sections have been analyzed by hematoxylin-eosin 
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(H/E, 200X view), to observed the presence of infiltrating cells (G, H, I), and by 

immunofluorescence (100X view), using antibodies against the epithelial marker Keratin 5 

(K5, green) and the T lymphocyte marker CD3, to characterize these infiltrating cells (D, E, 

F). Contrary to the non-rejected skins (D, F, G, I) harvested 100 days after transplantation, the 

dermis of BALB/c allogeneic skin graft rejected at 50% by the reconstituted C57BL/6 ZAP70-

/- recipient contains numerous infiltrating cells (dark purple staining; H), characterized as 

CD3+ cells (E). TCR Vαn specific primer with a specific TCR constant alpha primer = ADVn 
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