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Incidence and mortality of Alzheimer’s disease or dementia using
an illness-death model

SUMMARY

We present an illness-death model for studying the incidence and the
prevalence of Alzheimer’s disease or dementia. We argue that the illness-
death model is better than a survival model for this purpose. In this model
the best choice for the basic time-scale is age. Then we present extensions of
this model for incorporating covariates and taking account of a possible effect
of calendar time. Calendar time is introduced via a proportional intensity
model. We give the likelihood for a mixed discrete-continuous observation
pattern from this model: clinical status is observed at discrete visit-times
while the date of death is observed exactly or right-censored. The penalized
likelihood approach allows to non-parametrically estimating the transition
intensities. Application on the data of the Paquid study allows to produce
estimates of the age-specific incidence of dementia together with mortality
rates of both demented and non-demented subjects. Then the effect of calen-
dar time and educational level are studied. Low educational level increases
the risk of dementia. The risk of dementia increases with calendar time while
the mortality of demented decreases. The most likely explanation of this re-
sult seems to be in a shift in the diagnosis of dementia towards earlier stages
of the disease prompted by a change in the perception of dementia and the
arrival of new drugs.

Some key words : Alzheimer’s disease, dementia, incidence, interval-censored
data, Markov models, multi-state models.
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1 Introduction

For the purpose of estimating the incidence of Alzheimer’s disease or demen-
tia and of understanding the relationship between incidence and prevalence,
disease onset and death should be jointly modelled using an illness-death
model. The aim of this paper is to describe such a model, to develop some
approaches for statistical inference and to give some descriptive epidemi-
ological results. The approach takes into account the discrete pattern of
observations for the clinical status and investigates the possible trend of inci-
dence and mortality rates with calendar time. This paper relies on previous
work on interval censoring in survival data analysis [1-6] and on multistate
models [7-9]. The analysis of interval-censored observations from multistate
models was studied in some recent work [10-15]; we have given reviews of
these works [16-17].

In section 2, models with increasing sophistication are presented: we
argue that a survival model is not adapted to the study of dementia and
that a satisfactory framework is that of an illness-death model. We present
both a stationary model in which age is the basic time-scale and a model
in which the transition intensities may depend on calendar time. In section
3 the problem of estimation of the model is treated. In section 4 results
using different models applied to the data of the Paquid study, a cohort of
3672 subjects with 10 years of follow-up, are presented. Results using the
stationary model give an idea of the age-specific incidence and the mortality
rates of both demented and non-demented subjects. Then possible effect
of calendar time is investigated. Separate analyses for men and women are
presented and the effect of educational level is studied.

2 Model for clinical status

2.1 Modeling as a survival problem

In term of random variable, the distribution of age of onset 7" of Alzheimer’s
disease or dementia can be modelled; the hazard function is considered as
the age-specific incidence of the disease. In the following we will focuss
on dementia rather than Alzheimer’s disease because treating Alzheimer’s
disease raises the additional problem of what to do with subjects developing



1duosnuew Joyine yH

=
0
1]
=
2
(]
o
N
<]
N
-
-
N
<
1]
-
@,
o
=
—

other types of dementia.

Modeling of onset of dementia can be put in terms of stochastic process.
For each subject ¢ we may define a process X; as X;(t) = 0 if subject is
non-demented at ¢, X;(¢) = 1 if subject demented at t.

The hazard function for subject 7 is

Pl(Xi(t + At) = 11X;(t) = 0]
At ’

But what is the role of dead subjects ? Are they right-censored ? This
problem can not be neglected because Alzheimer’s disease essentially occurs
in persons older than 65 so that the mortality rates are high; in fact, as can
be seen from figures 2 and 3 they are higher than the incidence of dementia.
Here we are not dealing with patterns of observations but with models for the
clinical status of the subject: censoring pertains to the observation pattern,
while death is a clinical status not represented in this model. If death is
treated as a censoring variable, this means that we observe (for a subject
dying without dementia) that the time of onset of dementia is larger than
the time of death. But this has really no meaning since a subject who is
dead can not develop dementia. The hazard function would represent the
risk of developing dementia marginally relatively to the vital status, and it
is not clear wether this can be interpreted as the incidence of dementia. If
we want to have a clearly interpretable model we must avoid the confusion
between pattern of observation and clinical status. Another point of view
is that if death is treated as censoring, then it is an informative censoring.
This informativeness comes from the differential mortality between demented
and non-demented subjects and leads to biased estimates of the age-specific
incidence as has been shown in Joly et al. [15].

lima;o

2.2 A Markov illness-death model

In an illness-death model death is represented explicitly in the model. Each
subject gives rise to a stochastic process X;(t) which takes the value 0 if
subject is alive and not demented, 1 is subject is alive and demented and 2
if subject is dead at time ¢ (see Figure 1).

The transition intensities can be considered as a generalisation of the
hazard function: they quantify the risk of going from one state to another
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and they characterize the model. For instance the transition intensity o, (¢)
from health to dementia is defined as :

PI(X;(t + At) = 11X;(t) = 0]
At '

Similar definition can be given for o, (t) and o, (t).

Now to specify the model we must tell what is ¢ and how azj depend on ;.
We shall consider a first model in which ¢ represents age; this means that for
each subject we choose the origin of time as being defined by the birth of the
subject. This choice is motivated by the a priori knowledge that the risk of
dementia and the mortality rates essentially depend on age of the subjects.
These intensities may also depend on calendar time and we shall study this
possibility later; for the moment we will consider a “stationary” model in
which the intensities do not depend on calendar time. Now let us consider a
model in which the intensities of all the subjects are the same for the same
age: aj,;(t) = au;(t). This may have two interpretations: either the subjects
have really the same intensities (risks) or this is the (marginal ) intensity of
a subject taken at random in the population.

The common (or marginal) transition intensity ag;(¢) can really be con-
sidered as the (instantaneous) age-specific incidence of dementia. Indeed
consider a large population of size N; the subjects of this population do not
need to be born at the same calendar time since we assume here that the
intensities do not depend on calendar time. The incidence at age ¢ for a time
period A can be defined as the number of new cases during [t,t+ A] divided
by the number of persons at risk. we have:

#{ new cases in [t,t + A]}
#{ at risk at t}

A0i Xi(t+ At) = 1, Xi(t) = 0}
#{i: Xi(t) = 0}

For N large: #UXEASLYNO=0 ~ p(x;(t + At) = 1,X,(t) = 0) and
#EXO=0F ~ P(X,(t) = 0). Thus:

Iipin

P(Xi(t+ At) = 1, Xi(t) = 0)
P(X;(t) =0)

It,t+A ~

5
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— P(Xi(t+At) = 1[X,(t) = 0)

= Atx Q1 (t)
for small At. If At is the time unit, for instance one year :
L1 = api(2).

Similarly, age(t) and ai2(t) can be interpreted as age-specific mortality rate
for non-demented and demented subjects respectively.
Age-specific prevalence of dementia is

# dementia of age t

# of subjects of age t
In our model for a large population this is equal to:

NP(X(t) =1)
NP(X(t) #2)

= P(X(t) = 1|(X (1) #2)

The probabilities that X is in a given state can be written in terms of
transition intensities:

P(X(t) = 0) = e~ Ao()—402(t)

t
P(X(t) = 1) = [ e 0= 0, (e,

where Ap;(t) = [y anj(u)du are the cumulative intensities; we have also that
PX(t)=2)=1-P(X(t)=1)—-P(X(t) =0).
2.3 Covariates; the proportional intensity model

The heterogeneity between the subjects can be explained in part by factors
which can be coded by explanatory variables. Then a general model is:

i (t) = dng(ango(t), Zi(t)),

that is the heterogeneity is explained by the value of Z;(t), a vector of possibly
time-dependent explanatory variables which are supposed to be completely

6
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observed. In that case, the subjects share the baseline functions ay;o(.) and
functions ¢p; (which define the type of model and generally involves a set of
regression parameter vectors (). The population can be said homogeneous,
conditionally on the Z;(¢),t > 0. An assumption which greatly simplifies the
model for inference with continuous time observations is the proportional
intensity assumption: au;(t, Zi(t)) = anjo(t)rnj(Z;i(t)); a common choice is
rhi(Zi(t)) = ?ri%® | where Bhj is a vector of regression coefficients. The
regression coefficients are in principle different from one transition to an-
other, although some constraints can be put to reduce the total number of
parameters.

2.4 Time-scales

There are mainly two other times which could influence the values of the
transition intensities: calendar time and, for demented, time since onset of
dementia. The mortality rate of demented subjects, a2, could depend not
only on age but on time since onset of dementia: d;(t) =t — T};, where T}; is
the time of onset of dementia. Thus the mortality rate at time ¢ of a demented
subject 7 (given that he became demented at 77;) would be a45(t, d;(t)). One
possibility would be a semi-parametric model using a proportional intensity
model: a5(t, d;(t)) = augo(t)ePri%® . (This model is no more Markov but
semi-Markov; we will not pursue this path in the following and will remain
in the framework of non-homogeneous Markov models.)

Intensities may also depend on calendar time. Since we have then two
times we may choose one or the other as basic time scale. In a sense it
would be more natural to take as basic time scale the universal calendar
time; however since in all this paper age is the most important time we
will keep it as basic time-scale, still denoted by ¢. We will denote calendar
time by ¢;(t) because of the relationship linking calendar time and age for
subject i: ¢;(t) =t + b;, where b; is the (calendar) time of birth for subject i
(b; = ¢;(0)); thus ¢;(t) represents the calendar time when subject i has age ¢.
The transition intensities may then be written au;(%, ¢;(t)), considering that
the function ap;(.,.) is shared by all the subjects. A proportional intensity
model may be used for calendar time considered as a time-dependent variable:

anj(t, ci(t)) = ozhjo(t)eﬁhjcz'(t)_

With the proportional intensity modeling and because of the relation

7
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¢;(t) = t+b; the problem can be simplified to a model with a fixed explanatory
variable since:

anj(t, ci(t)) = ango(t)e™'ePi% = aj (1) "

In the application we shall in particular consider a proportional intensity
model with fixed covariates;

Qp;j (t, Ci(t), ZZ) = a;w_o(t)eﬂhnbi-kﬁgﬂZi

This possibility of expressing the effect of calendar time as the effect of
birth date leads us to discuss the distinction between calendar time effect
and cohort effect. Calendar time effect summarizes the effects of factors
present at calendar time c such as viruses or drugs available at time c; this
can also be an “effect” due to the way the disease is diagnosed at time c. The
cohort effect more directly relates to the time of birth and to the subsequent
experiences subjects born at a certain time have undertaken. For instance
subjects born in 1910 have experienced the first world war while subjects born
in 1930 have not; they also have experienced slightly different medical and
educational systems during all their lifes. Although the concepts are different,
the two effects are indistinguishable in the proportional intensity model when
age is the basic time-scale, as appears from the above equations. In many
models including age there is little information, although there could be some
information if particular shapes of these effects far from the proportional
intensity model were considered.

3 Model for the observation process

3.1 Selection of the sample

For making inference we must have a sample. This sample is always selected
according to a particular design which has to be taken into account for infer-
ence. We will focuss on the most common design in which a random sample
of a target population is taken and then is followed-up during several years.
Clinical status is generally assessed at prespecified visits and vital status can
be observed in continuous time. For studying dementia, the target popula-
tion may be the population of subjects aged more than 65 living in a certain
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region. For being selected subjects must be alive at time Vj of the initial visit.
If age is the basic time-scale Vj is the age at initial visit which is different
from one subject to another; we omit the superscript ¢ for simplicity. This
is a left-truncation condition : X (V) # 2. Often the truncation condition is
extended by excluding the demented subjects at the initial visit because it is
difficult to have a representative sample of demented subjects; in that case
the truncation condition becomes: X (Vj) = 0 (subjects have to be alive and
non-demented to be included).

3.2 Observation times

Observation of the processes may be in discrete or in continuous time. The
most common pattern of observation in studies on dementia is a mixed
discrete-continuous one in which the clinical status is observed at discrete
visit times Vg, V4, ..., V,,, while the date of death can be retrieved nearly ex-
actly. We shall assume that the visit times are prespecified, thus that part of
the mechanism leading to incomplete data can be ignored. Most often there
are also missing data: that is a subject should have been seen at V; say, but
could not because of refusal or change of adress. In that case the missing
at random assumption is questionable: for instance demented subjects may
refuse more often than non-demented.

4 Estimation

4.1 Likelihood

We give the likelihood for the illness-death model for the truncation condition
X (Vo) = 0 and assuming missing at random data; the likelihood is given for
one subject, dropping the i subscript for simplicity (all the quantities namely
Phjs hjs Vo, Vi, Vi1, T, 5, may depend on i); the global likelihood for
observation of a sample of n independent subjects will be the product of the
n individual likelihoods. Observations of X are taken at Vg, Vi, ...,V and
the vital status is observed until C' (C' > V); here Vj, is the last visit time
of an alive subject. Let us call T the follow-up time that is T = min(7,C),
where T is the time of death; we observe T and § = I{T < C}.

The likelihood can be most naturally written in term of both transition
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intensities oy, and transition probabilities pp;(s,t) = P(X (t) = j| X (s) = h).
If the subject starts in state “health”, has never been observed in the “illness”
state and was last seen at visit L (at time V7,) the likelihood is:

L = poo(Vo, Vi) [poo(Vz, T)aoz(T)J + por(Vz, T)OZ12(T)6]§

if the subject has been observed in the illness state for the first time at V;
then the likelihood is:

L = poo(Vo, Vi 1)por (Vs 1, Vi)p11 (Vi T) o (T)°.

That this is the likelihood has been rigorously proved in [18]. The tran-
sition probabilities are linked to the transition intensities by the formulas:

pOO(Sa t) = 67A01(5’t)*-402(s,t)

pu(s, 1) = e~ 41200

¢
Po1(s,t) =/ Poo (s, u)agr (w)p11(u, t)du,

where Ap;(s,t) = [! apj(u)du is the cumulative intensity between s ans t.

4.2 Maximization of the likelihood

Classical inference requires the maximization of the likelihood. For para-
metric model the likelihood can be maximized without problem using for
instance a robust Newton-Raphson algorithm. Some work has been done for
non-restricted non-parametric inference by Frydman [11-13], who proposed
an EM algrithm. An attractive approach is to use a smooth non-parametric
approach such that achieved by penalized likelihood [14-15]. In the semi-
parametric case where one baseline function is estimated for each transition,
the penalized likelihood is:

pl(a() 8, D) = Ua(), 8, D) = X sy [ lafo(u) Pdu,

h,j>h

where [ is the loglikelihood, «(.) is the matrix of baseline hazard functions,
B is the array of vectors of regression parameters fj;, D represents the data.
The penalty term excludes that discrete or unsmooth functions maximize

10
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pl(a(.), 8, D). The solution of the penalized likelihood is approximated using
a basis of splines and can also be computed using a robust Newton-Raphson
algorithm. The computation are simpler when there is no time-dependent
variables because it is possible to represent the transition intensities on a
basis of B-splines and the cumulative intensities on a base of I-splines with
the same coefficients, thus avoiding some numerical integrals [5].

A common problem of all the smoothing methods is to choose the degree
of smoothness of the estimators. Cross-validation has been the most often
used method. In an illness-death model, one has to maximize the cross-
validation criterion LCV(kg1, ko2, kK12) on the three smoothing parameters;
this is difficult but may be done approximately by grid methods.

There has been relatively few works on the asymptotic properties of this
approach: some results on the asymptotic properties of the penalized like-
lihood have been given by Gu [19] but to our knowledge, nothing has been
published on the properties of the approach combining penalized likelihood
and cross-validation. However several simulation studies [5, 14, 15, 20] have
shown good empirical properties of these estimators.

5 Results from the Paquid study

5.1 The Paquid study

The application is based on the Paquid research programme [21], a prospec-
tive cohort study of mental and physical aging that evaluates social envi-
ronment and health status. The target population consists of subjects aged
65 years and older living at home in southwestern France. The baseline
variables registered included socio-demographic factors, medical history and
psychometric tests. Diagnosis of dementia was made according to a two
stage procedure: the psychologist who filled the questionnaire screened the
subjects as possibly demented according to DSM-III-R or not; subjects clas-
sified as positive were later seen by a neurologist who confirmed (or not)
the diagnosis of dementia and made a more specific diagnosis, assessing in
particular the NINCDS-ADRDA criteria for Alzheimer’s disease. Subjects
were re-evaluated 1, 3, 5 and 8 and 10 years after the initial visit. Prevalent
cases were removed from the sample because it was more difficult to have a
representative sample of a population including demented people. Therefore,

11
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this produced a left-truncation problem. The sample consisted of 3675 sub-
jects. During the 10 years of follow-up, 437 incident cases of dementia were
observed of whom 161 died; 1299 subjects were observed in the healthy state
at the last visit before death (due to the interval censoring part of them may
have developed dementia before death without being observed demented).
An analysis had been made using a three-state progressive model for trying
to estimate the mortality rate in demented subjects [22]. Here we used the
more adapted illness-death model, first using the stationary version, then in-
cluding calendar time. We used the penalized likelihood approach depicted
in section 4.2 and using cubic splines with 7 knots for the approximation of
each intensity function; the parameters were estimated using a robust version
of the Newton-Raphson algorithm.

5.2 Incidence estimation assuming stationarity

Figures 2 and 3 show the three transition intensities for women and men
respectively. All these curves rise steadily with age except the mortality rate
for demented women which is stable until 85. The mortality of demented
is much higher than that of the non-demented subjects with a pattern not
far from an additive risk model, the additional risk being about 0.2 for both
men and women, a very large increase indeed. Also it can be seen that the
mortality rate and the risk of dementia are about the same in women while
the mortality rate is higher than the risk of dementia in men.

5.3 Study of the effect of calendar time

The mortality rate of non-demented subjects may decrease in calendar time
(due to mixture of conditions at ¢ and conditions experienced before ¢); mor-
tality rate of demented subjects may decrease due to better medical care or to
earlier detection of dementia. Incidence of dementia could depend on calen-
dar time for several reasons: i) risk factors of dementia may have changed in
time: for instance increasing education level should lead to a decrease of agq;
new risk factors may appear, for instance prion disease may interfere with
dementia; ii) decrease of mortality rates may lead to less selected subjects at
given age, thus more frail for dementia; iii) perception of the disease in the
population and by medical doctors (general practitioners and neurologists

12
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as well) has changed while application of DSM-III-R criteria for dementia
remains subjective (we shall return to this in the discussion).

We have made an analysis including calendar time in the transition inten-
sities according to a proportional intensity model as depicted in section 2.4.,
and also including educational level as a binary variable reflecting whether
the subjects had obtained a primary school diploma, the “Certificat d’Etude
Primaire” (CEP) (coded 1: without CEP; 0: with CEP). Table 1 shows the
estimated coefficients together with their standard deviations for the three
transitions and the two explanatory variables (the exponential of these coef-
ficients yield estimated relative risks). Separate analyses have been made for
women and men. We find as was already known [21] that subjects without
CEP had a higher risk of developing dementia; the relative risk was about
2 for both men and women and was highly significant. There was no major
effect of education on mortality rates except for demented men where a sig-
nificant relative risk of 1.3 was observed. As for calendar time we observe
strong effects on both incidence of dementia and mortality of demented, in
both men and women: the estimated relative risk of developing dementia
are 3.15 and 2.27 for 10 years for women and men respectively. We have
made an additional analysis represented graphically on Figure 4. We have
estimated on the global sample incidence of dementia and mortality rate for
non-demented based on 8-year follow-up and on 10-year follow-up. While
the estimates of the mortality rate are indistinguishable, the estimate of in-
cidence based on the 10-year follow-up is clearly above that based on the
8-year follow-up. Thus in the Paquid data there is an increase of the inci-
dence of dementia with calendar time. On the other hand mortality rates of
demented decrease with calendar time: the relative risk is of the order of 2
for both men and women.

6 Discussion

In this paper we have shown that the illness-death model was a good frame-
work to model dementia, especially when the clinical statuses of subjects
are observed at discrete visit times (which is in fact always the case). This
is especially relevant when the focus is descriptive; the bias incurred in the
relative risks estimators by treating the problem as a survival model should
be low (although it has never been studied). We have given the likelihood

13
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and showed that the penalized likelihood allowed to obtain non-parametric
estimators of the functions of interest, that is to say, age-specific incidence
of dementia and mortality rates.

Our extended model allowed us to study the effect of calendar time on
these transition intensities. The analysis was adjusted on educational level,
an important risk factor that can vary with cohorts and thus could be a
confounder for calendar time effect. Apo E status which is also an impor-
tant risk factor was not included in the analysis for two reasons: i) it was
available on only a small proportion of volonteers in the Paquid study; ii) its
distribution at given age is not likely to change very much from one cohort
to another and hence should not be a confounder for studying the effect of
calendar time. We have found a surprisingly strong effect of calendar time
on both age-specific incidence of dementia and mortality rate of demented
subjects. This effect seems particularly strong between the 8-year and the
10-year follow-up, and this is more in favour of a calendar time effect than
a cohort effect (which are statistically indistinguishable in a proportional in-
tensity model, see section 2.4). This result could be due in part to an effect
of non-missing at random data: demented subjects may have refused to be
seen at previous visits and accept later provoking an apparent increase in the
risk of dementia. The selection of the initial Paquid sample may explain a
gradual apparent increase of the incidence: subjects were selected as living at
home at the initial visit; since subjects living at home have probably a lower
risk of developing dementia than subjects living in institution, this selection,
not taken into account, may lead to a bias. The Markov assumption in our
model also may lead to some bias: indeed it is likely that the mortality rates
of demented subjects depend on the time since onset of the disease.

Among the several other explanations that have already been proposed
in section 5, a shift in the application of the DSM-III-R criteria for dementia
seems the most likely to have a strong effect. It is true that the perception
of the disease has changed among both general practioners and neurologists.
Twenty years ago Alzheimer’s disease was not really recognized as a disease
in old subjects. There was first a progressive recognition of dementia as a
disease and of the fact that most dementia was of Alzheimer type. This
change has recently been accelerated by the appearance and the spread of
cholinesterase inhibitors, the first effective drugs in this disease. It is tempt-
ing to give these drugs since the earliest stages of the disease and this leads to
make the diagnosis earlier than before. This occurs even in an epidemiologi-

14
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cal study because the way the neurologists apply the DSM-III-R criteria for
dementia has changed over time, in particular because there is no objective
operational criterion to document that cognitive impairment significantly in-
terferes with usual social activities or relationship with others. The decrease
of the mortality rates of demented subjects is in agreement with this inter-
pretation of the results, since if a subject is diagnosed for instance one year
ealier than before he should live one more year in the demented state. This
effect might also come from a genuine effect of the new drugs or other medical
care.

More data and analyses are necessary to confirm these effects. If these
effects are visible in the Paquid study, they may also be visible in other co-
horts. If this was confirmed this would raise major methodological problems.
One way of treating this problem would be to consider incidences depending
on both age and calendar time, as we have done in this paper. For inves-
tigating the question of a possible increase of the incidence of Alzheimer’s
disease with calendar time it would be safer to analyse criteria directly based
on psychometrics tests and activity of daily living scores.
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Table 1: Proportional intensity illness-death model applied to the Paquid
study: for each transition estimates of the regression coefficients with stan-
dard errors are given. Education is coded 1 if CEP, 0 otherwise; for calendar
time the coefficient is given for a difference of ten years

Transition Education Calendar time

Women

0—1 0.70(0.13) 1.15 (0.20)
12 0.09(0.18)  -0.71 (0.30)
0—2  0.08(0.12)  0.31 (0.18)

Men

0—>1 066 (0.19) 0.82 (0.32)
12  -017(0.24) -0.75 (0.17)
0—2  028(0.11)  0.18 (0.19)
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Captions of the Figures
Figure 1: Graphical representation of an illness-death model.

Figure 2: Age-specific incidence of dementia and mortality rates for women.
Upper dotted line: mortality rate for demented; lower dotted line: mortality
rate for non-demented; continuous line: incidence of dementia.

Figure 3: Age-specific incidence of dementia and mortality rates for men.
Upper dotted line: mortality rate for demented; lower dotted line: mortality
rate for non-demented; continuous line: incidence of dementia.

Figure 4: Age-specific incidence of dementia and mortality rates for non-
demented for the global sample based on 8-year and 10-year of follow—up.
The two mortality rates are the upper curves and are indistinguishable; the
lowest (dotted) line is the age-specific incidence based on the 8-year follow-
up; the curve just above (continuous) is the age-specific incidence based on
the 10-year follow-up.
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Figure 1: Graphical representation of an illness-death model.
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Figure 2: Age-specific incidence of dementia and mortality rates for women.
Upper dotted line: mortality rate for demented; lower dotted line: mortality
rate for non-demented; continuous line: incidence of dementia.
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Figure 3: Age-specific incidence of dementia and mortality rates for men.
Upper dotted line: mortality rate for demented; lower dotted line: mortality
rate for non-demented; continuous line: incidence of dementia.
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Figure 4: Age-specific incidence of dementia and mortality rates for non-
demented for the global sample based on 8-year and 10-year of follow—up.
The two mortality rates are the upper curves and are indistinguishable; the
lowest (dotted) line is the age-specific incidence based on the 8-year follow-
up; the curve just above (continuous) is the age-specific incidence based on
the 10-year follow-up.
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