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Summary: Cook, Gold and Li (2007) extended the Kulldorff (1997) scan statistic for spatial cluster

detection to survival-type observations. Their approach was based on the score statistic and they

proposed a permutation distribution for the maximum of score tests. The score statistic makes it

possible to apply the scan statistic idea to models including explanatory variables. However, we show

that the permutation distribution requires strong assumptions of independence between potential

cluster and both censoring and explanatory variables. In contrast we present an approach using

the asymptotic distribution of the maximum of score statistics in a manner not requiring these

assumptions.
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1. Introduction

Cook, Gold and Li (2007) introduced a score statistic approach for spatial cluster detection

with survival-type observations. This can be viewed as an extension of the scan statistic

proposed by Kulldorff (1997) who proposed using the maximum over likelihood ratio statistics

associated with potential clusters. Huang, Kulldorff and Gregorio (2007) recently extended

the scan statistic to survival type data, but in a parametric framework and without adjusting

on covariates. The inference was based on the permutation distribution of that statistic.

The score statistic leads to simpler computations because the models under the alternative

hypotheses do not need to be fitted. Cook, Gold and Li (2007) have also adopted the

permutation approach for computing the p-value of the scan statistic based on the score.

However, the permutation tests need an assumption of exchangeability which may not hold

in this sort of application. Cook, Gold and Li (2007) proposed another statistic Ŵloc that we

do not consider in this note.

The aim of this paper is to demonstrate the advantage of using the score statistics in this

problem, to examine the exchangeability assumption, especially in the presence of censoring

and covariates, and to contrast the permutation approach with an asymptotic approach

proposed by Hashemi and Commenges (2002) in another context but which can be applied

to the cluster detection problem.

2. Score test statistics

In the context of survival data, Huang, Kulldorff and Gregorio (2007) proposed a spatial

scan statistic based on the likelihood ratio statistic. Nevertheless, their study was limited to

a parametric assumption for the baseline risk function. To avoid this parametric hypothesis,

Cook, Gold and Li (2007) defined a scan statistic based on normalized score statistics (or

score test statistics), themselves based on Cox partial likelihood. Specically, consider the set
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of Cox’s proportional hazards models Mk for the possible effect associated with potential

cluster k:

λ(t|Zi(k),Xi) = λ0(t) exp [β(k)Zi(k) + γTXi] i = 1, . . . , n, (1)

where λ0(·) is an unspecified baseline hazard function, Zi(k) is an indicator with a value 1 if

subject i belongs to a potential cluster area labeled k; we shall denote Zi = (Zi(1), . . . , Zi(K));

Xi is a vector of covariates. Note that if the potential clusters do not overlap there is only

one Zi(k) equal to 1 for each i, while if the potential clusters overlap there may be several

of them. We denote by Yi the time of the event of interest and by Ci a censoring variable.

For each i the observation is (Zi, Y
∗
i , Di,Xi), where Y ∗

i = min(Yi, Ci) and Di = I{Yi<Ci}.

Moreover we denote by n the size of the sample and by nk the number of subjects in potential

cluster k. In each model Mk the constraint β(k) = 0 defines a sub-model M0, specified by

λ(t|Zi(k),Xi) = λ0(t) exp (γTXi), which is the same for all k. The hypothesis H0 that we

wish to test is that the data come from M0. The test problem considered by Cook, Gold

and Li (2007) was testing H0 against HA. = ∪HAk, with HAk : β(k) > 0.

Note that another approach would be to define the alternative by the model Mf including

the K variables of the vector Zi (only K−1 if the potential clusters do not overlap). However,

this approach is not very powerful if there are many potential clusters and only one has a

higher risk. The reason is that the model Mf is much larger than the union of the models

Mk. It specifies a larger class of alternatives that does not incorporate the information that

there is only one (or maybe a small number of) cluster(s).

For testing H0 against HA. = ∪HAk, Cook, Gold and Li (2007) have taken the following

approach. Assume that for each k we have a statistic Tk and H0 is rejected for high values

of Tk, the test statistic is defined as the maximum of these K statistics, Tmax = max Tk.

The conventional choice for Tk in the scan statistic approach is the likelihood ratio statistic.

Cook, Gold and Li (2007) proposed a score test statistic based on Cox partial likelihood.
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The advantage of the score statistic is its simplicity, due in particular to the fact that the

computation of both the statistic itself and its distribution involve only the null hypothesis.

In particular, the score statistic for each k involves an estimator of γ, γ̂, under the null

hypothesis H0, that is under model M0. Thus γ̂ does not depend on k and can be computed

once and for all. In the generalized linear model, including the Cox model, the score statistic

can be expressed as a scalar product of the vector of values of the explanatory variable (the

effect of which we wish to test) and a vector of residuals. These are ordinary residuals in

generalized linear models and martingale residuals in the Cox model. Thus, in our problem,

we can write the score as Uk = ZT (k)M, where M is the vector of so-called martingale

residuals (Hashemi and Commenges, 2002) computed under M0. This very simple form for

the score statistic may be used either for computing a permutation p-value or for deriving the

asymptotic distribution. The main issue on which we focus in the remainder of this paper is

the choice of the reference distribution for Tmax = max Tk, where Tk is the normalized score

statistic (Uk divided by an estimator of its standard deviation) for testing H0 against HAk.

3. Significance level

3.1 Limitation of the permutation tests

Let us take a close look at the assumptions needed for the permutation distribution to be

valid under the null hypothesis.

Let us first consider the principle of permutation tests in a simple problem. Let Y denote

an outcome of interest and Z a possible linked variable. If one is interested in testing the

independence of Z and Y , one can consider a statistic φ(Z, Y) based on an n-sample (Z, Y) =

((Zi, Yi), i = 1, . . . , n). We may construct the test by considering the distribution of this

statistic under the null hypothesis conditional on Z; we thus only need the distribution of

Y (here we have introduced an asymmetry between Z and Y in the spirit of regression
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models). The permutation test makes it possible to get rid of distributional assumptions

also for Y : by conditioning on the order statistic of Y, the only values that φ(Z, Y) can take

are φ(Z, PjY), j = 1, . . . , n!, where Pj are permutation matrices (Kalbfleisch, 1978). With

the exchangeability of Y, the probability of each of these values is equal to 1/n!. Mantel

(1967) proposed an interesting permutation approach for detection of space-time clustering.

This approach may be applied for instance to the scan statistic Tmax in a simple problem

where the outcome is uncensored and there is no covariate. The distribution of the statistic

is obtained by permuting the vector Y and giving to each possible value the probability n!.

It is often believed that the permutation approach can be widely applied to build tests

which respect the nominal type-one risk exactly. However, the exchangeability assumption

is much more restrictive than appears at first sight. It generally does not hold in more

complex problems, particularly when there are covariates or censoring. Cox and Oakes (1984)

remarked that the exchangeability assumption would not hold when comparing the survival

distributions in two groups if the censoring distributions were not the same in the two groups.

Thus the permutation distribution applied to the log-rank statistic requires an assumption

which may not hold. This is the main reason why the asymptotic distribution is used rather

than the permutation approach for the log-rank statistic. Commenges (2003) noted that in

the presence of explanatory variables, even the residuals were not exchangeable.

In the present context we consider a statistic Tmax = φ(Z, Y∗, D, X), where the four

arguments in φ are the vectors of the potential cluster indicators, the observed follow-up time,

the event indicator and the explanatory variable, the latter being a matrix if there are several

explanatory variables. In general (Y∗, D, X) are not exchangeable. Indeed, (PY∗, PD, PX),

where P is a permutation matrix (different from the identity), does not have in general

the same distribution as (Y∗, D, X). A sufficient condition (not far from being necessary)

is that Ci and Xi are independent of Zi for all i. Let us take a very simple example with
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n = 2; suppose that, conditionally on Z, the expectation of X1 is g(Z1) and that of X2 is

g(Z2). The vector X has expectation (g(Z1), g(Z2)); the permuted vector PX = (X2, X1) has

expectation (g(Z2), g(Z1)) which is not the same, unless g(x) is constant. The same problem

occurs for the censoring variable, as has been already remarked by Cox and Oakes (1984)

for the logrank test.

In conclusion, for exchangeability to hold we have to assume that both the censoring

variable and the explanatory variables do not depend on the spatial location. This is a strong

assumption which may not hold in practice. In fact, tests based on asymptotic distributions

may be safer, although they may have difficulties of their own, the first one being to find the

asymptotic distribution.

3.2 Asymptotic distribution of the Score test

Hashemi and Commenges (2002) tackled the problem of correcting the p-value when multiple

cut-off values have been tried for dichotomizing an explanatory variable in a Cox model. They

exploited the scalar product structure of the score statistic for computing the asymptotic

covariance between Tk and Tk′ and used this to derive the asymptotic distribution of Tmax. In

fact, their approach can be directly applied to many multiplicity problems and in particular

to the scan statistic. It is known that the score statistics Tk asymptotically ( when the nk tend

towards infinity) have standard normal distributions under the null hypothesis. Under some

regularity conditions, T has a multivariate normal distribution. Hashemi and Commenges

(2002) gave formulas for estimating the covariance matrix of T. The pvalue associated with

the observation Tmax = tmax is pvalue = P (Tmax > tmax) = 1− P (T1 < tmax, . . . , TK < tmax).

The value of P (T1 < tmax, . . . , TK < tmax) can be computed by numerical integration of

the density of the multivariate normal distribution. For large K the integration may be

performed by simulation.

What are the assumptions needed for the Hashemi-Commenges asymptotic distribution
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to be valid? The censoring variable and the potential cluster indicator do not need to be

independent, nor do the explanatory variables and the potential cluster indicator. However,

if there are explanatory variables the proportional hazard model must be correct. Also this

is an asymptotic result; for applying it each nk must be relatively large.

4. Discussion

The permutation distribution is often believed to yield valid tests without assumptions but

in fact it requires the exchangeability assumption which, in the problem at hand, takes the

form of the independence of censoring variable and potential cluster, and also of explanatory

variables and potential cluster. On the other hand the asymptotic distribution does not

need these assumptions but needs the proportional hazard model to be correct. However, in

the spirit of robust inference (Royall, 1986; Wei, Lin and Weissfeld, 1989), it is possible to

estimate empirically the variances and covariances of score statistics. This is often used to

construct the “sandwich estimator” for the variance of regression parameters but here it is

simpler since we are dealing with score statistics. For instance, the covariance of n−1/2Uk and

n−1/2U ′
k can be estimated by n−1 ∑n

i=1 UikUik′ . This version would be clearly more robust than

the permutation approach. A limitation of using the asymptotic distribution is that there

must be a sufficient number of subjects in each potential cluster. If the number of subjects

is not large one may prefer the permutation distribution but in any case the assumptions

needed for the permutation distribution to be valid should be critically examined.

Another question is the computation of the p-value. If the number of potential clusters is

not large (say n 6 20), the p-value using the asymptotic distribution can be obtained by

numerical integration, for instance using the Genz algorithm (Genz, 1992). The precision

obtained is better than that obtained by simulation in the permutation approach. If the

number of clusters is large, the asymptotic p-value can still be computed by simulation

(generating a large number of multivariate normal variables with the estimated covariance

H
A

L author m
anuscript    inserm

-00262060, version 1



Spatial scan clustering 7

matrix, computing the maximum and checking whether this maximum is above the observed

tmax). Precision in that case should be approximately the same than that of the permutation

p-value.

Cook, Gold and Li (2007) proposed another statistic Ŵloc, which is different from the score

test and thus should be less powerful. Moreover, the assumption of independence of censoring

variable and potential cluster is also required in the argument leading to the computation

of the p-value using this statistic. The discussion has been focused on survival data but the

same arguments apply to other type of data. In particular, asymptotic distribution has been

derived for generalized linear models (Liquet and Commenges, 2005).
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