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LIKELIHOOD FOR INTERVAL-CENSORED
OBSERVATIONS FROM MULTI-STATE MODELS

Daniel Commenges®

L INSERM Team of Biostatistics, ISPED, 146 rue Léo Saignat, Bor-
deaux, 33076, France
E-mail: daniel.commenges@isped.u-bordeaux2.fr

SUMMARY: We consider the mixed dicrete-continuous pattern of
observation in a multi-state model; this is a classical pattern because very
often clinical status is assessed at discrete visit times while time of death
is observed exactly. The likelihood can easily be written heuristically for
such models. However a formal proof is not easy in such observational
patterns. We give a rigorous derivation of the likelihood for the illness-
death model based on applying Jacod’s formula to an observed bivariate
counting process.

Key Words: multi-state models; illness-death; counting processes;
ignorability; interval-censoring; Markov models.

1. INTRODUCTION

Multi-state models are a generalisation of survival and competing
risks models. In epidemiology, multi-state models are used to represent
the evolution of subjects through different statuses, generally including
clinical statuses and death. Clinical statuses of subjects are often ob-
served at a finite number of visits. This leads to interval-censored ob-
servations of times of transition from one state to another. A classical
reference for multi-state models is Andersen et al. (1993). This book
however essentially treats right-censored observations: building estima-
tors by decomposing the observed processes and equating to zero the
martingale term is very elegant in that case but this does not work for
interval-censored observations.

One first issue is whether the mechanism leading to these incomplete
observations is ignorable. If this is the case, the likelihood can be written
heuristically in terms of both transition probabilities and transition in-
tensities. In homogeneous Markov models, transition probabilities can be
expressed simply in terms of transition intensities but this is not the case



in more general multi-state models. In addition, inference in homoge-
neous Markov models is easy because these are parametric models. Non-
parametric approaches to non-homogeneous Markov models may follow
two paths: one is the completely non-parametric approach and can be
seen as a generalisation of the Peto-Turnbull approach (Turnbull, 1976);
the other implies a restriction to smooth intensities models. In particular,
the penalized likelihood method has been applied to this problem. A re-
view of this topic can be found in Commenges (2002). However all these
approaches are based on likelihoods which have been given only heuris-
tically. In the complex setting of observations from multi-state models
involving a mixed pattern of continuous and dicrete time observations it
is important to have a rigorous derivation of the likelihood.

In section 2 we describe the possible patterns of observation from
multi-state models, especially those which are relevant in epidemiology,
and then we give the heuristic formulas for the likelihood. We begin
section 3 by describing the theoretical basis of likelihood, Jacod’s formula
for the likelihood ratio for a counting process and a way to apply it to
incomplete observations; we give a rigorous derivation of the likelihood
for the illness-death model, based on a representation of this model by a
bivariate counting process and applying Jacod’s formula to an observed
bivariate counting process.

2. GENERALITIES ON INFERENCE

2.1 PATTERNS OF OBSERVATION

Generally we will represent the status of a subject 7 by a stochas-
tic process X;; X;(t) can take a finite number of values {0,1,..., K}
and we can make more or less stringent assumptions on the process, for
instance, time homogeneity, Markov or semi-Markov properties. Multi-
State processes are characterized by transition intensities or transition
probabilities between states A and j that we will denote respectively by
an;(t; Fi—) and ppj(s,t) = P(X(t) = j| X (s) = h, Fs—), where F,_ is the
history before s; for Markov processes the history can be ignored.

We may consider that the state of the process 7 is observed at only a
finite number of times V{,V}, ..., V. This typically happens in cohort
studies where fixed visit times have been planned. In such cases the exact



times of transitions are not known; it is only known that they occurred
during a particular interval; these observations are said to be interval-
censored. It is also possible that the state of the process is not exactly
observed but it is known that it belongs to a subset of {0,1,..., K}.
The most common pattern of observation is in fact a mixing of dis-
crete and continuous time observations. This is because most multi-state
models include states which represent clinical status and one state which
represents death: most often clinical status is observed at discrete times
(visits) while the (nearly) exact time of death can be retrieved. This is
the case in the study of dementia by Joly et al. (2002) where an irre-
versible illness-death model (see Figure 1) was used and dementia was
assessed only at planned visits. Note that in the irreversible model no
transition from state 1 to state 0 is possible, which is well adapted to
modelling dementia, considered as an irreversible clinical condition.

State 0 a1 (1) _ State 1
(health) (illness)
Oéoz(t alZ(t)
State 2
(death)

Figure 1: Illness-death model

In all cases we should have a model describing the way the data have
been observed. For writing reasonably simple likelihoods, there must
be some kind of independence of the mechanisms leading to incomplete
observations relative to the process itself. A simple likelihood can be writ-
ten if the observation times are fixed. More realistically, the observation
process should be considered as random and intervene in the likelihood.



The mechanism leading to incomplete data will be said to be ignorable
if the likelihood treating the observation process as non-random leads to
the same inference as the full likelihood. An instance where this works is
the case of observation processes completely independent of the processes
of interest X;. A general approach for representing the observation of a
process X; is to consider a process R; which takes value 1 at t if X;(t)
is observed, 0 otherwise. R; must satisfy certain independence proper-
ties relatively to X; in order to be ignorable; in that case one can write
the likelihood as if R; was fixed. In the remaining of this paper we will
assume that this is the case that the mechanism leading to incomplete
observation is ignorable: we shall write the likelihood as if the discrete
observation times and the right censoring variable were fixed.

2.2 INFERENCE

The first interesting fact to be noted is that with continuous ob-
servation times, the inference problem in a multi-state model can be
decoupled into several survival problems; with discrete-time observation
(leading to interval-censoring), this is no longer possible. The likelihood
for the whole observation of the trajectory must be written as in Joly
and Commenges (1999); Joly et al. (2002) gave an example of the bias
that occurs when one tries to treat interval-censored observation from an
illness-death model as a survival problem.

We shall give the likelihood for interval-censored observations of a
single process X taken at Vy, Vi,...,V,,, (treating the V; as fixed); for
sake of simplicity we drop the index 7. If we have a sample of size n the
processes X and the observation times should be indexed by 7; assuming
the independence of the processes (the histories of the “subjects”) the
likelihood is the product of the individual likelihoods. For sake of sim-
plicity we will also restrict to Markov models. So, for purely discrete-time
observations this individual likelihood is as follows:

m—1
L= H Dx (v, x (V1) (Vs Vet1),
r=0
where py;(s,t) = P(X(t) = j|X(s) = h).

Variants of this likelihood can be written in cases of mixing of con-
tinuous and discrete-time observations. We give the likelihood when
the process is observed at discrete times but time of transition towards

4



one absorbing state, representing generally death, is exactly observed or
right-censored, a common model and observational pattern in epidemi-
ology. Denote by K this absorbing state. Observations of X are taken
at Vy, Vi, ...,V and the vital status is observed until C' (C > V1); here
Vy, is the last visit time of an alive subject. Let us call T' the follow-up
time that is T = min(7T, C'), where T is the time of death; we observe T
and § = I{T < C}. For continuous intensities model the likelihood can
be written:

L—1
~ 6
L= [H px(v,),x(v,+1)(‘/r,‘/r+l)] E Pxvy).i (Ve T)0G g (T) .
r=0 J£K

This likelihood can be understood intuitively as the “probability” of
the observed trajectory but it is not so easy to prove that this is really
the likelihood, as we shall see in the next section. For this likelihood to
be useful, it must be expressed in term of the transition intensities which
are the basic parameters of the model; so we must be able to express
the transition probabilities in term of the transition intensities. This is
particularly easy in the homogeneous Markov model. In other models it
generally requires the computation of integrals.

Let us now specialize these formulas to the illness-death model, a
model with the three states “health”, “illness”, “death” respectively la-
belled 0,1,2. If the subject starts in state “health”, has never been
observed in the “illness” state and was last seen at visit L (at time V)
the likelihood is:

L = poo(Vo, Vi) [Poo(Vz, )0402(T)5+I701(VL; T)ouo (T )6] (1)

if the subject has been observed in the illness state for the first time at
V; then the likelihood is:

L = poo (Vo, VJ—1)p01 (VJ—1, VJ)pn (VJ, T)au (T)J- (2)

This equations are valid for the reversible as well as for the irreversible
illness-death model. In Markov models, the transition probabilities are
linked to the transition intensities by the Kolmogorov differential equa-
tions. For the irreversible illness-death model, to which we shall specialize
from now on, the forward Kolmogorov equation gives:

%(s,t) = —poo(s; t)[1 (t) + aoa(t)]



%(S,t) = —pu(s,t)oua(t) (3)

dpov (o 4y

dt - pOO(S’ t)(l/(n(t) — Po1 (3, t)au(t).

The solution of these equations are:

pOO(Sa t) — e~ Ao(s,t)=Ao2(s:t)

pu(s,t) = e~ sh)

t
P01(5;t) :/ poo(s,U)agl(u)pn(U, t)dua

where Ap;i(s,t) = [! apj(u)du. These equations have been given for gen-
eral compensators in Andersen et al. (1993).

Inference can be based on maximising the likelihood. If a paramet-
ric model is chosen, modified Newton-Raphson algorithms (such as the
Marquardt algorithm) can be used for the maximisation (the simplest
parametric model is the homogeneous Markov model, followed by the
piece-wise homogeneous Markov model). Non-parametric approaches can
take two paths: one is the unconstrained non-parametric approach in the
spirit of Turnbull (1976) and this was developped by Frydman (1995),
another one uses smoothing, for instance through penalized likelihood
such as in Joly and Commenges (1999). In the former path the EM algo-
rithm is attractive, in the latter the Marquard algorithm achieves a good
speed of convergence. All the above approaches are based on the like-
lihood which has been derived heuristically. In complex problems such
as the one at hand, it is important to have a rigourous derivation of the
likelihood; this is the purpose of the next section.

3. RIGOROUS DERIVATION OF LIKELIHOOD FOR ILLNESS-DEATH

3.1 GENERALITY ON LIKELIHOOD

Consider a measurable space (£, F) and a family of measures P? ab-
solutely continuous relatively to a dominant measure P°. The likelihood
ratio is defined by:

dp?

L) =GP0



where 927 s the Radon-Nikodym derivative of P? relatively to P°.

dPY|F
Recall that %‘ F is the F-measurable random variable such that
P°(F) —/ AL po e F
~ Jr dP° ’

For instance, the likelihood ratio corresponding to the observation of
a random variable X (that is to the o-algebra X = ¢(X)) can be written

_ fx(X)
fx(X)’

where f%(.) is the density of the law of X relatively to a given measure:
for instance, for a continuous variable, f%(.) is the probability density
function. Since the denominator does not depend on 6, inference can be
based only on f%(X), which is the form of the likelihood which appears
in statistical papers. It is sometimes overlooked that the likelihood is a
random variable, being a composition of the probability density function
and the random variable X itself.

When dealing with complex problems such as inference based on in-
complete observations of processes, such a simplification is not available
and it is necessary to return to more fundamental theory. We are es-
pecially interested here in writing the likelihood for interval-censored
observations from an illness-death model. We shall see that an illness-
death model can be described as a bivariate counting process. We could
find the likelihood for interval-censored observation of a unidimensional
counting process relatively easily, for instance by considering that we
have interval-censored observation of a random variable which represents
the time of jump. However for a multivariate process this becomes much
more difficult.

Consider the case of multivariate (or marked) point processes: N =
(Np,h = 1,2,...). Denote N. = >N, and A, = > Ay, where A, are
the compensators of N, (that is N, — Aj, are martingales and A; are
increasing predictable processes); when the compensators are continuous
we define intensities A\, by A, = [ A;. Consider also two probability
measures P and P with P << P. Jacod (1975) has given the formula
for the likelihood ratio of the process N; this formula is presented in

Lx(0)




Andersen et al. (1993) in term of product-integral, and supposing there
is no information at time 0 it takes the form:

=11 H(dAh )ANh Miccan e (1 — dA.(t))
dP t<C h dAh Ht<C’ :AN (1) 751(1 —dA t))

This is the likelihood ratio for the sigma-algebra N' = o(N(t),t > 0)
with compensators relative to the filtration Ny = o(N(u),u > 0,u < t);
thus we cannot directly apply the formula because we do not observe N/
but O C N.

There are two strategies for applying this formula to our incomplete
observation problem:

(
(

e Take the conditional expectation: E[%2 |(9]
e Apply the formula not on N but on an observed process

As an example of the latter consider the one-dimensional (so h = 1)
process NO(t) = N(Il(t)), where I(t) = sup(u < t : R(u) = 1). By
definition this process is observed: O = o(N9(¢),t > 0), so that we
can apply Jacod’s formula. Consider the case of purely interval-censored
data: R(t) =1 for t =V, Vi,..., Vs, R(t) = 0 otherwise. Then N has
a discrete compensator with jumps at Vj, V4,...,V,,

AA(V;) = PIN®(V;) = 1IN (Vj_1) = 0l gno(;_)=0)

It is easy to see that by applying Jacod’s formula we get the expected
result for the likelihood (expressed in term of the survival function S of
the jump time):

L=dP= S(VJ—I) - S(VJ),

where the random variable J is defined as N°(V;) — N9(V;_ ;) = 1; in
this formula we have dropped the denominator which does not depend
on the parameters.

3.2 COUNTING PROCESS MODEL FOR ILLNESS-DEATH

Consider one counting process N; for illness (N;(t) = 0 if healthy at
t, Ni(t) = 1 if subject became ill before t) with intensity A; and one for
death Np (Np(t) = 0 if alive at ¢, Np(t) = 1 if subject died before t)
with intensity Ap. Let us model the intensities (in the N;-filtration) as:

8



A1(t) = It - )=0p L (vp 1 )=0p 01 (1)

Ap(t) = Itnp—)=0y Ly t—y=0y o2 (t) + Tyn;i—)=13 012(1)] (4)

If we define X = N; + Np + Np(l — Ny), this defines a multi-state
process taking values on {0, 1,2} and with transition intensities ag:(.),
ap2(.) and ap2(.) between (0,1), (0,2) and (1,2) respectively; there is
identity between this multi-state (illness-death ) process and the bivariate
counting process.

To Np we associate a response process Rp(t) = 1, for all t < Cj
to N;, we associate a response process R;(t) = 1 for t = Vg, ..., Vi,
R;(t) = 0 otherwise. The observed process is N© = (NP, N§), with

N7 (t) = Ni(I(t))
where [(t) = sup{u < t: R;(u) = 1}, and
N9 (t) = Np(t), fort < C.

Jacod’s formula can be applied if we know the compensator of N©
in the O, filtration: although we observe Np its compensator is not the
same on N; and on O;. Thus, we need compute the compensators of N¥
and N§ in the O;-filtration. It is easy to see that N has a discrete com-
pensator which is null everywhere except possibly at observation times
Vj,7 =0,...,m where it is equal to :

AAP(V;) = PINP(V;) = 1NP (Vj1) = 0, N (Vi=) = 0l ino; =0yl ingv—)=0)

It can be seen that NY and N§ can be replaced by N; and Np and,
reminding that Ny and Np are not independent, we can write:

_ por(Vj-1, Vj)

PINi(V;) = 1INi(Vi1) = 0. Np(V;=) = 0] = =y

where po.(.,.) = poo(-,-) + po1(.,.) (the probability of being still alive);
of course the transition probabilities pp;(s,t) still have a meaning in
terms of the bivariate counting process, for instance pgo(s,t) = P[N;(t =
0, Np(t) = 0|N;(s) = 0, Np(s) = 0).

9



As for Np, it is observed in continuous time so we have N§(t) =
Np(t), for t < C. However its compensator is not the same in the N;-
filtration and in the O;-filtration: it is clear that the intensity given in
formula (4) is not O;_-measurable. We may use the innovation theorem
and compute the Os-intensity as:

AD(t) = EAp(£)]0s-] = E[I{np (t—y=0y L {n; (t=)=03 @02 () + T (1=y=13 012 (8)]| Op .-

In this formula, only Iyy,;—)=o} is not O;_-measurable so the only prob-
lem is to compute

Ell{n;t-)=03|O¢-] = P[N1(t—) = 0]O;_].

If Np(t—) = 1 we can take any arbitrary value for this probability; if
Ni(l(t—)) = 1, this probability is null. The only non-trivial quantity is

_ Poo (U(t=),t—)

PINi(t=) = 0INp(t=) = 0, Ni(1(t=)) = 0] = T ==

Finally, the O-intensity of Np is

AD(t) = Iinp-y=0y L insae—)=0y @n (8) + I e-y)=13 02 (1)),

where ap(t) = p°°(l(t’)’t’)ox((z()tt’;‘:;g)(tf)’tf)“”(t). This formula has a natu-

ral interpretation, the intensity being a weighing of the transition inten-
sities from health and illness with the required probabilities conditional
on what has been observed just before ¢; if the subject has been observed
in the illness state, then the intensity is ;5 (for an alive subject).

The likelihood ratio in Jacod’s formula can be written as the product
of three terms £ = L;LpL . The first term is the contribution of observ-
ing a jump of Nj: it is equal to 1 if no jump has been observed and if a
jump has been observed at Vj:

_ ARR(VY) _ For (Va1 Va)po. (Vi 1, Vi)
AN (V) Do.(Vi-1, Vi)por(Vy-1, V)

Ly

From now on we drop the denominator and the tilde and we will
: . _ por(Vy—1,Vs)
simply write: £; = V) . ' o
The second term is the contribution of observing a jump of Np: it is

equal to 1 if no jump has been observed; if a jump (that is death) has
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been observed at T,it is equal to A§(T'). If the subject has been seen ill
at V7 the contribution is Lp = aq2(T); if not it is

_ Poo(l(T=), T=)a(T) + por (T =), T—) as2(T)
po_(l(T—), T_) .

The last term of the formula, the product integral over times where
no jump happened, is the product of a dicrete and a continuous part:
L L L p. The discrete part £; comes from the discrete compensator
A§ and if a subject has been seen ill for the first time at V is a simple
product:

ED - @D(T)

J—1 VoV )
L= TT(1=AA(V))) = pOO(O—’Jl;
! g( i ])) po.(Vo, Vi-1)

the product stops at V;_; because there is a jump at V; and the com-
pensator is constant after V;; if the subject is never seen ill, the product
goes until the last visit time. Finally the continuous part of the product
integral is

7 A9 (t)dt

Lp=[[1-dApE) =e 77"
t<T
On V;_; <t <V, where N;(V;_1) = 0 and Np(t—) = 0 we have using
the Kolmogorov equations (3)

_ d long. (‘/}—17 t)

A1) = aplt) = — B

Thus for a subject who has not been seen ill we have:

T ~ ~
Lp=e ™0 = p Vo, T),

and for a subject seen ill at Vj:

vy T -
,C_D _ 6_ fVo aD(t)dt_fVJ ai2(t)dt _ po_(%, Vj)pll(VJ; T)

Finally for a subject not seen ill, calling V;, = [(T") the last visit time,
we have

LiLp=po(Vo, Vr)po.(Vi, T).

11



Thus the likelihood is:

L = poo(Vo, V.)po.(Vi, T)ap (T)(s,

where ap(T) = 2 OO(VL’T)a;f)((T;/)LJ’g‘;I(VL’T)a“, which is identical to (1).

For a subject seen ill at V;, writing the likelihood as £L = L ;L;L pLp
we have:

_ poo(VO, VJ—1) p01(VJ—1, VJ)
po.(%, VJ—1) po.(VJ—l, VJ)

which is identical to (2).

Thus we have proved that the heuristic way of deriving the likeli-
hood gives the correct result for the illness-death model with the mixed
discrete-continuous time observation pattern.

L po.(Vo, VJ)p11 (VJ, T)CY12(T)6;
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