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Abstract:

Exchangeability of observations is a key condition for applying permu-
tation tests. We characterize the linear transformations which preserve ex-
changeability, distinguishing second-moment exchangeability and global ex-
changeability; we also examine non-linear transformations. When exchange-
ability does not hold one may try to find a transformation which achieves
approximate exchangeability; then an approximate permutation test can be
done. More specifically, consider a statistic T = ¢(Y'); it may be possible
to find V such that ¥ = V(Y) is exchangeable and to write T' = ¢(Y). In

other cases we may be content that ¥ has an exchangeable variance matrix,
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which we denote second-moment exchangeability. When seeking transfor-
mations towards exchangeability we show the privileged role of residuals.
We show that exact permutation tests can be constructed for the normal
linear model. Finally we suggest approximate permutation tests based on
second-moment exchangeability . In the case of an intraclass correlation
model, the transformation is simple to implement. We also give permuta-
tional moments of linear and quadratic forms and show how this can be used

through Cornish-Fisher expansions.

Keywords: Exchangeability, Permutation test, Homogeneity test, Resid-

uals, Score Test, Transformation.

1 Introduction

Exchangeability is a key requirement for building a permutation test. A
vector Y has an exchangeable distribution if PY has the same distribution
as Y, for any permutation matrix P. If we consider a test statistic 7' = ¢(Y)
a permutation test is obtained, if Y is exchangeable, by conditioning on the
order statistics Y() = {Y(1),...,Y(n)} (Cox and Hinkley 1974; Kalbfleisch
1978); that is, the conditional distribution of T' is Pr[T' = ¢(PY(y))] = 1/n!,
for any permutation matrix P. The assumption of exchangeability, although
a little less stringent than the assumption of identically independently dis-
tributed observations, is still quite restrictive, and does not hold for instance
in regression problems. Consider for instance the linear regression problem

(studied in section 3.3): Y = Zf + ¢ where Z is a matrix of explanatory
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variables, 8 a vector of coefficients and € an exchangeable vector of errors
with zero expectation. The exchangeability property will not in general
be retained by Y in such a model (because the Y; do not have the same
expectation) so permutation tests cannot be applied in a simple way.

The possibility of applying permutation tests to situations where ex-
changeability is not given a priori has received only limited attention (Ro-
mano 1990; Schmoyer 1994) and it is clear that there are situations (for
instance when data have a non-exchangeable correlation matrix) where per-
mutation tests will not be robust.

This paper is an attempt to extend some theoretical results about tran-
formations which preserve exchangeability and to explore a way of extending
permutations tests to complex situations. This way is to find a transforma-
tion V such that ¥ = V(Y) is exactly or approximately exchangeable and
to rely on the permutation distribution of 7' (expressed as a function of 17)
induced by the permutations of Y. Since exchangeability is a very strin-
gent assumption, we have been led to examine a weaker assumption, that of
second moment exchangeability (PY has same first and second moments as
Y). We have considered the tests of regression coefficients and the tests of
homogeneity as described by Commenges and Jacqmin-Gadda (1997). We
have not obtained by this way a particularly appealing new test; however,
along the way, we have obtained several theoretical results which may be
useful for future reflexion on this topic.

The organization of the paper is as follows. As a prerequisite, in section
2, we first consider linear transformations which preserve exchangeability,
a topic already studied by Dean and Verducci (1990) and Dean and Wolfe

(1990); here we distinguish between second-moment and global exchange-
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ability; non-linear transformations are also considered. Then in section 3 we
consider linear transformations which achieve exchangeability: the use of
residuals is highlighted and we give exact permutation tests for the normal
linear model and an example in a matched pairs design. Section 4 presents a
more empirical approach to the general case, in particular in the case of an
intraclass correlation model; we examine both linear and quadratic statis-
tics. Finally, a last section (which is not tightly linked to the rest of the
paper) presents some technical indications, difficult to find elsewhere, for

performing a permutation test using approximations based on moments.

2 Characterisation of transformations which pre-

serve exchangeability

2.1 Exchangeable matrices

A random 7 x 1 vector Y has an exchangeable distribution if and only if any
permutation of Y has the same distribution. This implies that the variance
matrix of PY, where P is a permutation matrix, must be the same as that

of Y. If F is this matrix we must have
PEPT = E

for any matrix P € P, the set of n X n permutation matrices. Such a matrix

is called an exchangeable matrix and can be written
E(a,b) =ai1l+ bli = a(I — i) +0b1

where 1 is a n X n matrix which has all its elements equal to 1/n, and T is

the n X n identity matrix. The second representation is interesting because
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1 and I — 1 are idempotent and orthogonal. They form an orthonormal

basis in the space £, of n X n exchangeable matrices and we have
Eap) + B p) = Ea+a’ p1)

Elap) B p) = Eaa po)
-1
E(a,b) = Eg-15-1)

1/2 . 1/2 1/2
Bl = Base gy, with By = B Bl

Finally, the rank of E,p is 0ifa =b=0,1ifa =0, b#0,n—1if
a#0,b=0andnifa#0, b#0.

Notations: in some cases the dimension of a matrix will be indicated as
a subscript, in other cases where the dimension is obvious it will be omitted:
for instance the n x n matrix which has all its elements equal to 1/n will be

denoted 1 or 1,,.

2.2 Linear transformations which preserve second-moment

exchangeability

Let Kgo the space of linear transformations from R™ to R™, with m <
n, which preserve second-moment exchangeability. The following theorem

characterizes these transformations.

Theorem 1 A linear transformation from R™ to R™ preserves second mo-
ment exchangeability (that is belongs to Kgo if it is represented by a matriz

which can be written as

Km,n = EQO,na
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where, Ey, € Ey and Qmy s such that Qm,nQ%,n = Ip,; the row wvectors
q; of Q form thus an orthonormal basis; in addition they must satisfy the

condition }_; qij = w, where w € R.

Proof :

It is clear that if E € &, , for any E; € &, we have EE1E" € £, and
it is easily verified that if Ey € &,, QE2Q" € &,,. Thus any composition
of these two transformations, compatible with the dimensions, preserves
second-moment exchangeability , which proves that matrices of the form
stated in the Theorem belong to Kgo.

Note that if Y has second moment FE; € &,, if K preserves second
moment exchangeability we must have KE; KT € &,,. That all matrices
preserving exchangeability have the form of the Theorem can be seen by
E; = I. This implies that we have KKT = E, for some E € &,,. We can
write KKT = [EY2][EY/?]T. From proposition 1.31 of Eaton (1983), this
implies that K7 = 9 E, where 7 is an isometric operator from R™ to R".
Thus K = E¢’ = EQ; here Q = v’ which implies that QQ? = I. There
is an additional condition when we apply K to the matrix 1,, we must have
K1, = wl,,, where w € R.

Now it can be seen that 17 can be represented by the composition of
an isometric operator from R" to R"™ and the sub-vector operator: @ =
Iy nUnpn , where Iy = [Iny;m|Ompn—m)] is the “subvector operator” and
Unn is an isometric transformation (Un,nUnT’ » = I). Also, geometrically, QY
can be interpreted as the projection of the original vector Y on a subspace
of dimension m, represented in a orthonormal basis of this subspace whose

vectors are the rows of Q.



1duosnuew Joyine yH

5
7
®
=
2
o
o
N
o
[¥)
o
@
a
<
®
-
@,
S
5
—

In particular, transformations from R™ to R™ can be written
K(a,ﬁ) =aU + ﬂi,

where U is a n X n isometric transformation. An example of such matrices
are Cholesky decomposition of exchangeable matrices.

It is clear that transformations given in Theorem 1 preserve exchange-
ability of the first moment too. Thus, for normal distributions, if K € Kgo,
it preserves (global) exchangeability. From this we deduce an interesting
theoretical consequence: there are in general several valid permutation dis-
tributions for a given statistic. This is not surprising if we consider restricted
permutations, for instance permutation on subvectors. More surprising is
the fact that, if Y has a normal exchangeable distribution, there exist regu-
lar transformations, which preserve exchangeability but not the distribution
of the statistics depending on Y, for instance the Cholesky decomposition of
an exchangeable variance matrix: consider E € Kgo regular; E = VVT, V
preserves second-moment exchangeability; if we have a statistic 7' = ¢(Y), it
can be written T = ¢(Y), with ¢ = ¢poV 1. If Y has a normal exchangeable
distribution, it is also the case for Y and then valid inference for T' can be
done either by permuting Y or Y. It can be verified that the two inferences
are really different.

To make things more concrete consider a linear statistic (of the type
discussed in 3.2): T = z'Y. If Y is exchangeable and normal under the null
hypothesis to be tested, we can use a permutation distribution (that is we use
a probablity conditional on Y(o)); in this situation Y = VY, with VVT = E
and F an exchangeable matrix, is also exchangeable; so, if we rewrite the

same statistic as T = 2’ V7'VY = ZTY we can also use a permutation
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distribution based on the permutation of Y (that is using a probability
conditional on 17(0)). These two distributions are different: we illustrate it
with a small example with n = 3. Take 27 = (0.26,0.40,0.56) and Y7 =
(—1.38,0.119, —1.09) (this value of Y was indeed obtained as a realization
of three independent normal pseudo-random variables); the value of T is
—0.92. The six possible values obtained by permutation of Y are: -1.17,
-1.13, -1.00, -0.92, -0.76, -0.73. If the p-value is defined as P(T > —0.92),
this is equal to 0.5. Take V obtained by a Cholesky decomposition of I +21.
We obtain 7 = (—0.075,0.20,0.49) and YT = (—1.78, —0.57, —1.90). Then
the six possible values obtained by permutation of ¥ are: -1.25, -1.21, -0.92,
-0.85, -0.52, -0.49); this leads to a p-value of 0.66, different from the first
one. Thus it is clear that for a given value of Y we can find different p-values
for different transformations. We may conjecture that in most situations,

the tests obtained would have exactly (or approximately) the same power.

2.3 Linear transformations which preserve global exchange-

ability

The above results are in apparent contradiction with the result of Dean and
Verducci (1990) which stated that linear transformations from R™ to R"

preserving exchangeability were of the form:
Ka”g =aP + ,Bi,

where P € P,. The difference is that these matrices preserve exchangeability
whatever the distribution of Y'; we have shown that the set of transforma-
tions which preserve exchangeability when Y is normal is larger.

Dean and Verducci (1990) in their corollary 1.1 have characterized the
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linear transformations which preserve exchangeability. We reproduce here

their important result:

Theorem 2 A linear transformation K from R™ to R™ preserves exchange-
ability if and only if K can be represented in the form K = [Bi,...,B]P
where P € Py, and for each i =1,...,t, B; is an m X n; matriz (. n; =n)
satisfying the following conditions: if the first column of B; contains the dis-
tinct elements dy, ..., d, with multiplicities p1,...,pg (so that (3_p; =m),
then the n; columns of B; consist of the n; = m!/ [ p;! distinct permutations

of the first column.

Particular cases are obtained by starting with the form EQ given in Theorem
1 and choosing for the rows of Q permutations of the vector (1,0,...,0) .
If mm = n this gives all the transformations but for some m < n the class
given by Theorem 2 is larger; that is if we accept a loss of dimension, we
have a greater choice for these transformations and this makes it possible
to construct useful permutation tests as we will see in a small example in
section 3.

It is quite clear that Kg, the set of transformations preserving exchange-
ability, is smaller than Kgs. For instance the triangular matrix obtained by

Cholesky decomposition of an exchangeable matrix is in Kgo but not in Kg.

2.4 Linear transformations which preserve the permutation

distribution of statistics

Consider a statistic T = ¢(Y"). If Y is exchangeable we can apply the permu-
tation distribution of T'; T' takes the values ¢(P;Y/,)) with equal probabilities

for the n! possible permutation matrices P;. Consider linear transformations
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preserving exchangeability Y = KY. We can write T as a function of ¥
T = ¢(Y) = $(Y). The question is to find the transformations for which the
distributions of T based on the permutation of ¥ and of Y are the same.
It is clear that K must be n X m since there exist some 7 which take n!

different values when Y is permuted. From Theorem 2 it can be seen that

the n x n transformations must be of the form
K =EP = aP + 1,

where P € P, and E € R,. Conversely these transformations preserve
the distribution of any statistic. To see that, we have first to define the

transformed form; it is

¢y (u) = pla™ PT(u — BY)].

Tt is easily verified (remembering that PTP = I) that ¢y (V) = ¢(Y).
Similarly, using the fact that the permutation matrices permute, we obtain
that for any P; € Py, ¢y (P1Y) = ¢(P1Y). This shows that the values of
T obtained by permutation of Y or Y are the same, and occuring with the
same probability 1/n!.

Note that these transformations may be of rank n or n—1. Note also that
¢~SY() generally depends on Y. Tt is interesting here to define “clean” forms.
A form ¢ is clean if o1 = 0 or equivalently ¢o (I —1) = ¢. This property
simplifies the study of both conventional (de Jong, 1990) and permutational
(see section 4.2) distributions of quadratic forms in particular. If ¢ is clean
then it can be seen that ¢y (u) = ¢(a ' PTu), not dependingon Y. If ¢ is not
clean we can consider the clean version of ¢: ¢'(.) = ¢o (I —1)(.). Consider

a linear form ¢(Y) = L1Y’; we define the clean version T" = ¢/(Y) = L'1'Y,

10
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with L' = (I —1)L. Then T' = T+ L*Y; since the second term is constant
under permutation of Y, the statistics 7" and 1" lead to the same permutation
test.

Finally if we denote K4 the set of linear transformations which preserve
the distribution we have the following inclusions: £, C K43 C Ke¢ C Kgo.

Dean and Verducci showed that a necessary and sufficient condition for
a transformation K of R" to R™, with m < n, to preserve exchangeability
was that for each permutation matrix P; € Py, one can find a permutation
matrix P» € P, such that

P K =KP,.

2.5 General transformations which preserve exchangeability

The Dean and Verducci condition can be extended to non-linear transfor-
mations. A transformation G(.) preserves exchangeability of Y whatever its

distribution if and only if for each P, € P, there exist P, € P, such that
PG(Y)=G(RY).

The sufficiency of this condition is simple to prove: PiG(Y) = G(P2Y),
P,Y has the same distribution as Y, thus G(PY") has the same distribution
as G(Y). Thus for all P, € Py, PiG(Y) has the same distribution as
G(Y') which is the definition of exchangeability. If we want G(.) to preserve
exchangeability whatever the distribution of Y, the condition is necessary
and this can be proved by choosing a specific distribution, with the same
reasoning as in Dean and Verducci.

Let G¢ the set of transformations which preserve exchangeability.
Lemma 1 G¢ is stable by addition and composition

11
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Let G1, G2 belong to Ge nm, the subset of transformations from R" to
R™ which preserve exchangeability. Applying the general Dean-Verducci
condition, for each P; there must be a P, such that P;(G1 + G2)(Y) =
(G1 + G2)(P,Y). This follows from the linearity of permutation operators
and the fact that the Dean—Verducci condition holds separately for G; and
G9. We omit the proof for composition which is also very easy.

Identical componentwise non-linear transformations (for example tak-
ing the logarithm of all the components) are an example of a non-linear
transformation which preserves exchangeability. The transformation which
consists in taking the ranks of the observations satisfies the condition and
thus preserves exchangeability.

These results can still be extended to the case where observation % is
itself a vector. As an application consider a regression problem where p + 1-
uplets X; = (Y;, Z;) are observed, where Y] is a “dependent” variable and
Z; is a 1 x p vector of explanatory variables. It can be assumed, similarly as
in Wei, Lin and Weissfeld (1989), that X = (X1,...,X,) is exchangeable;

see an application in section 3.5.

3 Transformations towards exchangeability

3.1 General idea

If we start with non-exchangeable observations Y our aim is to find a trans-
formation towards exchangeability. Consider a transformation ¥ = V(Y)
such that Y is exchangeable. If we can write as before T = ¢(Y) = ¢(Y),
inference can be based on the distribution of T' generated by the permuta-

tion of Y. Except in special cases (see below the normal linear model) it will

12
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not be possible to construct an exactly exchangeable Y; we shall be content
to achieve first and second-moment (in short, second-moment) exchange-
ability. In section 3.2 we show that residuals in generalized linear models
are important because they are “closer” to exchangeability than the original
observations, and also because score statistics are simple forms of them. In
sections 3.3 and 3.4 we turn to more particular results for the linear model.
In section 3.5 we consider an assumption of joint exchangeability of the cou-
ple (response, covariate) in regression problems and show its possible use in
some special cases. Sections 3.6 and 3.7 consider the more complex case of

correlated data.

3.2 First moment exchangeability: residuals and score tests

The first obstacle to exchangeability in regression problems is that the Y; do
not have the same expectation. Assume for the moment that the parame-
ters of the model are known and let us first consider component-wise affine
transformations g;(Y;) = a;Y; + b; which lead to first moment exchangeabil-
ity. We must have E(q;Y; + b;) = X for some A, hence b; = A — ¢;E(Y;) so
that ¢;(Y;) = a;[Y; — E(Y;)] + A. This is a linear form of residuals plus a
constant; for linear or quadratic forms, the tests do not depend on A so that
if we restrict to component-wise affine transformations we are led to ordi-
nary residuals. Other transformations may lead to other types of residuals;
in 3.3 we shall consider general linear transformations. Also, the Cox-Snell
residuals (Cox and Snell, 1968) could be used but imply more complex tran-
formations; this will not be developed here.

An interesting feature is that in generalized linear models (McCullagh

and Nelder, 1989), score tests quite generally lead to statistics which are

13
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linear or quadratic functions of these ordinary residuals. Assume that under
the null hypthesis Y; are independently distributed with probability density

function in the exponential family defined as follows:
£ (Y503, ¢) = exp {¢71 [6:Y; — 9(6)] + C (Y, 9) } (1)

with E(Y;) = ¢'(6;) = pi and 6; = Z;8 where Z; = (2},...,20), B is a
p x 1 vector of coefficients; here ¢ denotes, as is conventional, the dispersion
parameter (and not the function of the data used previouly); the alternative
hypothesis specifies that an additional variable 2¥ +l may be part of the
model so that: 6; = Z;8 + zf“ﬁpﬂ. We will denote by z,.1 the vector of

the zf“.

Lemma 2 : Assume the generalized linear model (1), the score statistic for
Bpy1 =01isT = ¢’1zg+1R where R is the vector of residuals R; = Y; — p;

computed under the null hypothesis.

Finally, consider the model (1) where 0; = Z;8 + «;, where the «; are
random effects with zero expectation, and the vector of a; has (known)
correlation matrix W and variance matrix wW. Here we assume that under
the alternative the Y; are independently distributed conditional on the a;.
In this model, homogeneity (or independence of the Y;) obtains if w = 0.

Then, we have:

Lemma 3 : The score statistic for w =0 is
T = ¢ 2RTWR.

The proof of lemma 2 is easy and lemma 3 has been given in Commenges

and Jacqmin-Gadda (1997).

14
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Note that for testing purpose we can eliminate ¢ from the statistics and
consider the simpler statistics 27 R and RT W R which lead to the same tests
as the previous ones whatever the value of ¢.

It is tempting to use a test based on permutation of the residuals R since
they have first moment exchangeability; in general however they fail to have

more.

3.3 Second-moment exchangeability: the linear model

In this section (and the following) we focus on the linear model which is a

special case of (1). This model can be written in the simpler way:
Y =278+c¢, (2)

where € is exchangeable with expectation zero; we will assume that the
variance of € is 0?I; Z is the n X p matrix with rows Z;. If 8 were known,
the residuals would obviously be exchangeable since R=Y — Zg3 =¢.

In practice 8 is unknown and we most often use the least-square estima-
tor B = (Z'Z)"'Z"Y. The estimated residuals are then R = Y — Z§ =
(I — H)Y, where H = Z(ZTZ)71Z" is the so-called “hat matrix” and Z
is the n X p matrix of explanatory variables. It can be seen that R is not
exchangeable by examining the variance matrix which is 0?(I — H); this, in
general does not have the form of an exchangeable matrix and this in turn
can be seen by looking at the ranks: it is known that the rank of I — H
is n — p, while we know from section 2.1 that an exchangeable matrix has
rank n, n — 1, 1 or 0: the latter two cases are degenerate; the only inter-
esting case is n — 1 which occurs if there is only one parameter; we can see

that we must in addition have Z = 1, that is the model must have only

15
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an intercept. Most usual non-parametric tests can be derived through the
argument derived here, when under the null hypothesis the model contains
only an intercept.

In models containing explanatory variables, We could rely on results of
Randles (1984) based on the asymptotic independence of the residuals. We
can also try to find a transformation of the residuals which gets us closer
to exchangeability. Remember that R belongs to the space Z*, that is
a subspace orthogonal to the subspace Z spanned by the columns of Z.
Thus, if p is the number of explanatory variables, the rank of the variance
matrix of R is generally n — p; using the constraints already mentioned
on the rank of an exchangeable matrix, a rank n — p is compatible with a
(n—p+1)x(n—p+1)or (n—p) x(n—p) exchangeable matrix; thus a
linear transformation towards exchangeability has necessarily to reduce the

dimension of R (except if p = 1).

Theorem 3 : In the linear model, the linear transformations from R"™ to
R™ of R which achieve second-moment exchangeability can be written in the

form

G=EQ+M

where E is a m X m exchangeable matriz, and Q is a m X n matriz whose
rows form an orthonormal basis of F, and F is any subspace included in
ZL: in addition the elements gij of Q@ must be such that 3, gij = w, w € R;

M is any matriz whose rows are in Z.

Let R = GR. Since R = (I — H)Y = (I — H)e, we have: R = G(I — H)e.
Sufficient condition: if G = EQ+ M, then G(I — H) = GQ which has the

form given by Theorem 1, thus G(I—H) € Kgo, thus since ¢ is exchangeable,

16
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so is R. Necessary condition: the transformations G which lead to second-
moment exchangeability must be such that G(I — H) € Kgo; from Theorem
1, we must have G(I — H) = E;,Qm,n- Now, any matrix G can be written
G =G+ M with G, = G(I — H) and M = GH. If G(I — H) preserves
second-moment exchangeability we have G; = FE(Q, and M is any matrix
whose rows are in Z. Since the rows of G1 must be in ZL, it must be so of
(@, which finishes the proof. Note that if the rank of G is m then F must be
of rank m too. The rank of G may also be m —1 in which case E = a(I —1).
Then the rows of Q can be chosen in Z1 or in the space orthogonal to all
the vectors z; except the vector 1.

The rank of the variance of R must be lower or equal to n — p; in order
to keep the maximum power to the permutation test, we have to keep the
maximum rank. Then, the simplest choice is to take £ = I,,_,, in which
case var(R) = o2I,_,.

An orthonormal basis of Z1 can easily be constructed, for instance by
the Gram-Schmidt procedure, but is not unique. Theil (1965, 1968) has
given an algorithm for finding uncorrelated residuals, the so-called BLUS
residuals. Theil’s residuals can be computed in O(n) operations so that the
transformation does not increase the complexity of the computation of the
permutational variance for linear or quadratic forms.

To keep the same value of the statistic 7" we have to compute the inner
product (z,R) as a function of R; remembering that R is Z+, we can compute
the scalar product of the projected vector represented in the basis of Z+
given by the rows of Q. This leads to 7' = 2T R with R = QR and %z = Qz.
By the same reasoning, a quadratic form of the residuals 7= RTWR can

be written T = RTWR with W = QWQ7T. Thus this approach makes it
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possible to make inference for a linear or quadratic form of the residuals,

using transformed residuals which have second-moment exchangeability.

Corrolary 1 In the normal linear model, it is possible to find exact permu-

tation tests for linear and quadratic forms of residuals R.

This comes from the fact that second-moment exchangeability implies ex-
changeability if Y has a normal distribution. Note that we have not only one
but an infinity of different permutation tests obtained by choosing different
bases of Z1 (see the example at the end of section 2.2).

This result can easily be extended to the case where the error has a
known covariance matrix:

Y =Z8+¢

with var(e) = ¥ = V2. Then premultiplying by V' we obtain the same
problem as above, that isY' = Z/8+¢&' withY' = VY, Z' =V Z and &’ = Ve.
The score statistic for testing “B,41 = 07 is T = 2z | R with 2\, = Vzp 1
and R’ the residual in the transformed problem. This transformed residual
is still in Z+ so that the solution for finding uncorrelated residuals is still
to find a matrix Q whose rows are an orthonomal basis of Z+. If the
distribution of € is normal then we obtain exact permutation tests.

In the linear model with continuous explanatory variables, it is generally
impossible to find an exact distribution-free permutation test because we
cannot find a matrix K = G(I — H) which has its rows othogonal to a vec-
tor of explanatory variable z and must be of the form given in Theorem 2.
However it is possible to find exact permutation tests in some simple cases.
The simplest case where it works, as already noted, is the case without ex-

planatory variables, in which case the residuals are directly exchangeable.

18
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In section 3.4 we shall see it also works in a matched pairs design; in more
complex designs we might still use transformations of theorem 3 which pro-
duce residuals with second moment exchangeability, in fact Theil residuals,
and use the adapted test statistic as above; the permutation test will not be

stricly valid.

3.4 Example of permutation tests in the linear model

We give an example, a matched pairs design, where an exact permutation
test, for a regression parameter and for homogeneity, can be found in the
presence of an explanatory variable; this is to illustrate how the general
results of section 3.3 lead, in a particular case, to the conventional Wilcoxon
test for matched pairs. Consider model (2) in which n = 2p and Z; has
a 1 in the [(i + 1)/2] position and zero elsewhere. The residuals are R; =
Y; - Y; where Y; = Y;,1 = %,z =1,3,...,n — 1. Consider the 1 x n
vectors ¢; = (0,0,...,1/v/2,—14/2,...,0) where the 1/4/2 is in position
2t — 1,4 =1,...,p. These vectors are orthogonal to the vectors of Z and
form an orthonormal basis of Z1 and >_j%j = 0. Thus, from Theorem 3,
the matrix @ which has i row ¢; (i = 1,...,p) preserves second-moment
exchangeability. The transformed residual vector R=QRisapx1 vector
with elements %(Yiﬂ -Y),: =1,3,...,n — 1. It is easily seen that Q
also satisfies the Dean and Verducci condition; it can be verified that @) has
the form given by Theorem 2: @) = [B1, Bo|P with By formed by all the p
distinct permutations of the vector 1/4/2,0,...,0 and By formed by all the p
distinct permutations of the vector —1/4/2,0,...,0; the permutation P puts

the columns in the right order. Thus, ) preserves global exchangeability.
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Now consider the model
Y =ZB+ zp+16p+1 + &,

where 2,1 is the vector of values of another explanatory variable. The
score test for “Bp11 = 0” is by Lemma 2 T = ZHR = ~§+1R where Zp 11 =
Qzp+1- An exact permutation test is then possible for T'. If the values of
Zp4+1 are binary then only pairs who present the two different values for
this variable are kept. If the further (non-linear) exchangeability-preserving
transformation R; = rank(Ri) is applied, then the permutation test obtained
is the Wilcoxon test for paired observations.

Consider now an homogeneity problem
Y=Z8+a+ €ijs

where « is a vector of random effects with expectation zero and known
variance matrix wW. From Lemma 3, the score test for “w = 0” is T =
RTWR = RTWR, where W = QWQT. Then, as before, a valid permuta-
tion test is based on the permutation of R.

Finally note the contrast between this model and a model in which we
would assume only exchangeability between ¢; and ;41 for all odd ¢ . Then
only partial exchangeability can be used with the consequence that the num-
ber of permutations is 2P which is much less than p! as soon as p is larger
than 4. We may expect that the permutation test using the global exchange-
ability assumption for € is more powerful than the one using the partial

exchangeability assumption (which is weaker).
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3.5 Exchangeability of (Y, Z)

If we consider the p + 1-uplets X; = (V;, Z;) as exchangeable (as in section
2.5), the residuals R are exchangeable (here we consider Z as a random
variable). It can be shown by application of lemma 1 that (Y, Z) preserves
exchangeability and finally that the residual operator R(X) preserves ex-
changeability; the proof uses also the fact that B is invariant by permutation
that is, 3(Y) = B(PY) for any permutation matrix P. Thus the residuals
are exchangeable in that probability space. This result can be used for
deriving permutation tests in particular regression problems. Consider for
instance the score test statistic of section 3.2: T' = g 11 R. When using this
statistic we condition on the values z,1; for using permutation test we need
exchangeability of X = (Y, Z) conditional on zpy1. This does not hold in
general: for instance if Z and zp1 (considered as a random variable) are not
independent, the distribution of Z conditionally on 2,1 depends on z,1.
It may hold in particular cases, such as in a randomized clinical trial where
Zp+1 represents randomly assigned treatment values (thus making z,;1 and
Z independent). In that case of course a randomisation test would also be
valid: this test would condition on X (hence on R also) and be based on the
known-by-design distribution of z,,1. The two tests would coincide only if
the distribution of z,,; was obtained by permutation of a given vector.
For homogeneity tests it is more likely that the matrix W of the quadratic
form does not depend on Z. For instance, for testing homogeneity of the
rates of a disease in a region, the quadratic statistic 7 = RTWR can be
used where W has entries which depend on the distance d;; between two ob-

servations, for instance w;; = di_jl. Jacqmin-Gadda and Commenges (1997)
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have shown by simulations that the permutation test of residuals had good
properties in some situations. If the explanatory variables Z do not de-
pend on the geographical position the permutation homogenity test will be
valid. However this assumption may be questionable. On the other hand,
in the simulations of the Jacqmin and Commenges paper, Z was generated
independently of the geographical position; thus this simulation was hardly

worth to do since the theory ensures that the test is valid in that case.

3.6 Second-moment exchangeability: general case

When the data are correlated and the model is not linear normal, exact per-
mutation tests are not available. We may still try to construct approximately
uncorrelated residuals, thus achieving second-moment exchangeability and
hope that the permutation tests will be robust to departure from global
exchangeability.

An approach which has been tried in pratice is the following one. As-
sume that we observe Y;, ¢+ = 1,...,n, which have marginally distributions
belonging to the exponential family (1). However we suspect that the Y;
are not independent. For testing a regression parameter, we may still use
the same statistic T' = Z 1R, but we cannot directly apply the permuta-
tion distribution. If the observations belong to groups (such as familial or
geographical groups), we expect the variance matrix of the residuals to be
approximately a block diagonal matrix ¥ with exchangeable blocks (a BDEB
matrix). We estimate ¥ and compute R = £~1/?R. Then T = 5§+1R with
Zpy1 = s/ 22p+1. For a BDEB matrix relatively simple formulas for com-
puting the transformed residuals and the transformed form (both for the

linear and the quadratic case) are given in section 3.7.
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An example is given in Commenges and Abel (1996) who treat the prob-
lem of genetic linkage using a generalized homogeneity test of the form
T = R"WR. In that case, R is the vector of residuals under the hypothe-
sis that the marker is not linked to the disease susceptibility gene, and the
elements w;; of W are the number of alleles shared by subjects ¢ and j.
However it often happens that even under the null hypothesis, the residuals
are correlated within sibships because of genetic or environmental factors. A
simulation study has shown that the permutation test based on transformed
residuals leads to better type-one errors than the uncorrected test.

The homogeneity test can also be applied in geographical epidemiology.
The problem is to test whether the distribution of the disease exhibits a
specific spatial pattern. The quadratic statistic T = RTW R can be used
where W has entries which depend on the distance d;; between two obser-
vations, for instance w;; = d;jl. Jacqmin-Gadda and Commenges (1997)
have shown that the uncorrected permutation test had good properties in
some situations. The results of this paper could be used to improve the
approximation and to extend the application of this test to the case where

the data are correlated even under the null hypothesis.

3.7 The case of the intraclass correlation model

Suppose we observe Y with exchangeable first moment but not second mo-
ment. The simplest model with non-exchangeable correlation is the intr-
aclass correlation model: observations belonging to the same group k are
correlated with coefficient pg, observations belonging to different groups are

uncorrelated. In that case the variance matrix of Y can be written

¥ = D'/?¢cD'?,
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where D is any diagonal matrix, C' is a block diagonal matrix with ex-
changeable blocks (BDEB); the blocks Cj are the exchangeable correlation

matrices of group k:
Cr = (1 — pp) Iy + npprly
A square-root decomposition of £~! obtains with £=%/2 = ¢=1/2D~1/2 and

C~1/2 3 BDEB matrix with blocks

Clc_1/2 = d'(pr) I + by, (pi) 1,

1duosnuew Joyine vH

with a'(pg) = (1 — pg) ™2 and ¥, (o) = [(ng, — Dpx +1]72 — (1 — pp) =12
If D~'/2Y is partially exchangeable (that is the subvectors corresponding to
the groups have exchangeable distributions), this transformation preserves
this property while achieving second-moment exchangeability for the whole

vector. Thus Y = £71/2Y can easily be computed as

Y = d(pya))Y{ + b_’q(i) (pg(i))Y;(i) ®)
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where Y, = d%' and Yg’(i) is the mean of Y] over the group of i, g(i). The
transformed form ¢ is

é=po D202,

If for example ¢ is a linear form we have ¢(Y) = LTY and ¢ = LT DV/2C"/2Y =
LTY. L is obtained by a formula similar to 3

L; = a(pg(y) Li + by(s) (pg(i))ilg(i)’

with a(pr) = (1 — p)'/? and by(p) = [(ng — Dpx + 1'% = (1 — py) /2.

If ¢ is a quadratic form
oY) =YWy =vTwy,
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with W = CY/2DY2Ww C'/2D'/2. Using the fact that C'/2 is a BDEB matrix
with blocks
O = alpr) I, + b (o) 1

W can easily be computed. For the sake of simplicity, we give the formulas

for the common intraclass correlation model where py, = p:

Wij = a’wij + abg(j)Wisg() + Abe(i)W(iyg + (i) bg(i) Wig(i):a()

where a = V(l_p)a b = \/(nk_l)p+1 - \/(1_p)a a = 1/@, b;c =
1/v/(ng —1)p+1—1/y/(1 - p) and ;) is the mean of the weights for

sujects i and subjects belonging to the same group as j and w, is the

9(1);9(7)
mean of the weights relating subjects of the same groups of i to subjects of

the same groups as j; ny is the size of group k.

4 Doing permutation tests in practice

4.1 Generalities

The direct way for computing the permutation distribution of 7' = ¢(Y) is
to compute all the values of the statistic T' for all possible permutations of
Y. This is generally impossible for moderately large n. One possibilitity is
to use a random sample of permutations. However it is faster to approxi-
mate the distribution. A normal approximation may be sufficient; for linear
forms, the first four moments are easy to compute, so that the accuracy
of the approximation can be improved using saddle-point approximation
(Robinson, 1982) in simple cases and Edgeworth approximation more gen-
erally. We give here the first and second moments of quadratic forms and

the first four moments of linear forms.
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4.2 Moments of linear and quadratic forms

Consider a symmetric quadratic form T = YTWY. Tt is useful to decompose
T in terms of a so-called ”clean” quadratic form 7" specified by a matrix

! . — — . —
wZ] wZ] — w_J — wz_ + w__’

where w ; is the mean over index 4 of w;; and w, is the grand mean. For
such a matrix the sum of each line and row is zero. In matrix form the clean

version of W is W' = (I — 1)W (I — 1). We have that
T=T+2L'+ H'Y

where L' = (H — H)'Y, H = WY, Y is the vector whose components are
the mean of Y, that is Y = 1Y. Then we have that E(T) = E(T') + H'Y
(because E(L') = 0) and var(T) = var(T") + 4var(L') 4+ 4cov(T", L"). We can

compute using similar arguments as in Mantel (1967)

E(T') = nf -y Tr(W')
n n2 —
var(T') = ngp(n? — 3n + 3)Tr(W"?) + — f’(T&r(W’))2 — 3n(n — 1)Tr(D?)]
+ T 2n - DI (W) — (0 - D(T(W)? + nln + D Tr(D?)]
var(Z') = ——— 3" (yi = )2 3 (hi — B
(’IL 1) =1 =1
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where D is a diagonal matrix with same diagonal as W', m; = >i"; yf /n;
n3) = (n —1)(n — 2)(n — 3). This is valid for n > 3

Cox and Hinkley (1974) gave the first three moments of linear forms
(however with an error in the third moment). From the formula of the
variance of a quadratic form, we deduce, the formula for the fourth moment
of a linear form. By the transformation I — 1 we can restrict our attention
to clean linear forms T = LTY. We have E(T?) = var(Q) + E(Q)?, where
Q=T?=YTLLTY. We apply the formulas above with W = W' = LTL.
For this matrix, Tre(W") = [Tr(W')]? = (X L%)? = n?*v} and TrD? =

> L} = nvy. We obtain for a clean linear form pu; = 0, pg = n’mavy and

n—1
3n3 ’I'L3 n3(n + 1)
e = i (A =8 g =y e )y

We have also p3 = %m;ﬂ/&

4.3 Cornish-Fischer expansion

The Cornish-Fischer expansion (Kendall and Stuart, 1977; McCune and
Gray, 1981) allows to compute the p-percentile of the normal distribution
up as a function of the p-percentile of a distribution F, x,, and the first
cumulants of F', while the inverse Cornish-Fischer expansion allows to com-
pute the z, as a function of u, and the first cumulants of F. Thus the
Cornish-Fisher expansion allows to compute a corrected p-value while the
inverse Cornish-Fischer expansion allows to compute a corrected percentile
for a given size of a test. For instance the formula given by McCune and
Gray (1981) for the inverse Cornish-Fisher expansion up to the fourth cu-

mulant (order n~!), valid for a standardized statistic, and corrected for a
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typographical error for the second term, is

1
—(2’!1,3 — Bup)k3

1 1
Tp=up+ E(UIQ, — 1)k3 + —(ud — 3up)ks — 36

24P

The cumulants k; of the standardized statistic T'//u2 are k3 = /1,3//1,3/ 2

and k4 = p4/p3. For instance this formula can be used for computing the
95%-percentile of the permutation distribution of a standardized statistic

by putting u, = 1.645.
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