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Abstract:

In the case of incomplete data we give general relationships between the
first and second derivatives of the log likelihood relative to the full and the
incomplete observation set-ups. In the case where these quantities are easy
to compute for the full observation set-up we propose to compute their ana-
logue for the incomplete observation set-up using the above mentioned rela-

tionships: this involves numerical integrations. Once we are able to compute
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these quantities, Newton-Raphson type algorithms can be applied to find the
maximum likelihood estimators, together with estimates of their variances.
We detail the application of this approach to parametric multiplicative frailty
models and we show that the method works well in practice using both a
real data and a simulated example. The proposed algorithm outperforms a

Newton-Raphson type algorithm using numerical derivatives.

Keywords: likelihood, coarsening, incomplete data, censoring, Radon-

Nikodym derivatives, Newton-Raphson algorithm, frailty models.

1 Introduction

In most complex problems we are faced with incomplete data. Even if it is
assumed that the mechanism leading to incomplete data is ignorable (Gill et
al., 1997) the observed likelihood generally involves integration which can not
be solved analytically; this is often the case when observations are interval-
censored or when the model includes random effects or frailties. It follows
that the first derivative (the score) and the second derivative (the Hessian)
of the log likelihood themselves do not have a simple analytical form so that
Newton-Raphson algorithm, which is the algorithm of choice when these
quantities can be computed, does not seem feasible. This is the main rea-
son of the attractiveness of the EM algorithm (Dempster, Laird and Rubin,
1977) and of the Bayesian approach using the MCMC algorithm (Gilks et al.,
1995). However both EM and MCMC algorithms may be time-consuming.
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Another reason of the disaffection with the Newton-Raphson algorithm is
its lack of robustness when the quadratic approximation is not valid over a
large region or when the Hessian is not everywhere positive-definite. This is
indeed a problem with the naive version of the Newton-Raphson algorithm;
however there exist variants such as the trust region method (see Dennis
and Schnabel, 1983) or the Marquardt algorithm (Marquardt, 1963) which
are very robust. Also, the score and Hessian can be computed numerically
using finite differences (see Overton, 2001, Ch. 11); this possibility has been
used successfully in several complex models involving incomplete data. For
instance Jacqmin-Gadda et al. (2000) used this technique for a longitudi-
nal analysis with left-censored data and showed that it was more reliable
than an EM algorithm. However in complex models there are two problems:
computation time and possible loss of accuracy. When the likelihood is com-
putationally demanding and there are many parameters the computation of
the Hessian using numerical derivatives is time-consuming. Also, there is a
loss of accuracy in the computation of the finite differences due to the cancel-
lation errors (Overton, 2001); when the likelihood itself can not be computed
with very high accuracy because it involves numerical integration this loss of
accuracy may lead to unacceptable errors in the score and the Hessian and
failure of convergence of the algorithm.

The aim of this paper is to use relationships between full and observed
scores and Hessians to obtain a faster and more accurate computation of
observed score and Hessian which may be used in a Newton-Raphson type
algorithm. Such relationships have been given by Louis (1982) for estimating

the variances of the estimators when using the EM algorithm; see also Oakes
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(1999); Hedeker and Gibbons (1994) implicitly used the relationship for the
scores to propose an algorithm using only the scores. In a large part of
the statistical literature the observed data are supposed to come from a
distribution with probability density function f4 and the likelihood for the
observed data z is £(;z) = f%(x). While it is possible to go a long way
with such a representation it becomes awkward in complex problems. The
limitation of this representation are the following: i) it is not obvious whether
the likelihood is a random variable; ii) when speaking of a usual probability
density function there is a reference probability which is Lebesgue measure
on R? for some d, but it often remains implicit and is given once for all; iii)
it is not so easy to represent different amounts of information (this can be
done by considering different random variables but this is less flexible than
considering o-fields); iv) it is not clear what is the density when dealing with
stochastic processes (even the rather simple case of right-censored survival
data can not be treated rigorously in this way).

In this paper we give relationships which are essentially the same as those
given by Louis (1982) but we treat the problem in a general framework and
using the full power of basic probability theory in which the likelihood is
rigorously defined a a Radon-Nikodym derivative, in which we can choose
the reference probability and in which information is represented by o-fields;
one particular benefit of this approach is that the likelihood may be relative
to the observation of stochastic processes such as in Andersen et al. (1993)
or Barndorff-Nielsen and Sorensen (1994); however we restrict to parametric
models.

In section 2 we first exhibit two martingales related to the score and the
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Hessian processes from which we deduce the relationships between observed
and full scores and Hessians. In section 3 we show how these relationships
can be exploited to improve Newton-Raphson-type algorithms in the case of
incomplete observations: two main situations are considered, the coarsening
situation and the random effect situation. The algorithm is applied in sec-
tion 4 to parametric proportional hazards frailty models. In section 5 it is
illustrated on a Weibull model with normal frailties; the proposed algorithm
is compared to a Marquardt algorithm using numerical derivatives on simu-
lated data sets and applied to a real data example. We conclude in section

6.

2 Relationship between derivatives of the ob-

served and full log likelihoods

2.1 Martingales related to the derivatives of the log
likelihood

Consider a measurable space (2, F) and a family of measures { P }yco, where
© is a “nice” subset of R™ so that this defines a regular parametric model
(Bickel et al, 1993); we assume that the P,’s are absolutely continuous rel-
atively to a dominant measure Py, (this means that Py, € {Py}sco but the
results would be unchanged if we took a reference probability P, outside of
the model). The likelihood ratio on F is defined by:

£0/% _ P,
d dP@o |F

a.S.



where %IT' is the Radon-Nikodym derivative of Py relatively to FPy,. Re-
0
call that %V is the F-measurable random variable such that Py(F) =
0

[ 2 Py dPgO, F € F. If the space is equipped with a filtration (F;), let us

Ea/ bo — E%ao; then we can consider the stochastic process (£f/ ao)tzo.

denote
The following results apply in continuous time where the filtration is right-
continuous, or in discrete time. The process (Ef/ %) is a P,,-martingale

(Barndorff-Nielsen and Sorensen, 1994) with expectation equal to 1. We fur-
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ther assume as in Barndorff-Nielsen and Sorensen (1994) that for all ¢ > 0:
i) £2/% is twice-continuously differentiable with respect to 6, ii) the class of
likelihood gradients B—Lg? and random matrices %}gﬁ are locally dominated
integrable under Fy,. Let us denote Lf/ bo = log Ef/ % the log likelihood at

This can been seen

9/60

by starting from L£;”° = Ee/ elﬁal/ %, taking logs and differentiating we find

8/69 6/61
that —£— L = 6—%,0—; we shall denote Uf this common derivative. Let us now
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consider the Hessian of the log likelihood: HY = We can now state a

theorem defining two interesting martingales.

Theorem 1 The processes (L2 °U?) and (Ea/ao( +UPUM)) are Py,-martingales

with zero mean.

Proof. Since (Ef/ 00) is a Py,-martingale with mean equal to 1, its deriva-

. arb/%o 82r 9/90 . .
tives —t— and —4— are zero-mean Py -martingales. These two martingales

can be expressed in terms of U and H? to obtain the two martingales of the
theorem. Q

A particular case of this result has been given by Barndorff-Nielsen and
Sorensen (1994): if one takes 6y = § we obtain: (Uf) and (H{ + UYU!T) are

Pyp-martingales with zero mean.
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2.2 Relationship between derivatives of the observed

and full log likelihoods

Consider the general statistical model depicted by a measurable space (2, F)
and a family of measures { P }4co absolutely continuous relatively to a domi-
nant measure P . F will be interpreted as the full o-field, in that it contains
all the interesting events in the problem we wish to model. We now con-
sider the problem of incomplete observation, that is, the case where all the
events of interest are not observed. In that case we represent the observa-
tion by the o-field O such that O C F (in a strict sense). Thus our model
can be depicted by the 4-uplet (2, F, O, {P,}). Note that if the mechanism
leading to incomplete data is random, F must also include the events which
this mechanism generates (see Commenges and Gégout-Petit, 2005). In this

2’!90 and the observed

framework we can consider both the full likelihood £
likelihood ﬁ‘;;/"". By direct application of Theorem 1 to the (discrete) filtra-
tion (¥, O, F), where ¥ = QV () is the trivial o-field, we obtain the following

result:

Corollary 1 We have the following relationships between first and second
derivatives of the full and observed log likelihood denoted respectively UY-, HS
and U, HY :

i) L8"Ub = Eq[C7 UL O]

ii) L§™ (HY + USUEF) = Bo, (L™ (HY + ULUL) O]

iii) Bqo[£3" (HE + UUE")] = oy [CH™ (HY + URUF)] = 0 .

If we take 6 = 0 we have the simpler equalities: U% = Ey[U%|0]; HY +
USUST = Eg[HY + ULUY|O] and 1§ — Ey[USUST) = 1% — E»[ULUY] = 0,
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where 1§, = —Ey[HY] and I = —Ey[H%L]. The general formulae of the
corollary may seem unnecessarily complicated; however they preserve the
choice of the reference probability under which the expectations must be

taken: particular choices may render the computations much simpler.

3 Application to Newton-Raphson type algo-

rithms

3.1 General approach

We consider the case where £§!9° has a sufficiently simple analytical form
so that U% and H% can also be computed analytically, while E?g/ao, U, and
HY, do not have analytical form. The Newton-Raphson algorithm is the
fastest maximization algorithm but it requires U and HY for constructing
an approximate quadratic model at the current value 6; this is also the case
for robust versions of the Newton-Raphson algorithm such as the algorithm
of Marquardt (1963). The formulae of Corollary 1 allow to compute U and

HY by numerical integration with essentially the same precision as L%OO. We

have:
US = (L") By [L7 U0, (1)
and
1Y = —UBUY + (C4) R [ (Y + VLU 0L (@)

In the case where F = O V o(n) (that is F is the smallest o-field con-
taining both O and o(n)), where 1 is a random variable, all random vari-

ables can be expressed as measurable functions of 7 and an (O-measurable
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variable. So, for computing the above expressions our problem is to com-
pute conditional expectations of the form Eg[f(n, X)|O], where X is an
O-measurable variable. Using the disintegration theorem (Kallenberg, 2001)
we have: Eg,[f(n, X)|O] = [ f(s, X)l/zfo(ds), where l/zfo(.) is the conditional
law of 1 given O under the probability F,. It may be more or less difficult
to compute this integral, and to begin with, the conditional law uzfo(.). We
shall consider two main situations, the coarsening situation and the random
effect situation.

In the typical coarsening situation we are interested in the law of a random
element 1" but we do not observe completely 7'; that is, the o-field of all the
events generated by T, o(T), is not included in the observed o-field, O. The
following discussion applies to the case where the mechanism is random but
ignorable, in which case we can treat the likelihood as if the mechanism was
fixed at the observed value. So, considering the mechanism as deterministic,
we have O C o(T); n in the above formula is simply 7' itself. For giving
an illustration of this case let us consider the rather simple case where T is
a survival time; equivalently the survival situation can be represented by a
0 — 1 counting process N = (/V;). Consider the case where this process is
observed at discrete times vy, ..., v,,, with v, < C. In terms of the random
variable T" this means that we observe in which interval (v,_1,v],l =1,...,m
or (vm,C] T falls. The observed o-field can be written for instance O =
o(Lrew 1o}, ! = 1,...,m+ 1), with the convention v,,4; = co. Choosing
a reference probability under which 7" has an exponential distribution with

parameter 1 Jacod’s formula gives us the likelihood for the observation of N



on [0,C]:
£0fc = \(T A C) exp[—A%(T A C)]e™C, (3)

where § = 17<c, A(.) (resp. A%(.)) is the intensity (resp. the cumulative in-
tensity) of N; Aalen’s multiplicative model specifies that A°(¢) = 1{y,—0;0/(t)
where of(t) is the hazard function. In case of coarsening it convenient to
give the likelihood locally, that is on particular events that can be called

atoms or pseudo-atoms (Commenges and Gégout-Petit, 2005b). Here we
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give the likelihood on the event (T € (v;_1,v;]). Using the fact that v(ds) =

l[vl_l,vl](s)e_s

mds gives the law of T given (T € (v;_1,v]) for [ < m, we obtain
that on this event the likelihood is:
1 vy ~ 1 v
6/60 __ 0 _AB _ 0 Y
£ = / N () exp[ A (D)ds = / " o (s) exp[—A%(s)]ds,

where A(t) = [} a?(s)ds.
This can be seen to be proportional to F'(v;) — F(v;—1), a result that could
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have been obtained in a simpler way. We can compute

o _ 8 log L5/% _ BT AC) 9N
F 90 N(TAC) 00

(T'AC).

Hence applying formula (1) we obtain:

v 9N (g 0
0 =1 [ [ - S eI expl s

The observed Hessian can be computed similarly by applying formula
(2). Such a computation is useful only if F'(s) does not have an analytical
form, which happens in some parametric models or when the distribution
is approached on a basis of spline in a semi-parametric approach. In that
case this computation may be faster and more accurate than using numer-

ical derivatives. Numerical derivatives still work well in this rather simple

10
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problem (Joly et al., 2001) so this approach may be more interesting in more
complex problems involving multivariate counting processes such as in Com-
menges and Joly (2004) and Commenges and Gégout-Petit (2005b). We do
not develop more this application in this paper in which we will rather focus
on the second main situation, the random effect one.

In the typical random effect situation we are interested in the conditional
distribution of 7" given a random effect 7. Most often random effects are
introduced to model dependence within a group of random variables 7} (for
modeling clusters or repeated measurements for instance). Most often the
best choice of the reference probability will be such that n and the T}’s
are independent, so that the 7T};’s will themselves be mutually independent
and we have vy o = v,. This choice meets what is done in a conventional
approach where the reference measure remains implicit; however since in the
conventional approach the implicit reference measure is Lebesgue measure
which is not a probability measure the term “independence” is generally not
used. A particular application within the random effect situation is presented
in section 4; in this application the likelihood has the particular structure
depicted in section 3.2 which allows savings in computation burden.

The numerical integration can be done by Gaussian quadrature or by sim-
ulation. For instance it can be approximated by M ! Ej-” f(g;,X), where g;
are realizations from the conditional distribution of 7 given O in the prob-
ability Pp,. As discussed above if Py, is chosen in order to make n and O
independent, the g;’s are taken from the marginal distribution of n. For low
dimensional integrals Gaussian quadrature is more efficient.

In practice the above formulae are applied to a sample which most often

11
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can be divided into independent parts: for instance the sampled is formed
of n independent random variables or of G independent groups (each group
may represents clusters or repeated measurements) indexed by 7. In that case
the observed o-field can be written O = V;O; and similarly we may consider

a full o-field which can be written F = V,;F;.

3.2 Cases where the computations can be reduced

Typically the above algorithm involves m(m + 3)/2 numerical integrals (for
each group). In some cases the number of numerical integrals can be reduced.

Consider the case where the log likelihood takes the form:

K
L% =37 AuBi(n),
k=1

where the A;’s are O-measurable and the By’s depend on a small number g,

of parameters. By Corollary 1 we have:

0A
00

0N 000y -1 9/60 OB,
U(’) = Z(‘C(’) ) [Akan [‘C}' 60
k=1

O]+ "By, [L1 By O)].

The number of numerical integrals for computing the score is thus K (1 +
Zszl qx), which may be less than m. This special structure also allows savings
for the computation of the Hessian. In the next section we study in detail

the multiplicative frailty models which present such a structure.

12
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4 Score and Hessian for parametric propor-
tional hazards shared frailty models

Consider the case where we have right-censored observations of failure times
for n subjects scattered in G groups of size n;,2 =1,...,G, with > ;n; = n.
For subject j in group i we observe Tj; = min(T};, Ci;) and &;; = Liny<cij}s
where Tj; is the failure time, Cj; is a censoring time which will be treated as
fixed (if it is random, the mechanism leading to incomplete data is assumed

to be ignorable). We assume a parametric frailty model:
afj(t) = o (t) exp(zi; 8 + wmn),

where ;;(t) is the risk function for the distribution of T};, o (¢) is the baseline
risk function, z;; is a vector of explanatory variables, 3 a vector of regression
coefficients and the 7;’s are independently identically distributed random
variables (the shared frailties) with Eg,(7;) = 0 and varg,n; = 1. We assume
a parametric model for of(¢) indexed by v and we denote by 6 = (v, 5,w)
the set of all the parameters of the model; the distribution of the n; does not
depend on 6.

We now define observed and “full” o-fields. The observed o-field for
group ¢ is O; = a(f}j,éij,j = 1,...,n;) and the total observed o-field is
O = V;0;. We may define a “full” o-fields F; for group ¢ which includes
in addition to the observations the events generated by 7;: that is we will
denote F; = U(Tij,éij,j = 1,...,n;m); the total full o-field will be F =
V;F;. The full likelihood ratio can be written using Jacod formula (Jacod,
1975) and, following and idea of Aalen (1978), we shall choose a particularly

simple reference probability: we choose Py, such that the 7;; are independent

13
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random variables with exponential distributions with parameter . With this
choice we obtain:

ni T 1 ~. . ~_ .
L3l =TT (el (Ty) x )oe T el

i=1 r
where A% (t) = J§ af;(u)du. The full likelihood ratio 5290 is a function of the
unobserved 7; and we can make this explicit by writing Lf}f° (m;). With the
choice of the reference probability which makes 7; independent from O; we
have vy, 0,(ds) = ¢y, (s)ds where ¢, (s) is the probability density function of
n; (under Py,); the observed likelihood can then be written

9/ bo / EG/ bo $) o, (
7

In view of the complexity of E%a" (s) it is not surprising that E%f“ does not
have in general an analytical form; this happens if the frailty has a gamma
distribution (Nielsen et al., 1992) and this fact explains to a large extent the
success of the gamma-frailty model. The present approach is not useful for
the gamma-frailty model but may be useful for any other choice.

We proceed by computing the log likelihood:
9/90 = Z[(SZ] [log o (T, ) + 23 + wn; — log k| — Ag(f}j)ez"jﬂe“’"i + lﬁTij].

In order to obtain more synthetic results we rewrite this log-likelihood in

separating what is observed and what is not as:
La/a0 = a; + diwn; — bie”" + kT, — d;log k

where a; = Y05, 6;[logof (Ti) + 28], bi = Y5iy AY(T)eiP, € = (v, B),
d; = Z?;l ;5 and Tl = Zj;I T,~j. With these notations the full score and

Hessian are:

14
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a(li 8_[)

UT@';E = a—é- - ag ew"h"
Ui w = din; — bimie”™,
82CLZ' 82bz Wy

H.'Fiafﬁ = 852 - 6626 ”h’

2 w'r],

Hfi ,Www = bZ T’z Y

b
Hgr, ¢ = —8—£7h‘€

We can now compute the observed score and Hessian by applying Corollary
(1). We note that the desired quantities essentially depend on the conditional
expectations of full score and Hessian multiplied by E%ao which, because a;

and b; are O;-measurable are:

Eg, (LY Us, |0:) = ‘?;g £yt - %—ZEQO (LR |0,),
By (L Ur, | O:) = diEay (L 1] O;) — biEg, (LF mie™ |03),
B (" Hrel0) = S LU0 - T o (2P (0), (0
By (L1 Hr, | O:) = —biEgy (L7 n2e™|0;), (5)
Egy (L2 Hy, ¢,|0;) = aabg Egy (L2 0e™|0,)., (6)

So for computing these terms only five integrals for each group are required,
whatever the number of parameters in the model, and it is not necessary to
compute them with a very high accuracy because only simple computations
lead to the final results used by the Newton-Raphson (or Marquardt) algo-
rithm. This is in contrast to computing the log likelighood for computing nu-
merical first and second derivatives: then the cancellation errors produce an

important loss of significant digits, so the initial computations must be very

15
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accurate. The five integrals are: EG/GO =Ey, (L 6’/6’°|(’) ), Io = Ey, (Lﬁ!""mwi),
Iy = By (L[ 01), Lo = Egy (L3 1:e7|0y), I = Eg, (ﬁi/%f “0;). It
may appear difficult to compute these conditional expectations but as already
discussed our choice of a simple reference probability pays off: because on
Py,, n; is independent from the observations, the conditioning for computing
I; can be removed: we have for instance, considering 5%90 as a function of 7;,
L=/ E%ao(s)e‘*’sgb(s)ds, where ¢(s) is the p.d.f. of the frailty; so we can use
straightforward gaussian quadrature or Monte-Carlo integration techniques

for computing them. The final formulae for the score are:

_ da; _ a_b 9/90

Uoiw = di(LY°) " Ty — b;(LY°) I, (8)

As for the Hessian, we have from Corollary 1:
Hp, = ~UbUE, + (£8°) " [Ea[ L4 HE O] + Eg, [LE UL UZ |0 (9)

The second term in the brackets can be computed numerically after having
computed the observed scores from formulae (7) and (8); the blocks of the
first matrix are given by formulae (4, 5, 6). It remains for us to compute the
blocks of Ey, [Ea/ o 9. UZ'|0;]. We find that getting rid of the conditioning
by the same argument as above, these quantities involve in addition to Iy,
I, I, I3 four other integrals I, = Ego(ﬁa/ao 2mi)  Is = Eg, (Eaf_/oonf 20mi )
Is = Ey, (ng/aon e} and I; = Ey, (Eaf/eonf) The formulae are:

o, T T T AT
9a; day L?;/fua—ba—b [, - 00 007y Obidait
D€ OE oc o€ 1T 9e ag ' o o€

Ego[L°US. UL |O;) = d2 17 + 0215 — 2dib; I,

Eg,[L5 U UL |O,] =

16



aai 8[)1 aai
% e g b+ bl

Thus we have determined formulae for computing observed score and Hessian

0b;

Ey, [ﬁ%eoUJaa,gU%-T,wwi] = —dily — (

in the proportional hazards shared frailty models; these formulae depend on
nine integrals which must in general be computed numerically. We call this

approach semi-analytical.
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5 Application to a normal frailty Weibull model

5.1 The normal frailty Weibull model; formulae

There are two reasons for considering normal frailties here. The first is for
illustrative purpose: in contrast with the gamma-frailty model (Rondeau and
Commenges, 2003), there is no analytical formula for the likelihood. The

second is that many models have used normal random effects; the normality
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assumption is appealing when considering several random effects (although
here we will restrict to one), see Ripatti and Palmgren (2000).

In the framework of the proportional hazard model with shared frailty,
we will consider a Weibull model for the baseline, o (t) = vyy1 ()"}, and
normal frailties n;. Here we have:

ng

a; = d;log(yon) + (11 — 1) Y 6i;llog(Ti)] + > 6528,

j=1 =1

where d; = 37, 6;; and

bi =0 y_ €™ (L)

J=1
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The first and second derivatives of these quantities relative to the param-
eters are given in Appendix. Using these formulae and the more general
formulae of section 4 we obtain the semi-analytical score and Hessian for the
normal Weibull model. The nine integrals for each group can be computed

by gaussian quadrature.

5.2 Simulation

A simulation study was performed in order to compare a Marquardt al-
gorithm using the semi-analytical score and Hessian with the same Mar-
quardt algorithm using numerical derivatives. In order to investigate the
effect of increased sample size we considered three values for the number
of groups : G = 50,500,5000 with 2 subjects in each group. The ran-
dom variables were generated as follows. We generated normal frailties:
N, =1,...,G, iid. ~ N(0,1). We took w = 0.5.

Given the 7;, the independent survival times 735,57 = 1,...,2 were gener-
ated from a simple Weibull (ap(t) = 0.04 x 2 x (0.04x )%~ = 0.042 x 2 x t*7,
ie., v = 0.042 = 0.0016,7v, = 2) with a;;(t|n;) = ap(t) exp(Th; BrXije +
wn;), where X, were binary covariates generated randomly as independent
Bernoulli variables with P(X;;, = 1) = 0.5. We generated right-censored
data as follows. Right-censoring variable C;; were generated from a uniform
distribution on [1,71] producing about 30 % of censoring. The observed sam-
ples were (Y, ..., Yin,), with Yj; = min(Tj;, Cy;) and 6;; = Iir;<c,;)- The
chosen values of the 3’s are given in the tables. We performed two simula-
tions, one with K = 2 another one with K = 10 to examine the effect of

increasing the number of explanatory variables on computing time. We used

18
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a Fortran program running with a Linux Redhat 9 system on a Intel Xeon
3.06 GHz processor.

In the two simulations the two algorithms gave identical results with
at least five significant digits. The algorithm using numerical derivatives
behaves surprisingly well in term of accuracy; much more complicated models
would be necessary to enlighten the possible benefit of the new method in
term of accuracy over the numerical derivatives. In the tables we give only
the common values of the computed estimates. The results are consistent
for the two simulations (Tables 1 and 2), with increasing precision as sample
size increases. The most interesting result is in term of CPU time for large
data sets. In the second simulation (K = 10) in the case G = 5000 the
proposed method took 408 seconds (Table 2); it took 7398 seconds when
using numerical derivative, a really different order of magnitude. Note that
the increase of time for the proposed algorithm is not very important when

going from two (239 seconds) to ten (408 seconds) explanatory variables,

5.3 Application to the catheter example

As an example we fitted the data presented by McGilchrist and Aisbett
(1991) on infections in catheters for patients on dialysis. Each observation
is the time to infection, at the point of insertion of the catheter for kidney
patients using portable dialysis equipment. There are 38 patients each with
exactly two observations. Variables retained for illustration are age (in years)
and sex (female vs male). The variance of the frailties is a measure of the
heterogeneity of the patients. Results are illustrated in Table 3. The program

using semi-analytical derivatives took 2.53 seconds of CPU time while using
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numerical derivatives it took 18.01 seconds. This illustrates once again the
difference in speed of the two methods, although in this case this is not

practically significant.

6 Conclusion

We have given general formulae linking full and observed scores and Hes-
sians and have suggested that these formulae could be applied for obtaining
efficient Newton-Raphson type algorithms. We have exhibited a particular
domain of application which is the inference for parametric proportional haz-
ards shared-frailty models: we have shown that nine numerical integrals had
to be computed for each group whatever the number of parameters in the
baseline hazard or representing effect of covariates, and we have illustrated
this approach using a Weibull model with normal frailty. On a large data
set with 5000 groups and ten explanatory variables the proposed algorithm
was nearly 20 times faster than using numerical derivatives. We may hope
that this approach can be used to treat complex models involving several
frailties or hazard represented on a basis of splines such as in Rondeau and

Commenges (2003).
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" Appendix: Derivatives of a; and b, for the Weibull
model
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Table 1: Maximum likelihood estimates together with the estimated standard
errors (between parentheses) of the parameters in a Weibull normal-frailty
model. Simulation 1: 2 explanatory variables; G: number of groups. CPU
times are given for the Marquardt algorithm using numerical derivatives and

using semi-analytical derivatives.

True parameter value G =50 G =500 G = 5000

w = 0.5 0.733 (0.356)  0.569 (0.089)  0.507 (0.027)
B =-0.5 -0.556 (0.330)  -0.468 (0.088)  -0.486 0.027)
B, = 1.5 (0.368) 1.441 (0.368)  1.434 (0.099) 1.460 (0.032)

Weibull parameters

Y = 0.0016 0.0012 (0.0016 ) 0.0013 (0.00035) 0.0015 (0.00013)
v =20 2.14 (0.308) 2.06 (0.082) 2.01 (0.025)
Number of iterations 14 9 9

CPU Time

Numerical derivatives 117 sec 94 sec 1014 sec
Semi-analytical derivatives 22 sec 14 sec 239 sec
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Table 2: Maximum likelihood estimates together with the estimated standard

errors (between parentheses) of the parameters in a Weibull normal-frailty

model. Simulation 2: 10 explanatory variables; G: number of groups. CPU

times are given for the Marquardt algorithm using numerical derivatives and

using semi-analytical derivatives.

True parameter values G =50 G = 500 G = 5000
w=20.5 0.000008 (0.374)  -0.49 (0.086) 0.527 (0.024)
B1 =-0.5 -0.848(0.267) -0.608(0.085) -0.517(0.025)
Be =15 0.929 (0.251) 1.357 (0.092) 1.526 (0.030)
B3 =-0.5 -0.368 (0.254) -0.613 (0.083) -0.528 (0.026)
Bs=15 1.389 (0.270) 1.503 (0.099) 1.475 (0.030)
Bs =-0.5 -0.026 (0.243) -0.503 (0.080) -0.502 (0.025)
Be = 1.5 1.344 (0.267) 1.622 (0.099) 1.503(0.030)
Br =-0.5 -0.576 (0.232) -0.590 (0.083) -0.528 (0.026)
Bs = 1.5 1.023 (0.269) 1.409 (0.097) 1.462 (0.030)
By = -0.5 -0.046 (0.241) -0.461 (0.083) -0.506 (0.025)
B0 =15 1.534 (0.287) 1.528 (0.098) 1.483 (0.029)
Weibull parameters

Y = 0.0016 0.0012 (0.0019 ) 0.0022 (0.0005) 0.0017 (0.00015)
v = 2.0 1.831 (0.159) 1.916(0.074) 1.998 (0.023)

Number of iterations
CPU Time
Numerical derivatives

Semi-analitycal derivatives

9

303 sec

13 sec

9

660 sec

14 sec

11

7398 sec
408 sec
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Table 3: Analysis of the kidney catheters data set: maximum likelihood

estimates for the Weibull normal-frailty model; CPU times are given for the
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numerical derivatives and semi-analytical approaches.
Estimate (Standard deviation)

=
(72}
¢ w 0.770 (0.243)
§ Age : Bo 0.0596 (0.126)
S Sex : (3 1.63 (0.494)
¢
é
§' Weibull parameters
= Yo 0.00194 (0.00202)
" 1.18 (0.159)
Number of iterations 12
CPU Time
Numerical derivatives 18.01 sec
Semi-analytical derivatives 2.53 sec

27




