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ABSTRACT: We consider a multi-state model for jointly modeling
dementia, institutionalization and death from data of cohort studies.
Such a model could help understanding the relationships between de-
mentia and institutionalization and also allow to make correct inferences
when the initial sample of a cohort was selected as not living in institu-
tion. We consider the case where times of death and entrance in institu-
tion are known exactly while the clinical status of dementia is observed
only at discrete time points. We give the likelihood in this setting and
propose a penalized likelihood approach for estimating the transition
intensities. A simulation study demonstrates that this non-parametric
approach yields satisfactory results in this complex setting.

Key Words: dementia; illness-death model; institutionalization;
interval-censoring; multi-state models; non-homogeneous Markov model.

1. INTRODUCTION

The illness-death model is well known and has had several applica-
tions in epidemiology. Applications and theory for inference based on
right censored and left-truncated observations can be found in Andersen
et al. (1). One complication arises when observations are in discrete
time, producing interval-censored observations. Non-parametric maxi-
mum likelihood estimators of the transition intensities have been given
by Frydman (2) for a particular observation pattern. Joly et al. (3) have
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proposed a penalized likelihood approach to this problem; Commenges
(4) has given a formal proof of the likelihood for inference in an illness-
death model with a mixed discrete-continuous observation pattern. A
review of inference for multi-state models from interval-censored obser-
vations has been given by Commenges (5).

The illness-death model has been used by Joly et al. (6) to study
dementia; the model was applied to the data of the Paquid cohort study,
and smooth estimates of the age-specific incidence of dementia and of
mortality rates of demented and not demented were given; this work was
continued in Commenges et al. (7). There is another very important
event that may happen to old persons: they can go into an institution.
It is interesting to study the age-specific rate at which persons enter in
institution; this could be done using an illness-death model interpreting
the state “ill” as “institutionalized”. It is interesting however to simul-
taneously model dementia and institutionalization using a more complex
model. One of the motivation is that demented persons are (probably)
much more likely to enter an institution than non-demented ones; an-
other issue is to investigate the influence of institution on the risk of
dementia. If we are interested in studying environmental factors (8) it
may be important to take into account the change of this factor when
the person goes in institution. Finally it may happen that the sample
has been selected by a criterion related to the institutionalization status.
For instance in the Paquid study the sample of the cohort was represen-
tative of subjects aged 65 years or more and living at home in a region of
south-west France; moreover demented subjects at the initial visit were
excluded (8). Such a selection of the sample introduces a left-truncation
condition. It is relatively easy to take into account such left-truncation
conditions if the event on which to condition can be represented in the
model. In previous analyses using an illness-death model it was possible
to take into account the condition that subjects had to be non-demented
at entrance in the cohort, but it was not possible to take into account
that subjects were not living in an institution.

For all these reasons we wish to jointly model dementia, institution-
alization and death, taking into account the observation scheme: transi-
tions times towards death and institution are known exactly, while the
dementia status is observed only at discrete times. In this paper we de-
velop this model, we give the likelihood from this observation pattern
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and we propose a semi-parametric approach based on penalized likeli-
hood to estimate the transition intensities; this is done in section 2. In
section 3 we present a simulation study which shows that estimation in
this complex setting—a five-state model with partially interval-censored
observations—is possible with this approach.

2. THE MODEL AND ITS LIKELTHOOD

2.1 THE MODEL

We consider a five state model depicted in Figure 1; mathematically
the state of a subject at time ¢ is represented by the value X (¢) taken by
a stochastic process X. Subjects are in state 0 if they are not demented
and living at home, in state 1 if they are demented living at home, in
state 2 if they are not demented but live in institution, in state 3 if
they are demented and live in institution and in state 4 if they are dead.
The model is irreversible and from all states it is possible to go in the
absorbing state 4. An homogeneous model would not be realistic since
it is already known that all intensities strongly depend on age. Thus
we assume a non-homogeneous Markov model taking age as the basic
time-scale. So the model is completely specified by the eight transition
intensities O[m(t), O[oz(t), C\f04(t), Cklg(t), C¥14(t), azg(t), 0424(t), O{34(t). A
semi-Markov model might also be considered because the risk of a tran-
sition to another state at time ¢ may depend on the sojourn time in
the current state already elapsed at time ¢. In this paper we will not
relax the Markov assumption because this would lead to sensibly more
complicated computations.

2.2 PATTERNS OF OBSERVATION

Inference will be made on the basis of observation of the follow-up
of a sample of subjects. Usually subjects are not followed-up from their
birth but from a certain age which we may call age at entrance in the
cohort: this is the age they have at the initial visit of the study and will
be denoted V. Generally demented as well as institutionalized subjects
are excluded from the initial sample. This produces a left-truncation
that has to be taken into account in the likelihood.

We consider that, for subjects included in the cohort, time of death



1duosnuew Joyine yH

-
(%]
®
-
3
o
S
)
)
)
o
@
o
<
®
-
0.
S)
=
|_\

and of institutionalization are exactly observed, unless they are right
censored. Right-censoring for institutionalization occurs if at the time
of the analysis a subject is still alive and not institutionalized (states 0
and 1) (if a subject dies without having been institutionalized the time
of institutionalization simply does not exist); for death right-censoring
occurs if the subject is still alive at the time of analysis. However the
clinical status of dementia is only assessed at discrete time points, which
corresponds to planned visits in a cohort study: this produces interval-
censored observations. In addition there may be missing observations
in the sense that a subject should have been seen at a planned visit
but was not, due to refusal or other reasons. One first issue is whether
the mechanism leading to these incomplete observations is ignorable. If
this is the case, the likelihood can be written in terms of both transition
probabilities and transition intensities and takes a relatively simple form.
The mechanism leading to right-censored observations for institution or
death can be considered as ignorable because for most subjects the right-
censoring variable is the date at which the analysis is done. Some subjects
may be lost to follow-up and the time to entrance in institution and the
time of death will be censored prior to the time of analysis. As for the
observation of the clinical status, the visit times can be considered as
fixed. Problems may come when these visits are missed. We shall make
the assumption that anyway the mechanism leading to missing data is
ignorable; the extent to which such an assumption is tenable should be
discussed for a particular data set.

2.3 The likelihood

We give the likelihood for a generic subject of a sample. In principle
all the variables, including times of observation should be indexed by i,
the label of a particular subject; we will omit this for sake of simplicity.
For obtaining the likelihood for a sample of n independent subjects one
must make the product of the n individual likelihoods. Let V;, Vi, ...,V
be the visit times at which the clinical status is observed. The vital and
the institution statuses are observed until C' (C' > Vi); here Vi, is the
last visit time of an alive subject. Let us call T}, the follow-up time that
is Ty = min(Ty, C), where Ty is the time of death; we observe Ty and
dy = I{Ty < C}. We also observe §; which is an indicator of whether

the subject has been observed institutionalized or not. Let 77 be the
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time of institutionalization; if it is not observed we can set it to an arbi-
trary value since it will not appear in the likelihood. This likelihood can
be written heuristically as the “probability” of the observed trajectory.
Commenges (4) proved that in the case of the illness-death model this
heuristic likelihood is the correct likelihood, as can be computed from Ja-
cod’s formula for multivariate counting processes (9). The likelihood is
easy to write in terms of both transition intensities and transition prob-
abilities py;(s,t) = P(X(t) = j|X(s) = h). We shall give it for the case
where there is the truncation condition X (V5) = 0 (that is for subjects
selected as non-demented and living at home at entrance in the cohort).

For writing relatively simply the likelihood, we have to consider sev-
eral exclusive cases. We explain how to write the first case given below;
the likelihood for the other cases is written according to the same prin-
ciple. Thus a subject neither seen institutionalized nor demented before
the time of analysis, has been observed in state 0 from V; to V; and
this happens with probability poo(Vo, V1); then, since his clinical status
was not observed between V; and Ty two exclusive paths are possible:
either he remained in state 0 until 7}, and this happens with probability
Poo (VL,TV), or he became demented during this time interval and this
happens with probability py; (Vz, TV); then according to the fact that Ty
was the time of death or the time of right-censoring one multiplies (or
not) by the intensity of going from the state occupied just before Ty to
state 4.

We first give the likelihood for a subject not demented at the time of
the last visit V7.

e If §; = 0 (not institutionalized)

L = poo(Vo, V1) [ Poo(VL,Tv)CYM(TV)JV

+ po1(Vz, Tv)a14(Tv)5V]

o If §; = 1 (institutionalized)



— If T; < Vi, (institutionalized before V7,)

[':pOO(%;TI)QOQ(TI)p22(TI,VL) [ p22(VL;TV)a24(TV)6V

+ pas(Vi, TV)Q’34(TV)6V

— If T7 > V1, (institutionalized after V7)

L = poo(Vo, V1) Poo(V, Tr) oo (Tr)paa (17, Tv)a24( ~V)6V

+ poo(Vi, Tr) oo (Ty)pas (Tr, Ty ) cvsa (T
Q34 I

oy
+ por(Ve, Tr)as(Tr)pss(Tr, Ty ) cusa (T )V
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Then we give the likelihood for a subject first diagnosed demented at
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o If §; = 0 (not institutionalized)
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o If §; = 1 (institutionalized)

- IfTr < Vi
L = poo(Vo, Tr)ewa(T1)paz(T1, Vi-1)p23(Vi-1, Vi)paa(Vi, TV)OZ34(TV)6V
-V, <Tr < Vy
L = poo(Vo,Vi-1)|por(Vi-1, Tr)eus(T1)pss(T1, V)
+ poo(Vi—1, Tr)cwa (Tr)p2s (T, V) | P33 (V, TV)Q’34 (TV)6V
- 17T >V

L = pooVo, Vi )por (Vi 1, Vi)puu(Vy, Tr) s (Tr)pss(Tr, Ty ) cusa (T )%V




1duosnuew Joyine yH

-
(%]
®
-
3
o
S
)
)
)
o
@
o
<
®
-
0.
S)
=
|_\

For this likelihood to be useful, it must be expressed in term of the
transition intensities which are the basic parameters of the model; so
we must be able to express the transition probabilities in term of the
transition intensities. Since our model is a Markov model the forward
Kolmogorov equations give this relationship. In irreversible models these
equations are easy to solve; for our model this gives:

Poo(s, t) = e~ A~ Ao(s,)~Aoi(s,1)
p(s,t) = e—A13(s,t)—A1a(s,t)
paa(s,t) = e~ A23(5,t) = Aza(s,t)

pas(s,t) = e A
t

po1(s, 1) Poo (s, u)agr (w)pr1 (u, t)du

Y
i

where Ap;(s,t) = [ ani(u)du

P22(8, u) a3 (u)p3s(u, t)du

2.4 A semi-parametric approach to estimation

Inference can be based on maximising the likelihood. If a parametric
model is chosen, modified Newton-Raphson algorithms can be used for
the maximisation. Non-parametric approaches can take two paths: one is
the unconstrained non-parametric approach in the spirit of Turnbull (10)
and this was developped by Frydman (2), another one uses smoothing,
for instance through penalized likelihood such as in Joly and Commenges
(3). In the former path the EM algorithm is attractive, in the latter the
Marquardt algorithm achieves a good speed of convergence. Here we will
pursue the penalized likelihood approach which is very convenient and
has the advantage to yield smooth estimates of the transition intensities.
However since there are eight functions to estimate in this model we
propose a semi-parametric approach in order to reduce the number of
functions to estimate non-parametrically. We assume that the transitions
towards death are all proportional:

o4 (t) = oy (t)e™
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a4 (t) = oy (t)e
O!34(t) = (p4 (t)ees

In addition we also assume proportionality of the transition intensities
towards dementia:

Of23(t) = Q1 (t)€04,

and proportionality of the transition intensities towards institution:
13 (t) = Q2 (t)eef’

These parametric assumptions introduce five parameters 61, 05, 65, 04,
f5; however they reduce to three the number of functions on which no
parametric assumptions are made. The numerical complexity is thus no
more than for the three-state illness-death model treated by Joly et al.
(6). The penalized likelihood is:

pI(a().5.0) = 1(a().0.0) = Y- sy [ Loty ()

J=1,2,4

where [ is the loglikelihood, a(.) is the matrix of baseline hazard func-
tions, @ is the vector of proportionality parameters, D represents the data.
The penalty term excludes that discrete or unsmooth functions maximise
pl(al(.), 5, D) and its weight is tuned by the smoothing coefficients ko,
Ko2, Ko4.

The solution of the penalized likelihood is approximated using a ba-
sis of splines. We use cubic M-splines which are variants of B-splines
(11). For j = 1,2,4 we consider transition intensities generated by lin-
ear combinations of M-splines; if we use the same basis of splines for
the three intensities we can write: &g;(.) = 9,M(.), where M(.) =
(My(.), ..., My ()™ is a basis of M-splines and %, = (%;1, ..., ¥jm) are the
parameters. We may also use distinct bases of splines for the different
transition intensities, possibly with a different number of splines in each
basis. The positivity constraint for Gy;(.) is fulfilled by constraining the
coefficients 4 to be positive. The approximation & of & is the set of
functions belonging to the space generated by the basis of splines, which
maximizes pl(ao1, @12, g2, #). From a numerical point of view we have to
maximise over the parameters of the splines ,,j = 1,2, 4 plus the five
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proportionality parameters. In principle explanatory variables can also
been added, as has been done in Commenges et al. (7).

The three smoothing parameters kg1, kg2, Kos can be chosen by max-
imising a likelihood crossvalidation criterion as in Joly et al. (6). The
efficiency of the global procedure has not been analytically studied but
several simulations showed a very satisfactory behaviour. We may think
that the efficiency relative to the good parametric model is high as long
as the functions to estimate are really smooth.

3. A SIMULATION STUDY

A simulation study was performed to demonstrate the feasability of
the proposed semi-parametric approach to the rather complex setting of
this five-state model with partially interval-censored observations. We
generated three samples of sizes 500, 2000 and 4000 observations ac-
cording to this model and choosing Weibull intensities for the baseline
intensities. Precisely the three simulated baseline intensities were of the
form:

a(t) = Ap(\t)Pt

and the parameters (A, p) were (0.05,2.4), (0.08,2.6) and (0.06,2.5) for
(o1, 02 and agy respectively. The other transitions were obtained follow-
ing the proportionality assumptions of the previous section with #; = 0.8,
fy = 02,03 =1, 0, =1 and 05 = 0.6. These values corresponded to
proportionality constant equal to 2.22, 1.22, 2.72, 2.72 and 1.82. For
instance the mortality rate of demented subjects, that is the transition
intensity from state 1 to state 4 is: au4(t) = apa(t)e? = 2.22\p(\t)P~!
with the values (A = 0.06,p = 2.5).

All the generated processes started from state 0 at time zero. For each
subject, a left-truncation variable with uniform distribution on [0, 5] was
generated: observations were included only if no transition had occured
previous to the value of the truncation variable. For each subject, a right-
censoring variable was generated from a uniform distribution on [2, 52].
Times of transition towards institution or death was exactly observed
unless right-censored. The clinical status of dementia was observed at
dicrete visit times generated as Vj11 = V;+Uj41,5 =0,...,L —1, where
the U; were independently uniformly distributed on [1,4] and V;, < Ty.
Thus the mean duration between two visits was 2.5. We added 65 to all
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the generated times so that these times look like ages expressed in year,
at which the event considered may be observed in cohort of persons aged
more than 65.

The three baseline functions were approximated using a basis of splines
with 7 knots for each. The penalized likelihood was maximised on the
32 parameters (27 spline parameters plus five proportionality parame-
ters) using a Marquardt algorithm (12) (a robust version of the Newton-
Raphson algorithm), implemented through a Fortran program; for fixed
smoothing coefficients, the algorithm converged in about 12 iterations.
The likelihood crossvalidation criterion was maximised over the three
smoothing coefficients k(; using a simple grid method.

The estimates for the three baseline intensities for n = 2000 are com-
pared to the simulated ones in Figure 2. The estimates of the propor-
tionality constants are given in Table 1 for the three simulations with
n = 500,2000,4000. Confidence intervals are also given for the pro-
portionality constants: these are based on the hessian of the penalized
likelihood (that is treating penalized likelihood as if it was a likelihood),
an approach proposed by O’Sullivan (13) and others. This is justified
by a Bayesian argument identifying the penalized likelihood to an a pos-
teriori distribution. Globally the results appear very satisfactory since
the estimated curves are near the simulated ones and the estimated con-
stants are well inside the computed confidence intervals (unfortunately
the length of the procedure excludes evaluating the coverage of these con-
fidence intervals by replicating this simulation a large number of times).
Moreover one can see that the estimated width of the confidence inter-
vals are shorter for larger sample sizes and that their ratios are roughly
proportional to the inverse of the square root of the sample sizes. For
instance, for exp #; the ratios of the lengths of the confidence intervals
obtained for n = 2000 and n = 4000 to that obtained for n = 500 are
0.43 and 0.34 respectively, which is close to what is expected (0.5 and
0.34) for the classical convergence speed in n'/2.

In further work we intend to apply this method to the data of the
Paquid study which should yield interesting epidemiologic results at both
a descriptive level and analytic one, by giving insight on the relationship
between dementia and intitutionalization.
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Table 1: Simulated and estimated proportionality constants in the semi-
parametric model

n = 500 n = 2000 n = 4000
j |exp(0;) exp(d;) 95% CI  exp(d;) 95% CI  exp(f;)  95% CI
1 2.22 2.53 [1.40 , 4.59] 1.99 [1.42 , 2.78] 2.41 [1.93 , 3.02]
2 1.22 1.14 [0.81 , 1.62] 1.12 [0.96 , 1.32] 1.24 [1.11 , 1.38]
3| 272 285 [2.03,4.01] 238 [2.01,281] 250 [2.22,2582]
4 2.72 2.81 [1.98 , 3.97] 2.55 [2.12 , 3.08] 2.85 [2.51 , 3.24]
5 1.82 2.20 [1.46 , 3.31] 1.94 [1.53 , 2.47] 1.60 [1.35, 1.90]
1: Demented
Qo1 Q13
14
0: Healthy o4 > 4: Dead — 3: Dem+Instit
24
Qo2 Q23
2: Instit

Figure 1: The five-state model for dementia, institutionalization and

death.
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Figure 2: Comparison of the three baseline estimated (dotted lines) and
simulated (full lines) intensities: upper: «go; middle: «g4; lower: «pg;
sample size: n = 2000.
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