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Abstract. Ca2+, the main second messenger, is central to the regulation of cellular growth. 

There is increasing evidence that cellular growth and proliferation are supported by a 

continuous store-operated Ca2+ influx. By controlling store refilling, the sarco/endoplasmic 

reticulum Ca2+ ATPase (SERCA) also controls store-operated calcium entry and thus cell 

growth. In this review, we discuss data showing the involvement of SERCA in the regulation 

of proliferation and hypertrophy. First, we describe the Ca2+-related signalling pathways 

involved in cell growth. Then, we present evidence that SERCA controls proliferation of 

differentiated cells and hypertrophic growth of cardiomyocytes, and discuss the role of 

SERCA isoforms. Last, we consider the potential therapeutic applications of increasing 

SERCA activity for the treatment of cardiovascular diseases and of modulating SERCA and 

SR content for the treatment of cancer. 

 

Keywords: Sarcoplasmic Reticulum Calcium Transporting ATPases, cell growth processes; 

calcium signalling. 

 

Abbreviations. ATP – adenosine triphosphate; Ca2+ - ion calcium; CCE – capacitative Ca2+ 

entry;  CDK4 – cyclin-dependent kinase 4; CRAC – calcium-release activated channel; 

CRACM1 - calcium-release activated channel molecule 1; IP3 –inositol-1,4,5-trisphosphate; 

IP3R – inositol-1,4,5-trisphosphate receptor; NFAT – nuclear factor of activated T-

lymphocytes; PDGF – platelet derived growth factor; PKC – protein kinase C; PMCA – 

plasma membrane Ca2+ ATPase; Rb – retinoblastoma protein; ROC – receptor operated 

calcium channels; RyR –ryanodine receptor; SR/ER: sarco/endoplasmic reticulum; SERCA: 

sarco/endoplasmic reticulum Ca2+ ATPase; SOC – store-operated calcium channels; SRF –

serum response factor; STIM1 – stromal interaction molecule 1; TRPC – transient receptor 
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potential channels; VEGF – vascular endothelial growth factor; VOCC – voltage operated 

calcium channels; WT – wild type. 

H
A

L author m
anuscript    inserm

-00258975, version 1



 4

 

Introduction. 

The calcium ion, Ca2+, is a ubiquitous second messenger controlling a broad range of 

cellular functions including growth and differentiation. The plasticity and diverse effects of 

this signal are based on extensive spatio-temporal compartmentalization. Spatial patterning 

defined by the amplitude, frequency and duration of the Ca2+ signal, is essential for 

appropriate intracellular function. There is increasing evidence that cellular growth and 

proliferation are supported by continuous store-operated Ca2+ influx. Different store-sensitive 

Ca2+ channels can be mobilized in different cell types, leading to activation of kinases or 

phosphatases which regulate the activity of transcription factors. One of these factors, the 

Ca2+-regulated transcription factor NFAT (nuclear factor of activated T lymphocytes), is 

required for proliferation and hypertrophy. Several data highlight the colocalization of Ca2+ 

channels, pumps and transducers (protein kinases and phosphatases) with their targets, 

transcriptions factors, which are essential for proliferation (rev in [66]). Recent data pointed to 

the essential role of store sensitive Ca2+ entry in proliferation. These Ca2+ channels are 

activated by a decrease in the sarcoplasmic reticulum Ca2+ load. The sarcoplasmic reticulum 

Ca2+ ATPase, SERCA, controls SR refilling, and thereby also controls cellular growth. We 

begin with a brief overview of different types of Ca2+ events observed in quiescent cells and 

during induction of proliferation and/or hypertrophic growth. Then, we compile available 

information concerning the activation of signalling pathways controlled by SERCA, and 

discuss the physiological role of Ca2+ pumps in the control of cell proliferation and 

hypertrophy in different cell types. We conclude with a brief consideration of potential 

therapeutic developments for treatment of hypertropic and proliferative diseases, including 

cancer.  
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1. Ca2+-related signalling pathways controlling proliferation and /or hypertrophy: the 

role of SR Ca2+ content.  

In quiescent cells, the Ca2+ signal consists of a sudden increase in the concentration of 

cytosolic free Ca2+  ions following the opening of Ca2+ channels either on the cell surface: the 

voltage-operated Ca2+ channels (VOCC), receptor-operated channels (ROC) and store-

operated channels (SOC), or on the sarco/endoplasmic reticulum membranes : the inositol-

1,4,5-trisphosphate receptors (IP3Rs) and the ryanodine receptors (RyRs). The free Ca2+ 

concentration can be rapidly reduced by the Ca2+ pumps on the plasma membrane (plasma 

membrane Ca2+ ATPase, PMCA) or those on the internal store (sarco/endoplasmic reticulum 

Ca2+ ATPase, SERCA). Na+/Ca2+ exchangers also contribute to Ca2+ efflux. These pumps and 

exchangers ensure that cytosolic Ca2+ remains low and that the stores are loaded with signal 

Ca2+. There are various isoforms of all the Ca2+-transporting channels and pumps and they are 

differentially expressed depending on cell type and proliferation state (reviewed by [6, 66, 

82]).  

In most quiescent cells, the major increase in cytosolic free Ca2+ is provided by the 

internal store; the role of extracellular Ca2+ influx being limited to a trigger for intracellular 

calcium release. However, it appears that proliferation is the consequence not of a sudden 

increase in the intracellular Ca2+ concentration but of a continuous store-operated Ca2+ influx, 

that corresponds to increased permeability of the plasma membrane to Ca2+. 

Recent studies have led to the identification of the key transcriptional Ca2+-regulated 

pathway controlling proliferation in different cell types. Stimulation of phosphoinositide-

coupled receptors by mitogens (hormones, growth factors, signalling molecules) is linked to 

generation of inositol-1,4,5-trisphosphate (IP3), activation of IP3R leading to Ca2+ release 

from intracellular stores and, subsequently, capacitative Ca2+ entry resulting in sustained 
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cytosolic Ca2+ increases (rev. in [66]) (Fig. 1). A long-lasting increase in cytosolic Ca2+ (at 

least 1-2h) is required for activation of the transcription factor NFAT – the mediator of 

proliferation in almost all cell types (rev. [13, 66]). Several factors are involved in generating 

this type of Ca2+ signal: IP3R; the sarcoplasmic reticulum Ca2+ release channel; the sensor  

molecule STIM1 (Stromal interaction molecule 1), that links store depletion to store-operated 

channels (CRAC, Orai, TRPC or others channels depending on cell types); and SERCA, that 

controls store refilling and thus the amplitude and propagation of the Ca2+ signal (Fig.1). Two 

functions have been attributed to STIM1: 1) the sensor function that initially detects the 

reduction of Ca2+ content in the lumen of the reticulum; 2) the messenger function provided 

by STIM1 translocation to the plasma membrane to activate store-operated channels [13]. 

Ablation of STIM1 inhibited thapsigargin-evoked Ca2+ entry without altering resting Ca2+ 

levels, Ca2+ release transients or the membrane potential [56, 106]. Furthermore, ablation of 

STIM1 neither inhibited SERCA activity nor prevented Ca2+ store refilling when cells were 

stimulated with physiological agonists [56]. These findings suggest that Ca2+ ions can be 

directly transferred from SOC to SERCA. Ablation of SERCA inhibits thapsigargin-evoked 

Ca2+ entry, suggesting that abnormally low Ca2+ store content or elevated level of cytosolic 

Ca2+ inhibit store-operated Ca2+ entry [139]. These various observations suggest the existence 

of microdomains containing SOC channels on the plasma membrane, STIM proteins on the 

SR/ER, SERCA pumps and elements of the calcineurin/NFAT signalling pathway (Fig. 1). 

Interestingly, stimulation of vascular smooth muscle cells with phosphoinositide-coupled 

agonist for a few hours resulted in prolongation of cytosolic Ca2+ clearance after Ca2+ release 

from the ATP-sensitive pool, suggesting inhibition of Ca2+ pump activity during induction of 

proliferation [69].  

The sustained increase in cytosolic Ca2+ due to activation of SOC is necessary to 

activate calcineurin, a Ca2+/calmodulin-dependent phosphatase, which dephosphorylates 
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many proteins; one such protein is the transcription factor NFAT and its dephosphorylation 

results in its rapid import into the nucleus and increased intrinsic DNA binding activity [28, 

102]. In the nucleus, NFAT binds to the promoter of various genes as a homodimer or as a 

heterodimer with other transcription factors including SRF, Fos-Jun, and GATA [5, 41, 74]. 

Of the five different isoforms, four (NFATc1 to c4) are regulated by calcineurin, but they may 

well have opposite effects on cell proliferation (rev [47, 66]): NFATc2 exerts tumour 

suppressor properties, whereas NFATc1, NFATc3 and NFATc4 appear to function as 

inducers of proliferation/hypertrophy. There is some evidence for an inhibitory role of 

NFATc2 in the regulation of cellular growth: it represses the expression of the key cell cycle 

regulatory kinase, cyclin-dependent kinase 4 (CDK4) [4] , and expression of cyclins A2, B1, 

E and F [12]. By contrast, NFATc1 and NFATc3 favour cell cycle progression by induction 

of the cell cycle-related genes cyclin D1, cyclin D2, retinoblastoma protein (Rb) and c-myc, 

which are required for passage through the G1/S checkpoint [65, 89].  

In summary, proliferation is associated with a sustained increase in cytosolic Ca2+ due 

to 1.) enhanced excitability of IP3Rs after IP3 binding; 2.) decreased store refilling probably 

due to inhibition of SERCA and 3.) enhanced store-operated Ca2+ entry. This sustained 

increase in cytosolic Ca2+ favours activation of the calcineurin/NFAT complex leading to 

induction of a genetic programme of proliferation/hypertrophy remodelling.  

 

3. Effect of different SERCA isoforms on cellular growth and proliferation. 

SERCA is encoded by three different genes (ATP2A1, ATP2A2 and ATP2A3), each 

gene giving rise to various isoforms by alternative splicing at the 3' ends of the mRNA  [6]. 

The SERCA isoforms differ mainly by their affinity for Ca2+ (2b>2a=1>>3) [73] and their 

Ca2+ transport turn-over rates, SERCA2b having the lowest transport capacity of all SERCAs 

[73, 130]. In many cells, at least two isoforms are expressed but the role of each isoform in 
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growth and proliferation is not well understood. For example, in skeletal and smooth muscle, 

SERCA2a and SERCA2b are present in quiescent differentiated cells, whereas in proliferating 

cells only the SERCA2b protein is present [21, 65, 69, 125]. 

SERCA2b differs from SERCA2a by an extension of 46 amino acids that forms an 

additional transmembrane domain placing the C-terminus of SERCA2b in the ER lumen. In 

overexpressing systems, the C-terminal domain of SERCA2b interacts with calnexin and 

calreticulin. This could control the activity of SERCA2b and account for the functional 

differences in terms of Ca2+ wave properties between SERCA2a and SERCA2b when 

overexpressed in Xenopus oocytes [55, 104]. 

There is no available data concerning specific association of SERCA2a or SERCA2b 

with components of SOC/NFAT signalling. Nevertheless, studies involving gene transfer 

clearly demonstrated that SERCA2a and SERCA2b are not equivalent in terms of signal 

transduction. SERCA2a is lost from proliferating VSMC and we have shown that restoring 

SERCA2a expression to VSMC inhibited VSMC proliferation and neointima formation in 

rats [65]. Other groups have demonstrated that overexpression of wild-type SERCA2b has no 

effect on VSMC migration [135]. Both differences in SERCA isoform and in the mechanisms 

controlling proliferation and migration may explain these results. Unfortunately, there is 

currently no information available about the effect of SERCA2b overexpression on VSMC 

proliferation or of SERCA2a on migration.  

Data from transgenic mice also clearly demonstrate differences between SERCA2a 

and SERCA2b in terms of hypertrophic growth of cardiomyocytes [127-129]. Wuytack et 

coll. have produced transgenic mice where SERCA2a was replaced by the high Ca2+ affinity 

SERCA2b isoform, resulting in cardiac dysfunction and hypertrophy [129]. In the SERCA2a-

deficient animals, expression of phospholamban (PLN) was increased. In SERCA2a/PLN 

double knock-out mice the phenotype was even more severe with a high risk of cardiac death 
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after beta-adrenergic stimulation, so an increase in the PLN level may be an adaptation 

mechanism to lower Ca2+ affinity. The total level of SERCA was lower in SERCA2a-

deficient mice and, in the initial study, cardiac hypertrophy could be interpreted as a 

consequence of down-regulation of total SERCA [129]. However, increasing the cardiac 

SERCA2b level in these mice did not prevent hypertrophy [127, 128]. Interestingly, 

SERCA2b/WT heterozygotes in which the natural SERCA2a isoform is the major isoform, do 

not present hypertrophy.  

These results demonstrate that 1) the SERCA2a and SERCA2b isoforms are not 

equivalent in terms of growth signal transduction in cardiac and vascular myocytes; 2) having, 

at baseline, a low SERCA2a level or having a SERCA pump with a much higher Ca2+ affinity 

may be detrimental for the heart, and 3) replacing SERCA2a, which has low affinity for Ca2+, 

with the isoform with high affinity, SERCA2b, results in cardiac dysfunction and alteration of 

Ca2+ signalling pathways.  

 

3. Alterations of Ca2+ signalling during proliferation/hypertrophy in various cell 

types: the role of SERCA isoforms.  

An increase in cytosolic Ca2+ concentration — either oscillatory or sustained 

depending on cell type — is required for activation of NFAT transcriptional activity. In 

pathological situations or under the influence of various growth stimuli, the intracellular Ca2+ 

signal is altered in such a way that a new Ca2+-regulated transcription pathway is activated. 

Decrease in SERCA expression and/or activity, reported in various growing cells, may play a 

role of support for sustained activation of store-operated Ca2+ entry in proliferating cells 

(Table. 1). This occurs in excitable and non excitable cells but the pathways differ between 

cell types.   
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3.1. Non-excitable cells. In non-excitable cells, stimulation with phosphoinositide-coupled 

agonists can result in complex global Ca2+ signals organized as regenerative waves. The Ca2+ 

wave propagation sites are rich in the ER proteins SERCA, calreticulin and IP3Rs (rev in 

[66]). This oscillatory signal is prevented by inhibition of PKC, SERCA or CCE, or by 

external Ca2+ removal showing the involvement of IP3R Ca2+ release, SR Ca2+ uptake and 

Ca2+ entry through SOC in the generation of these waves [80]. Overexpression of SERCA in 

Xenopus oocytes increases the frequency of IP3-induced waves and narrows the width of 

individual calcium waves by relieving the inhibitory effect of high Ca2+ on IP3R [14]. These 

various observations indicate that in non excitable cells SERCA controls the kinetics of Ca2+ 

wave propagation, and thereby finely regulates Ca2+-dependent transcription pathways. 

Interestingly, during activation of T-lymphocytes, SERCA3 expression decreases by 90%, 

whereas SERCA2b expression approximately doubles [64]. These isoforms have very 

different Ca2+ sensitivities and may trigger new cellular processes. 

In non excitable cells such as lymphocytes, 3T3-L1 preadipocytes, endothelial cells, 

epithelial cells, and pancreatic beta cells, proliferation is driven by the calcium-dependent 

calcineurin/NFAT pathway [30, 46, 89, 101, 108, 131, 136]. Also, in non dermal epithelia 

cells, induction of proliferation by VEGF requires NFAT activation via store-operated STIM-

mediated Ca2+ entry [131]. The most complete description of this signalling pathway has been 

in lymphocytes, in which the importance of all signalling molecules — SERCA, STIM1, a 

pore subunit named Orai1 (CRACM1) and NFAT — has been validated by ablation, patch 

clamp experiments and reporter-promoter assays [13, 31, 98, 106, 115, 116, 134, 139, 140]. 

Together, these findings demonstrate that proliferation in non-excitable cells is driven 

by NFAT activated by a long-lasting oscillatory store-operated Ca2+ signal. SERCA, 

controlling the amplitude and the kinetics of Ca2+ wave propagation, also can finely regulate 

Ca2+-dependent transcription pathways.  
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3.2. Cardiomyocytes. In cardiomyocytes, depolarization-induced Ca2+ cycling 

controlling myocyte contraction has no effect on activation of NFAT signalling pathway. By 

contrast, stimulation with phosphoinositide-coupled agonists induces a slow increase in 

resting Ca2+ due to the activation of IP3Rs and hypertrophic growth.  

A decrease in SERCA activity, associated with a decrease in SERCA2a expression, 

was described in cardiac hypertrophy in the early 1990s [22, 60, 77, 86]. Since then, 

numerous papers have been published on the topic. Not all of the authors agreed about 

decreased expression and discordance between expression of SERCA2a at the mRNA and 

protein levels has been reported [112]. The decrease in the SERCA2a level is related to the 

intensity and duration of cardiac overload, but most authors now agree that SERCA2a is down 

regulated in severe heart failure [2]. Reduced SERCA2a activity and SR Ca2+ uptake lead to 

abnormal Ca2+ handling in failing cardiomyocytes and this involves an increase in diastolic 

Ca2+, an abnormally long time course of Ca2+ transients, and a decrease in SR Ca2+ release 

[20, 42, 43]. Furthermore, reduced SR Ca2+ stores and increased expression of transient 

receptor potential channels (TRPC) in failing heart favour capacitative Ca2+ entry and sustain 

activation of calcineurin [63, 88].  

Results from transgenic mice reveal a primordial role for SERCA2a dysfunction in 

induction of signalling pathways leading to cardiac hypertrophy and failure. Indeed, deletion 

of the SERCA2 gene (ATP2A2) is lethal but heterozygous mice are viable and develop 

cardiac hypertrophy [97]. Increasing the cardiac load by aortic banding resulted in faster heart 

failure in SERCA 2+/- mice than in WT controls [111]. However, in human there is no 

evidence for cardiac hypertrophy in patients carrying a mutation of the ATP2A2 gene 

(Darier’s disease)[76, 122]: up regulation of the normal allele is a possible explanation for the 

absence of cardiac hypertrophy  [121].  

H
A

L author m
anuscript    inserm

-00258975, version 1



 12

During phenylephrine-induced hypertrophy in neonatal rat cardiac myocytes, the early 

and prominent feature of hypertrophic remodelling is the reduction of the abundance of the 

SERCA2 transcript [99]. The consequence of SERCA2a down-regulation on Ca2+ signalling 

is compensated by alternate Ca2+ transport mechanisms, and this contributes to the induction 

of a genetic programme of hypertrophic remodelling. Indeed, reduction of SERCA2a 

expression by RNA silencing in cardiac myocytes resulted in activation of the calcineurin-

dependent complex leading first to increased expression of prohypertrophic transcription 

factors Sp1, MEF2 and NFATc4, and, subsequently, to up-regulation of Ca2+ handling 

proteins including the Na+/ Ca2+ exchanger and TRPC [113]. Calcineurin was identified as a 

central prohypertrophic signalling molecule for the myocardium [45] and its target, NFAT, is 

necessary and sufficient for mediating pathological skeletal myocyte and cardiac hypertrophy 

[45, 81, 85, 132].  

 These studies suggest that hypertrophic stimuli induce a sustained increase in resting 

Ca2+ in cardiomyocytes due to inhibition of SERCA2a activity. This resting Ca2+ leads to 

activation of calcineurin/NFAT signalling resulting in hypertrophic remodelling of 

cardiomyocytes. Furthermore, modulation of expression of Ca2+ transporters in hypertrophic 

cardiomyocytes leads to functional abnormalities in Ca2+ cycling and in the long term to 

impairment of cardiac contractile function. 

 

3.3. Smooth muscle. In vascular smooth muscle cells (VSMC) phosphoinositide-

coupled agonists induce a sustained increase of cytosolic Ca2+ due to the generation of 

repetitive Ca2+ waves [40, 53], inhibition of activity of Ca2+ pumps [69] and increased 

capacitative Ca2+ entry (CCE) [38, 39].  

Proliferation of VSMC is associated, in the rat and rabbit, with loss of the cardiac 

isoform of the sarcoplasmic reticulum (SR) Ca2+ pump, SERCA2a, and of the SR Ca2+ 
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channel, the ryanodine receptor, RyR [69, 75, 125]. Loss of SERCA2a suggests a decrease in 

store refilling and this would favour activation of store-operated Ca2+ influx. Indeed, the 

expression of the store-operated Ca2+ channels TRPC1, TRPC4 or TRPC6 is increased in 

proliferating VSMC [30, 39, 118, 138]. The ER calcium sensor STIM1 regulates store-

operated Ca2+ entry via interaction with TRPC1 in VSMC, and ablation of STIM1 by siRNA 

inhibits VSMC proliferation [119]. The number of T-type VOC channels is increased in 

proliferating VSMC [62, 103] and T-type channels are able to replenish the depleted Ca2+ 

store [34]. Mibefradil, a selective T-type channel blocker, inhibits proliferation of VSMC [68, 

105, 110] and NFAT transcriptional activity [68]. Alterations of the Ca2+-handling proteins 

may be part of the VSMC dedifferentiation process, and has been described for many proteins 

[92]. It is also plausible that under a growth stimulus, alterations in Ca2+ handling may be a 

trigger for the activation of new Ca2+-regulated transcription pathways. 

The main Ca2+-regulated transcription pathway described in VSMC involves the 

calcineurin/NFAT pathway. Many receptor tyrosine kinase and G-protein coupled receptor 

agonists, such as angiotensin II, endothelin 1, and platelet derived growth factor (PDGF-BB), 

and also very low density lipoproteins, induce VSMC proliferation or migration through 

activation of the NFAT transcription pathway [40, 41, 69, 71, 117, 133, 137]. NFATc3 is 

induced by endothelin-1 and ablation of this isoform also inhibits VSMC proliferation [40, 

90]. In animal models, restenosis was shown to be prevented by restoring normal SR Ca2+ 

handling using SERCA2a gene transfer [65] and also by inhibiting the NFAT transcription 

pathway [72, 137]. 

These findings indicate that VSMC proliferation is driven by NFAT activation 

following a sustained increase in cytosolic Ca2+ which is due to inhibition of SERCA activity 

and increased voltage-independent Ca2+ entry.  
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3.4. Cancer cells. The calcium-dependent calcineurin/NFAT signalling pathway is 

increasingly recognized as a central player in the development of a number of very different 

malignancies (rev. [9, 82]). Variation in expression of Ca2+ pumps and channels, most 

frequently an increase in TRPCl expression and decrease in SERCA expression, have been 

described in numerous cancers (rev. [82]). Furthermore, NFATc1 is commonly overexpressed 

in pancreatic, breast and colon carcinomas and enhances the malignant potential of tumour 

cells [10, 54]. Loss of SERCA activity and expression has been detected in many different 

malignancies. Indeed, changes in SERCA3 expression have been observed in colon cancer: 

the protein was either absent or present in much lower abundance in colon carcinoma than 

normal tissue, consistent with a loss of differentiation in tumour cells [8, 36]. Next, SERCA2b 

expression is very substantially decreased in oral cancers (squamous cell carcinoma), and in 

thyroid cancer, where it is the major isoform [29, 93]. Alternatively, somatic and germline 

mutations in lung cancer and germline mutations in colon cancer in the ATP2A2 gene result in 

the loss or reduction of SERCA2 expression [61]. The direct evidence linking a deficiency of 

SERCA to tumour genesis has been provided by development of heterozygous SERCA2 mice 

(ATP2a2+/-). These mice are sensitized to the development of squamous-cell carcinoma, 

which arises directly as a result of SERCA2 haploinsufficiency [70, 97, 100]. The 

keratinocytes from Darier’s disease patients, deficient in SERCA2b, as well as normal 

keratinocytes in which SERCA2b was silenced by siRNA, showed enhanced proliferation 

supported by up-regulation of the store-operated TRPC1 channel [94]. These observations 

suggest that haploinsufficiency of the SERCA 2 gene is involved in growth and proliferation 

of specific tumor cells. 

 

Thus, there is increasing evidence that loss of SERCA activity and store depletion 

induces proliferation in various normal and cancer cell types via store-operated Ca2+ entry and 
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NFAT activation. Some groups have reported that in cancer cell lines an increase in 

SERCA2b expression and in sarco/endoplasmic reticulum Ca2+ content are required for 

induction of proliferation, but the molecular pathway involved has not been identified [17, 18, 

50]. Crepin et al [18] reported that the increased rate of proliferation of immortalized 

epithelial prostate cells (PNT1A) induced by prolactin is associated with an increase in the SR 

calcium content and SERCA2b expression. Silencing of SERCA2b expression by siRNA 

leads to reduction of PNT1A cell proliferation. These observations led the authors to conclude 

that SERCA2b overexpression is a protagonist of prolactin-induced proliferation. However, in 

primary human prostate cancer epithelial cells (hPCE), store-operated Ca2+ entry and NFAT 

activation was identified as the main proliferation pathway [123].  

In conclusion, there is a large body of data demonstrating that in various cell types 

store-operated Ca2+ entry is necessary to activate NFAT signalling, although the exact 

mechanism of this process is not yet completely understood. SERCA, by controlling store 

refilling, plays a primordial role in the control of cell growth and proliferation.  

 

 

4. SR/ER-based therapeutic strategies.  

 The endoplasmic reticulum is not only a Ca2+ reservoir but is also the site for protein 

synthesis and folding. This has consequences for the design of any Ca2+ cycling-based 

therapeutic strategies: the SR/ER Ca2+ load has to be finely tuned to maintain cell integrity. 

With this in mind, two types of strategy have been designed with SERCA as a target: one 

aims to restore normal SR load and SERCA activity and is used in cardiovascular diseases. 

The other consists of inducing ER stress to cause apoptosis; this strategy is designed to kill 

cancer cells. 
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4.1-Increasing SERCA2a activity  

Two approaches have been proposed to increase SERCA2a activity: SERCA2a 

overexpression; and phospholamban (PLN) ablation. They have been particularly well studied 

in the heart where abnormal Ca2+ cycling is the main determinant of contractile dysfunction 

and heart failure [67]. 

 SERCA overexpression. Transgenic animals with cardiac-specific expression of either 

SERCA2a or SERCA1a showed improved contractility under baseline conditions and after 

pressure overload [3, 84, 120]. The mortality rate after aortic banding in animals 

overexpressing SERCA2a was identical to that in the WT controls [84]. However, in the same 

model, Chen et al reported increased mortality after myocardial infarction in association with 

an increased frequency of arrhythmias [16]. Less persistent arrhythmias were observed after 

post-ischemic injury in SERCA1a-overexpressing hearts from transgenic rats as well as in 

hearts overexpressing SERCA2a from an adenoviral vector [24, 120]. The data from 

transgenic animals indicate that having a high basal level of SERCA (2a or 1a) can improve 

cardiac function and prevent heart failure.  

The enhanced contractility associated with SERCA2a overexpression has been 

reported to be protective against both heart failure and cardiac hypertrophy [19, 51, 79, 84, 

87, 124]. Adenovirus-mediated gene transfer of SERCA2a restored the Ca2+ transient in 

cardiomyocytes isolated from failing human hearts[23], improved cardiac haemodynamics 

and increased survival in animal models of heart failure [19, 25]. SERCA2a rescues depressed 

contractility and survival without adverse effects on energy metabolism [19, 79] or cardiac 

arrhythmia in animal models [24] but definite proof of SERCA2a gene transfer efficiency in 

human await the on-going clinical trials.  

 We have shown that normalization of Ca2+ handling by SERCA2a gene transfer 

prevents injury-induced vascular remodelling in rats [65]. Thus, preventing SERCA2a loss by 
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gene transfer is a novel potential strategy for treating restenosis. Coronary restenosis is a 

major complication of percutaneous coronary balloon angioplasty. It is characterized by 

neointimal hyperplasia due to proliferation of VSMC. Although the use of drug-eluting stents 

(DES) limits neointimal hyperplasia, recent data suggest that their use may be associated with 

adverse clinical effects [7, 35, 126]. Thus, there is a need to discover novel mechanisms 

governing VSMC proliferation and this information could be used to develop new modalities 

for treating restenosis. Rapamycin and taxol, used in drug-eluting stents, were designed to 

induce cell death in proliferating VSMC. The strategy based on SERCA2a gene transfer 

should preserve cell integrity and prevent loss of the “differentiated/contractile phenotype” of 

VSMCs . 

The same mechanism governs the beneficial effect of SERCA2a overexpression in 

heart failure and in proliferative vascular diseases: by lowering cytosolic Ca2+, SERCA2a 

expression inhibits calcineurin activity and the activation of the NFAT pathway [65]. This 

explains why SERCA2a gene transfer inhibits hypertrophic, hyperplastic and apoptotic 

signalling pathways mediated by calcineurin. Another reason for the beneficial role of 

SERCA overexpression might be that it reduces oxidative stress. Indeed, high levels of 

oxygen-derived free radicals are generated during myocardial ischemia/reperfusion and this 

damages SERCA2a, potentially contributing to cellular Ca 2+
 overload and myocardial injury. 

Similarly, in atherosclerosis, cysteine 674 from SERCA2 is irreversibly oxidized due to 

prolonged oxidative stress, and consequently the NO-induced S-glutathiolation, activation of 

SERCA and arterial relaxation are impaired [1]. 

 

Phospholamban ablation. Phospholamban (PLN) is a 52-amino-acid protein which 

controls the affinity of SERCA for Ca2+. It is expressed mainly in cardiac, slow skeletal, 

smooth muscle cells where SERCA2a is also present, and at low level in endothelial cells. In 
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its unphosphorylated form, PLN inhibits SERCA activity and phosphorylation by various 

protein kinases: PKA, PKG, and Ca2+/Calmodulin kinase relieve this inhibition. Decreasing 

the inhibitory effect of PLN is another way of enhancing SERCA activity. This has been 

studied in great detail in heart failure and most findings now indicate that, in hypertrophy and 

failure, the level of PLN is unchanged or slightly decreased but that PLN is 

hypophosphorylated [112]. Both an increase in the PLN-to-SERCA ratio and the presence of 

unphosphorylated PLN should increase the inhibitory function of PLN. Suppressing the 

inhibitory effect of phospholamban is a promising approach to improving cardiac function. 

Indeed, the ablation of PLN completely prevents the spectrum of heart failure phenotypes in a 

mouse model of dilated cardiomyophy [78]. Furthermore, chronic inhibition of PLN using a 

pseudo-phosphorylated mutant results in favourable changes in cardiac haemodynamics in rat 

and sheep models of heart failure and prevents cardiomyopathy in a myopathic hamster model 

[49, 52, 58]. PLN ablation has also been shown to rescue depressed contractile function of 

calsequestrin-overexpressing hearts [107] and in a mouse line overexpressing a mutant 

myosin heavy chain [33]. In addition, normalization of the Ca2+ transient and restoration of 

cell contractility have been reported in cardiomyocytes isolated from failing human hearts 

[23]. The excitement generated by these studies has been tempered by the discovery of 

mutations in PLN, leading to a super-inhibitory PLN, which has been suggested to be 

causative of human dilated cardiomyopathy [44, 109]. Furthermore, in other genetic models, 

PLN ablation rescued cardiomyocyte dysfunction but did not prevent ventricular remodelling 

leading to heart failure [114].  

 Therapeutic strategies based on normalization of the SR Ca2+ load and of cytosolic 

Ca2+ by increasing SERCA activity seem promising for preventing hypertrophic growth and 

vascular proliferative disease. SERCA2a gene therapy for treatment of heart failure is now 

undergoing clinical trials in USA [67], and prevention of post-injury restenosis by SERCA2a 
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gene transfer is at the preclinical study stage [65]. The use of pseudophosphorylated PLN in 

the treatment of heart failure is also being considered in preclinical studies [58]. Furthermore, 

the development of small molecules for enhancing Ca2+ cycling has now appeared on the 

horizon and may offer new hope for treatment of Ca2+cycling defects in cardiovascular 

disease. 

 

4.2 Use of SERCA as a target to induce cell death 

 The issue of Ca2+ and cancer has been covered recently in a very comprehensive 

review by G. Monteith [82]. Here we focus on manipulating SERCA and SR Ca2+ load as 

methods for anticancer therapy. Two strategies could be used: either inducing a general ER 

stress by depletion of the ER Ca2+ store, or targeting particular SERCA isoforms that are 

induced or repressed in cancer cells.  

 An example of the first strategy is provided by the thapsigargin ‘prodrug’ approach to 

the treatment of prostate cancer [26]. Thapsigargin is a general inhibitor of SERCA, it induces 

complete SR/ER Ca2+ depletion and apoptosis. To target cancer cells selectively, the drug has 

been coupled to a peptide to produce an inactive “prodrug” that is only activated by prostate 

cancer-specific proteases such as the serine protease prostate-specific antigen [26]. However, 

thapsigargin resistance has been clearly demonstrated [91] and may hamper the efficacy of 

this approach. ER stress can also be obtained by blockade of the voltage-independent Ca2+- 

channels which normally refill the ER after store depletion. Carboxyamido-triazole (CAI), a 

low molecular weight compound, inhibits these types of channels and is undergoing clinical 

validation for use as an anticancer agent [82]. CAI acts as an antiangiogenic and 

antimetastatic agent because it inhibits endothelial cell proliferation [59]. 

 There is a multiplicity of isoforms of SERCA and especially SERCA3 [6] and the 

various SERCA3 isoforms may have different functions: SERCA3b and 3f have different 
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roles in cell adhesion and ER stress [15]. Interestingly, SERCA3 is repressed in highly 

neoplastic colon cancer cells [8]; consequently, overexpressing SERCA3 in colon cancer to 

preserve normal ER Ca2+ levels may be of therapeutic value. SERCA2b expression is 

decreased in skin disorders related to Darier’s disease [11, 27, 121] and in thyroid cancer [93] 

but because SERCA2b is the ubiquitous isoform it might be difficult to target precisely.  

 

6. Conclusions and future directions  

 In the past decade, there has been increasing evidence of the role of SERCA in 

diseases and especially in cardiovascular diseases. As a consequence, SERCA2a gene therapy 

has now progressed to clinical trials. Furthermore, the development of small molecules to 

increase SR Ca2+ cycling provides the hope of treatment for Ca2+ cycling defects. The reasons 

for and consequences of the existence of multiple SERCA isoforms, and especially of 

SERCA3 isoforms, remain to be elucidated, as does their importance in pathologies such as 

cancers. Exploitation of siRNA technology to knock-down protein production should help 

identify the role of these isoforms. 

 Store-operated calcium channels are increasingly being recognized as central players 

in the control of hyperthrophic growth and proliferation in almost all cell types including 

diverse malignancies. The enigma of the cross-talk between depletion of the ER store and 

refilling by calcium influx through store-operated calcium channels has been highlighted with 

the discovery of the sensor protein, STIM1, but studies of the role of both STIM1 and SOC in 

diseases are at an early stage. 

 The importance of the Ca2+-regulated transcription factor NFAT, which links 

alteration in Ca2+ cycling to pathological growth and proliferation, has been documented but 

other Ca2+-regulated pathways may also be involved and remains to be described. 

Furthermore, new mechanisms of control of gene expression have been uncovered with the 
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discovery of micro RNAs. Micro RNAs play an important role in pathological growth but the 

trigger for induction of specific miRNAs as well as the relationship with previously described 

alterations in Ca2+ signalling remains to be elucidated.   H
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Figure legend. 

 

Figure 1. Schematic representation of calcium-regulated signalling pathways 

controlling proliferation in various cell types. A – quiescent cell, B – proliferating cell. 

CaM – calmodulin; GPCR – G-protein coupled receptor; PLC – phospholipase C; PP2B –

protein phosphatase 2B (calcineurin); NFAT –nuclear factor of activated T lymphocytes; P –

phosphate; IP3 –inositol -1,4,5-trisphosphate, IP3R –inositol -1,4,5-trisphosphate receptor; S 

–SERCA, sarco/endoplasmic Ca2+ ATPase; SR/ER sarco/endoplasmic reticulum; St- STIM1, 

Stromal interaction molecule 1. 
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Table 1. Variation of SERCA isoforms expression in different tissue under growth.   

(expression of various isoforms of SERCA has not been tested systematically in all tissue) 

Tissue SERCA 

isoform 

regulation 

Effect on growth Comments References 

Non excitable cells 

T lymphocytes SERCA3  

SERCA2b  

activation, protein 

synthesis 

activation of T-

lymphocytes by phorbol 

myristate acetate and 

ionomycin 

 [64] 

Epithelial cells SERCA2  

 

enhanced  

proliferation, 

hyperkeratinosis 

mutation of ATP2A2 

gene (+/-) 

(Darier’s disease) 

[94] 

Endothelial cells  SERCA3  proliferation loss of SERCA3a in 

proliferating cells 

[83] 

Muscle 

Cardiomyocytes SERCA2a  hypertrophic 

remodeling, 

impairment of 

contractile function 

over 180 references 

including human and 

experimental animal 

hypertrophy, transgenic 

mice and protein ablation 

reviewed by 

 [32, 67, 95, 

96] 

Cardiomyocytes SERCA2a  

overexpression 

prevention of 

hypertrophic 

remodeling 

over  40 references 

including  in vivo, in 

vitro gene transfer and 

transgenic mice 

reviewed by 

[37, 48, 57, 

67] 

H
A

L author m
anuscript    inserm

-00258975, version 1



 43

Cardiomyocytes SERCA2b  

replacement of 

SERCA2a by 

SERCA2b 

hypertrophic 

remodeling, 

impairment of 

contractile function 

transgenic mice [127-129] 

Vascular smooth 

myocytes 

SERCA2a   induction of 

proliferation 

loss of SERCA2a in vivo 

and in vitro in 

proliferating VSMC 

[65, 68, 69, 

125] 

 

Vascular smooth 

myocytes 

SERCA2a  

overexpression 

blockade of  

proliferation in G1 

phase of cell cycle  

gene transfer of 

SERCA2a prevents 

proliferation of VSMC in 

vitro and in vivo 

[65, 69]  

Cancer 

Oral cancer   SERCA2  squamous cell 

carcinoma 

patient tissue samples 

and cell lines 

[29] 

Oral cancer SERCA2  squamous cell 

carcinoma 

transgenic mice 

ATP2A2(+/-) 

[70, 97, 100]  

Colon and lung 

cancer 

SERCA2  somatic and 

germline mutation 

in lung cancer 

germline mutation 

in colon cancer 

mutation of ATP2A2 

gene may predispose to 

lung and colon cancer 

[61] 

Colorectal 

cancer 

SERCA2  enhances the 

malignant potential 

patient tissue samples  

(50 patients) 

[17]  

Thyroid cancer  SERCA2  enhances the 

malignant potential 

cell lines [93]  
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Colon cancer/ 

Colonic 

epithelial cells 

SERCA3  enhances the 

malignant potential 

expression of SERCA3 is 

inversely correlated with 

differentiation state of 

adenocarcinomas 

[8, 36] 
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