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Extracellular matrix in obesity<p>Analysis of the transcriptomic signature of white adipose tissue in obese human subjects revealed increased interstitial fibrosis and an infiltration of inflammatory cells into the tissue. </p>

Abstract

Background: Investigations performed in mice and humans have acknowledged obesity as a low-
grade inflammatory disease. Several molecular mechanisms have been convincingly shown to be
involved in activating inflammatory processes and altering cell composition in white adipose tissue
(WAT). However, the overall importance of these alterations, and their long-term impact on the
metabolic functions of the WAT and on its morphology, remain unclear.

Results: Here, we analyzed the transcriptomic signature of the subcutaneous WAT in obese
human subjects, in stable weight conditions and after weight loss following bariatric surgery. An
original integrative functional genomics approach was applied to quantify relations between
relevant structural and functional themes annotating differentially expressed genes in order to
construct a comprehensive map of transcriptional interactions defining the obese WAT. These
analyses highlighted a significant up-regulation of genes and biological themes related to
extracellular matrix (ECM) constituents, including members of the integrin family, and suggested
that these elements could play a major mediating role in a chain of interactions that connect local
inflammatory phenomena to the alteration of WAT metabolic functions in obese subjects. Tissue
and cellular investigations, driven by the analysis of transcriptional interactions, revealed an
increased amount of interstitial fibrosis in obese WAT, associated with an infiltration of different
types of inflammatory cells, and suggest that phenotypic alterations of human pre-adipocytes,
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induced by a pro-inflammatory environment, may lead to an excessive synthesis of ECM
components.

Conclusion: This study opens new perspectives in understanding the biology of human WAT and
its pathologic changes indicative of tissue deterioration associated with the development of obesity.

Background
Investigations performed in mice and humans have led to a

pathophysiological paradigm that acknowledges obesity as a

low-grade inflammatory disease. Elevated inflammatory pro-

teins in obese individuals [1] suggest that inflammation may

play a determinant role in connecting obesity to metabolic,

hepatic and cardiovascular diseases [2], and to some cancers

[3]. In such chronic pathologies, in which obesity appears as

a well established risk factor, a prominent role for the

immuno-inflammatory processes has been put forward as

contributing to disease progression and tissue deterioration

[4]. However, in spite of substantial evidence demonstrating

the existence of a low-grade inflammatory component in

obesity [5], the molecular mechanisms that link inflamma-

tory changes to the development, aggravation, maintenance,

and resistance to treatment that characterize obesity states

remain poorly understood.

White adipose tissue (WAT), now considered as a pivotal

endocrine organ, contributes to the systemic inflammation by

producing biomolecules, including pro-inflammatory media-

tors, whose estimated number grows constantly and whose

synthesis is altered along with the expansion of the adipose

tissue [6,7]. These molecules are delivered into the blood

stream and exert metabolic and immune functions, as illus-

trated by the extensively studied adipose hormones leptin

and adiponectin. Their functions are essential for inter-organ

cross-talk, body weight homeostasis and probably in linking

adipose tissue to the downstream complications associated

with obesity [8]. Cellular types composing WAT include

mature adipocytes, the specialized metabolic cells, and a vari-

ety of other cells grouped in the 'stroma vascular fraction'

(SVF), which are not well characterized in humans. Although

some molecules secreted by WAT, such as leptin and adi-

ponectin, are synthesized by mature adipocytes [8], the non-

adipose SVF, comprising infiltrated macrophages among

other cellular types, is a source of inflammation-related mol-

ecules that may exert a local action on adipose tissue biology,

particularly within the enlarged WAT [9-11]. The possible

infiltration of the obese WAT by other inflammatory cells is

also suggested by recent analyses in mice showing the modu-

lation of T and natural killer (NK) cell subtypes in animals fed

with a high fat diet [12]. Adipose loss leads to the improve-

ment of the inflammatory profile [11], with a concomitant

reduction of infiltrating macrophages [13].

In obese human subjects, large-scale transcriptomic analyses

of WAT, in stable weight conditions or during weight loss, led

mostly to the description of inflammatory changes and pro-

duced extensive lists of regulated genes involved in a number

of biological functions [14]. However, the relationship

between these genes, the cellular processes in which they are

involved, and the tissue structure as a whole remains poorly

understood. To address this question, we took advantage of

increasing progress in the analysis of complex biological

interactions, which has attracted a great amount of interest in

various fields. An important motivation for the study of such

networks of biological interactions resides in their ability to

formally characterize the roles played by various interacting

elements comprising cellular environments, thus helping pri-

oritize further mechanistic investigations. In particular, the

study of gene interaction networks, constructed by relating

co-expressed genes (that is, genes sharing similar expression

profiles), contributed to the characterization of several key

properties of biological networks, such as the scale-free distri-

bution of their connectivity [15], their hierarchical architec-

ture built from modules of functionally related components

(that is, genes, enzymes, metabolites) [15], the various types

of net hubs [16], or the small-world aspect of their fast syn-

chronizability [17]. Along with the development of interac-

tions analysis, the biological interpretation of large-scale gene

expression profiling data has evolved gradually into a highly

standardized and powerful analytical framework. Available

exploratory tools rely on curated gene annotation resources

and standardized statistical evaluation techniques to identify

significantly over-represented biological themes in high-

throughput gene expression datasets [18].

The objective of our study was to construct a full-scale map of

the biological interactions defining the transcriptomic signa-

ture of WAT in obese subjects. For this purpose we devised an

original analytical approach, which further extended the con-

ventional gene co-expression network analysis to include the

evaluation of transcriptomic interactions between relevant

biological themes, including cellular components, biological

processes and regulatory or metabolic pathways. This

approach was applied to the analysis of two sets of microarray

gene expression profiles obtained previously from human

WAT of obese subjects in stable weight conditions [11,19] and

three months after significant weight loss induced by gastric

surgery [13]. Our analysis revealed major and interrelated

changes of WAT transcriptomic signature in obese human

subjects, involving extracellular matrix (ECM), and inflam-

matory and adipose metabolic processes. Tissue and cellular

investigations, directed by the hypotheses raised by the anal-

ysis of gene and functional interactions, show that
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subcutaneous adipose tissue of obese subjects is character-

ized by an excessive amount of interstitial fibrosis and suggest

that the phenotypic changes in human pre-adipocytes,

induced by a pro-inflammatory environment, are associated

with excessive synthesis of ECM components, which may

contribute to tissue deterioration.

Results
The transcriptomic signature of the subcutaneous 

WAT in obese subjects

Thirty five cDNA microarray experiments were performed in

25 weight-stable obese subjects (body mass index (BMI)

40.58 ± 1.58 kg/m2, range 32.6-60.5 kg/m2) and 10 healthy

lean controls (BMI 23.67 ± 0.48 kg/m2, range 21.4-26.2 kg/

m2) to characterize the transcriptomic signature of the subcu-

taneous WAT associated with chronic obesity. The overall

clinical and biochemical parameters of the studied popula-

tion are presented in Table 1, and on the companion website

as online supplementary data [20]. The analysis of the differ-

ential gene expression with the Significance analysis of

microarrays (SAM) procedure [21], performed on the cDNA

measurements with signals recovered in at least 80% of the

microarray experiments, detected 366 up- and 474 down-reg-

ulated genes, corresponding to a 5% false discovery rate

(FDR). The functional analysis of these genes identified 704

genes (307 up- and 397 down-regulated) annotated with

Gene Ontology (GO) categories [22], and 253 genes (101 up-

Table 1

Overall clinical and biological parameters of 55 obese subjects and 15 lean controls

Phenotype Obese subjects Lean controls

n 55 15

Female/Male 52/3 15/0

Age (years) 40.13 ± 11.67 34.2 ± 8.52

BMI (kg/m2) 44.07 ± 9.06* 23.67 ± 1.51

Glucose homeostasis

Glucose (mmol/l) 5.56 ± 1.70 4.82 ± 1.01

Insulin (μU/ml) 13.51 ± 8.57 7.20 ± 3.49

QUICKI 0.33 ± 0.05 0.36 ± 0.04

Type 2 diabetes

Glycemia > 7 mmol/l or treatment 6 (11%) 0

Lipid homeostasis

Cholesterol (mmol/l) 5.22 ± 1.04 4.36 ± 1.05

HDL cholesterol (mmol/l) 1.27 ± 0.34 1.43 ± 0.23

Triglycerides (mmol/l) 1.40 ± 0.62† 0.45 ± 0.10

Adipokines

Leptin (ng/ml) 54.55 ± 19.92 11.24 ± 1.12

Adiponectin (μg/ml) 7.14 ± 2.87 -

Risk factors

HDL < 1.03 mmol/l (M), < 1.29 mmol/l (F) 26 (47%)* 1 (6%)

Hypertension ≥ 130/85 mmHg 11 (20%) 0

Glucose ≥ 5.6 mmol/l 17 (31%) 1 (6%)

Triglycerides ≥ 1.7 mmol/l 11 (20%) 0

Inflammatory factors

TNF-α (pg/ml) 1.77 ± 0.62 -

IL6 (pg/ml) 2.24 ± 1.17 -

hsCRP (mg/dl) 8.62 ± 10.38 -

Orosomucoid (g/l) 0.99 ± 0.18 -

Serum amyloid A (μg/ml) 21.35 ± 22.39 -

Hepatic factors

Aspartate aminotransferase (IU/l) 22.66 ± 6.87 -

Alanine aminotransferase (IU/l) 35.72 ± 18.56 -

γGT (mg/dl) 45.91 ± 46.43 -

*Bilateral significance p value < 0.05 for the difference between the two groups. †Bilateral significance p value < 0.001 for the difference between the 
two groups. Hyphens indicate parameters that were not available for the lean controls group. F, female; HDL, high-density lipoproteins; M, male.
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and 152 down-regulated) annotated with categories of the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [23].

Figures 1a, 2a and 3a illustrate the biological themes charac-

terizing the transcriptomic signature of the subcutaneous

WAT in obese subjects. Relevant biological themes, annotat-

ing genes differentially expressed in the obese WAT com-

pared to lean controls, are indicated by significantly over-

represented categories from the GO Cellular Component and

Biological Process ontologies and from KEGG. While the

genes up-regulated in the obese WAT were annotated mainly

by structural and functional themes associated with the cellu-

lar membrane and the extracellular space, the down-regu-

lated genes were annotated mostly by themes related to the

intracellular domain. We relied on our in-house analytical

approach to quantify transcriptomic interactions between

these themes by aggregating the similarities of their anno-

tated gene expression profiles (see Materials and methods for

details), and then related them to build biological interaction

maps. This analysis uncovered a highly segregated transcrip-

tomic interaction pattern, regardless of the system used to

annotate differentially expressed genes (Figures 1b, 2b and

3b). Two distinct types of biological interaction modules

(indicated hereafter as module 1 and module 2) have been

identified, one associating structural components, processes

and regulatory pathways related to cellular membranes and

the extracellular space (module 1), while the other groups

components, processes and pathways associated with the

intracellular domain (module 2).

GO Cellular Component categories annotating up-regulated

genes (Figure 1a) formed a first module (Figure 1b, module 1)

composed from themes primarily related to membrane com-

ponents ('integral to membrane', 'plasma membrane part',

'intrinsic to plasma membrane') and to the extracellular

region ('extracellular region', 'extracellular region part').

'Lysosome' and 'endoplasmic reticulum' were the only catego-

ries designating intracellular organelles in this module. The

biological processes designated by GO Biological Process cat-

egories annotating up-regulated genes (Figure 2a,b) were

related to immune, inflammatory, and stress responses

('immunoglobulin mediated immune response', 'antimicro-

bial humoral response', 'immune response', 'response to

stress'), as well as to cell adhesion and signaling processes

('cell adhesion', 'cell surface receptor linked signal transduc-

tion'). The KEGG pathways annotating genes up-regulated in

the obese WAT (Figure 3a) formed a strong interaction mod-

ule associating categories related to immunological and

inflammatory responses as well as to cellular adhesion and

signaling mechanisms (Figure 3b, module 1).

A very distinctive biological pattern was observed for themes

associated with the genes down-regulated in the obese WAT.

GO Cellular Component structural categories annotating

these genes (Figure 1a) formed a second module (Figure 1b,

module 2), grouping themes associated with intracellular

components, among which are the nucleus, the cytoplasm,

the ribosome and the mitochondrion ('intracellular',

'nucleus', 'cytoplasmic part', 'ribosome', 'intracellular

organelle part', 'cytosolic part', 'intracellular part', 'mitochon-

drion', 'mitochondrial membrane part'). GO Biological Proc-

ess categories annotating down-regulated genes (Figure 2a,b)

were essentially related to lipid, protein and energy metabo-

lism ('lipid metabolism', 'fatty acid metabolism', 'protein bio-

synthesis', 'generation of precursor metabolites and energy'),

as well as to the regulation of the apoptotic machinery

('induction of apoptosis'). The examination of KEGG path-

ways revealed a similar interaction pattern associating a

number of key adipocyte metabolic and regulatory pathways

(Figure 3a,b, module 2)

Since the analysis of transcriptomic interactions in the obese

WAT revealed a neat segregated pattern, we sought to deter-

mine the tissular fraction specificity of the two types of inter-

action modules. Taking advantage of our previous large-scale

transcriptomic analysis [11], we explored the specific enrich-

ment of isolated WAT cellular fractions in genes annotated

with categories belonging to one of the two types of modules.

This analysis showed that biological themes related to the

extracellular space (module 1) were annotating genes pre-

dominantly expressed in the SVF of WAT, while the genes

annotated with themes related to the intracellular domain

(module 2) were expressed predominantly in mature adi-

pocytes (Figures 1b, 2b and 3b).

ECM remodeling and inflammation related genes

We then examined the similarity between the expression pro-

files of individual genes to build the co-expression network

underlying the described functional interactions. Among the

genes annotated with significantly over-represented GO cate-

gories, 40 genes (12.5%, among which 24 genes were up-reg-

ulated and 16 genes down-regulated) were found to encode

GO Cellular Component enriched themes and their interaction map, illustrating the transcriptomic signature of obese WATFigure 1 (see following page)

GO Cellular Component enriched themes and their interaction map, illustrating the transcriptomic signature of obese WAT. (a) The GO Cellular 
Component annotation categories showing a significant enrichment in genes up- or down-regulated in WAT of obese subjects. (b) These categories were 
related to construct a biological interaction map after quantifying their proximity based on the expression similarity of their annotated genes. Continuous 
lines indicate the strongest interactions (that is, superior to the upper quartile of their distribution), while dashed lines depict medium strength 
interactions (that is, superior to the median of the distribution but inferior to its upper quartile). The enrichment in genes expressed preferentially in one 
of the two main cellular fractions of WAT, illustrated in a percentage scale (mature adipocytes in light gray versus SVF in black), was significantly different 
in the two modules (p value < 0.001).
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Figure 1 (see legend on previous page)
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various structural components of the ECM or molecules

involved in ECM remodeling and regulation (Additional data

file 2 and supplementary online table 1).

Figure 4 depicts a bi-modular co-expression network relating

genes annotated with significantly over-represented GO Bio-

logical Process categories in the obese WAT (Figure 2a). The

first co-expression module (Figure 4, module 1) groups up-

regulated genes associated with processes constituting the

first functional interaction module (Figure 2b, module 1).

This module includes representatives from all major classes

of ECM components, namely structural proteins such as

members of the collagen family, adherent proteins such as

fibronectin and laminin family members, glycosaminogly-

cans and proteoglycans, and specialized glycoproteins such as

integrins, as well as several enzymes involved in ECM remod-

eling (Additional data file 2 and supplementary online table

1). A sub-network grouping all ECM related genes, showing

significant differential expression in obese WAT, is presented

in Figure 5.

Among various ECM components, several genes coding for

members of the integrin family were found to be significantly

induced and co-expressed in obese WAT, occupying central

positions in the first co-expression module (Figure 4, module

1). This module included integrins alpha V (ITGAV), referred

to as the vitronectin receptor, and alpha M (ITGAM), as well

as integrins beta 1 (ITGB1; also named fibronectin receptor or

beta polypeptide), beta 2 (ITGB2) and beta 3 (ITGB5). These

integrins displayed strong co-expression with other key

components of the ECM (Figures 4 and 5; Additional data file

2 and supplementary online table 1), such as members of the

collagen family, including the major type IV alpha collagen

chain of basement membranes (COL4A1), and members of

the fibril associated collagen (COL5A2 and COL12A1). They

were also co-expressed with members of the glycosaminogly-

can and proteoglycan family (syndecan binding protein

(SDCBP), lumican (LUM)), known to play an important role

in the initiation of inflammatory phenomena, as well as in the

recruitment, rolling, and subsequent extravasation of lym-

phocytes [24], the laminin beta 1 (LAMB1), and with several

proteases and other enzymes involved in ECM remodeling

and cell-cell or cell-matrix interactions. Some of the genes

coding for these enzymes were significantly induced in the

obese WAT. Among them, metalloproteinases domain 12

(ADAM12) and domain 9 (ADAM9), which belong to the dis-

integrin family, are known to modulate the communication

between the fibronectin-rich ECM and the actin cytoskeleton,

and are also involved in the early stages of pre-adipocyte dif-

ferentiation [25]. Lysyl oxidase (LOX) is involved in cross-

linking extracellular matrix proteins, while chondroitin sul-

fate GalNAcT-2 (GALNACT-2) plays a central role in the syn-

thesis of some members of the glycosaminoglycan and

proteoglycan family. Other ECM related genes were signifi-

cantly under-expressed in WAT of obese subjects, such as

metallopeptidases domain 17 (ADAM17) and domain 15

(ADAM15), or the collagen type I alpha 1 (COL1A1).

Interestingly, the first co-expression module (Figure 4, mod-

ule 1) grouped not only genes related to ECM components,

but also a number of genes coding for cytokines and surface

markers secreted by immune cells possibly infiltrating WAT

in obese subjects. A number of these genes showed significant

co-expression with members of the integrin family and are

known to be involved in the recruitment and activation of

immune circulating cells, such as monocytes, lymphocytes or

neutrophils. Among them were markers of the alternative

pathway of macrophage activation, as the CC chemokine lig-

and 18 (CCL18) and the macrophage scavenger receptor

(CD163), which showed strong co-expression with the

integrin alpha V (ITGAV) and the macrophage receptor 1

(Mac-1) complex formed by integrins alpha M (ITGAM) and

beta 2 (ITGB2). Available data demonstrate that the synthesis

of CCL18 by alternatively activated macrophages is induced

by Th2 cytokines, integrin beta 2 (ITGB2) and the scavenger

receptor (CD163) [26]. CCL18 is also known to be involved in

the recruitment and activation of CD4+ and CD8+ T cells and,

more remarkably, is credited with playing a central role in

perpetuating fibrotic processes through its involvement in a

positive feedback loop that links activated macrophages to

fibroblasts [26]. Moreover, expression of the Mac-1 complex

is increased by conditions such as diabetes, being overweight

and tissular hypoxia [27,28], and plays an important role in

the recruitment, adhesion, and activation of circulating

monocytes and neutrophils, and in the phagocytosis of com-

plement coated particles [28,29]. Co-expressed with Mac-1

components, the hypoxia-inducible factor 1 (HIF1A) is a well

characterized transcription factor that performs an essential

role in cellular responses to hypoxia. HIF1A is also involved in

the regulation of macrophage migration, and modulates the

metabolism of immune cells exposed to low oxygen tensions

in hypoxic areas of inflamed tissues [30].

To the same group of pro-inflammatory molecules belong

also interleukin (IL)1 receptor type I (IL1R1), which modu-

lates many cytokine induced immune and inflammatory

responses, and IL15 (IL15), which regulates T and natural

killer cell activation and proliferation [31,32]. Both of them

were strongly co-expressed with the Mac-1 complex and with

C-type lectin domain family 4 member A (CLEC4A), known to

play an important role in mediating the immune and inflam-

matory responses, especially in neutrophils [33].

Several molecules demonstrated strong co-expression with

IL1R1, among which are the CD53 (CD53) and CD9 (CD9)

markers, known to complex with integrins, and annexin I

(ANXA1), credited with a potential anti-inflammatory activ-

ity, all of them performing important homeostatic roles by

modulating innate immunity [34-36]. In the same spectrum,

integrin alpha V (ITGAV) displayed strong co-expression

with CD163, a well known macrophage-specific marker medi-
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ating an anti-inflammatory pathway that includes IL10, and

whose synthesis was shown to be well correlated with local

and systemic inflammatory phenomena [37,38]. Also, the

heat shock protein 8 (HSPA8), a surface marker for the undif-

ferentiated cellular state expressed on the surface of human

embryonic stem cells [39], performs an important role in the

GO Biological Process enriched themes and their interaction map, illustrating the transcriptomic signature of obese WATFigure 2

GO Biological Process enriched themes and their interaction map, illustrating the transcriptomic signature of obese WAT. (a) The GO Biological Process 
annotation categories showing a significant enrichment in genes up- or down-regulated in WAT of obese subjects. (b) These categories were related to 
construct a functional interaction map after quantifying their proximity based on the expression similarity of their annotated genes. Continuous lines 
indicate the strongest interactions (that is, superior to the upper quartile of their distribution), while dashed lines depict medium strength interactions 
(that is, superior to the median of the distribution but inferior to its upper quartile). The enrichment in genes expressed preferentially in one of the two 
main cellular fractions of WAT, illustrated in a percentage scale (mature adipocytes in light gray versus SVF in black), was significantly different in the two 
modules (p value < 0.05).
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KEGG enriched themes and their interaction map, illustrating the transcriptomic signature of obese WATFigure 3

KEGG enriched themes and their interaction map, illustrating the transcriptomic signature of obese WAT. (a) The KEGG annotating categories showing a 
significant enrichment in genes up- or down-regulated in the WAT of obese subjects. (b) These categories were related to construct a functional 
interaction map after quantifying their proximity based on the expression similarity of their annotated genes. Continuous lines indicate the strongest 
interactions (that is, superior to the upper quartile of their distribution), while dashed lines depict medium strength interactions (that is, superior to the 
median of the distribution but inferior to its upper quartile). The enrichment in genes expressed preferentially in one of the two main cellular fractions of 
WAT, illustrated in a percentage scale (mature adipocytes in light gray versus SVF in black), was significantly different in the two modules (p value < 0.001).
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repair processes following harmful tissular assaults (for

example, hemorrhage or local ischemia) [40], and was found

to be significantly co-expressed with integrin alpha V,

annexin I and other ECM components.

A panel of the genes clustered in module 1 of the co-expres-

sion network (Figure 4) displayed significant positive

correlations between their expression levels in WAT of obese

and non-obese subjects and the BMI of these subjects (Figure

6 and Table 2). Among the genes showing the strongest asso-

ciation with the BMI were cathepsin S (CTSS), involved in the

degradation of several components of the extracellular matrix

[19], lymphocyte cytosolic protein 2 (LCP2) and CD247

(CD247), both related to T cell development and activation, as

well as the hypoxia-inducible factor 1 (HIF1A).

The adipose metabolism related genes

The second co-expression module (Figure 4, module 2)

grouped several genes encoding proteins involved in lipolysis

pathways, which were down-regulated in the obese WAT,

including hormone-sensitive lipase (LIPE), perilipin (PLIN),

and monoglyceride lipase (MGLL). The insulin receptor

(INSR) and antilipolytic adenosine A1 receptor (ADORA1)

were also located in this module, together with a number of

genes encoding mitochondrial enzymes, including NADH

dehydrogenase 1 alpha subcomplex (NDUFA1) and cyto-

chrome c oxidase assembly homolog (COX17). The NDUFA1

gene encodes a component of respiratory chain complex I that

transfers electrons from NADH to ubiquinone, while COX17

might contribute in the mitochondrial terminal complex to

the functioning of cytochrome c oxidase, which catalyzes elec-

tron transfer from the reduced cytochrome c to oxygen. Sev-

eral genes of module 2 (Figure 4; online supplementary data

[20]) are involved in the synthesis, transport and oxidation of

a variety of fatty acids. Among them, some genes are known

to code for proteins intervening in the initial step (acyl-coen-

zyme A dehydrogenase (ACADS)), and the processing (3-

hydroxyacyl-CoA dehydrogenase type II (HADH), 3,2 trans-

enoyl-CoA isomerase (DC1)) and the termination (acyl-CoA

thioesterase 4 (ACOT4)) of the mitochondrial fatty acid β-oxi-

dation pathway. The β-oxidation of long-chain fatty acids

usually implicates the sequential action of carnitine

palmitoyltransferase I and carnitine palmitoyltransferase II

together with a carnitine-acylcarnitine translocase. The

expression levels of two members of the carnitine/choline

acetyltransferase family (CPT1A and CPT1B) involved in this

rate limiting step across the mitochondrial inner membrane

were decreased as well as that of the CRAT gene, which cata-

lyzes the reversible transfer of acyl groups from an acyl-CoA

thioester to carnitine and regulates the ratio of acylCoA/CoA

in the mitochondrial compartments. Interestingly, module 2

also gathered several genes involved in the induction of apop-

tosis, such as the death-associated protein (DAP), the death-

associated protein kinase 2 (DAPK2), and the serine/threo-

nine kinase 17a (STK17A), a member of the DAP kinase-

related apoptosis-inducing protein kinase family, as well as

the apoptosis-inducing factor (SIVA1), TNFRSF1A-associ-

ated via death domain (TRADD) and programmed cell death

5 (PDCD5), some being strongly co-expressed with mitochon-

drial enzymes described above. Protein kinase C epsilon

(PRKCE), involved in several intracellular signaling pathways

and particularly in apoptosis, was linked to DAPK2, CRAT,

and ACADS in this module. Other down-regulated genes

encode components of cytoplasmic or mitochondrial ribos-

omal subunits, which are part of ribosomal proteins, and sev-

eral eukaryotic translation elongation factors implicated in

protein synthesis.

In contrast with the genes comprising the co-expression mod-

ule 1, the expression profiles of the majority of the genes com-

prising module 2 demonstrated significant negative

correlations with BMI (Figure 7 and Table 2). Among them,

some of the strongest negative correlations were observed for

the insulin receptor (INSR), molecules of the adipocyte lipol-

ytic pathway (LIPE, PLIN), some mitochondrial components

(CRAT, ACADS, NDUFA1, COX17), and some members of

apoptotic pathways (DAPK2, SIVA1, DAP). Also, the expres-

sion profiles of numerous components of cytoplasmic or

mitochondrial ribosomal subunits showed significant nega-

tive correlations with the BMI (RPL28, RPS12, RPL35, RPS2,

and RPS21 among others).

Since at the functional level the processes related to immune,

inflammatory and stress responses, as well as to cell adhesion

and signaling (Figures 2b and 3b, module 1), displayed an

opposite regulation pattern to that of the metabolic functions

(Figures 2b and 3b, module 2), we examined the links that

may connect these two functional modules at the gene level,

and searched for which genes could play a mediating role by

linking the ECM to intracellular pathways. As shown in Fig-

ure 4, some ECM related genes were co-expressed with a set

of inflammatory genes (module 1), while showing a signifi-

cant inverse expression pattern to that of genes belonging to

the metabolic module (module 2). Among them, integrin

alpha V (ITGAV), CD163 and CCL18, two markers of the alter-

native pathway of macrophage activation, heat shock protein

8 (HSPA8), and contactin associated protein 1 (CNTNAP1),

involved in the activation of intracellular signaling pathways,

were strongly related to several genes encoding enzymes of

the lipolytic pathway, including hormone-sensitive lipase

(LIPE) and perilipin (PLIN), phosphatidic acid phosphatase

type 2B (PAP2B), a member of the lipid phosphate phos-

phatases family, and to genes related to apoptosis, such as

death-associated protein kinase 2 (DAPK2) and non-meta-

static cells 3 protein (NME3).

A shift in the functional profile of the WAT transcriptomic signature 

three months after bariatric surgery

We have shown previously that weight loss is associated with

improvement in the inflammatory profile, together with

regression of macrophage infiltration in WAT [11]. To better

characterize the association between adipose mass variation,
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local inflammatory phenomena and ECM remodeling, we fur-

ther examined the functional profile of the transcriptomic sig-

nature of the obese WAT after a significant weight loss

induced by bariatric surgery. Ten cDNA microarray experi-

ments were performed from subcutaneous WAT biopsies car-

ried out in morbidly obese subjects (BMI 47.65 ± 4.4 kg/m2,

range 42.5-57 kg/m2), before and three months after

undergoing a laparoscopic gastric bypass [41]. The detailed

clinical and biochemical parameters of these subjects were

presented elsewhere [13], and are provided as online supple-

mentary data [20]. The analysis of differential gene expres-

sion with the SAM procedure [21], performed on the cDNA

measurements with signals recovered in at least 80% of the

microarray experiments, detected 1,744 up- and 1,627 down-

regulated genes, corresponding to a 5% FDR. Functional

analysis of these genes identified 2,687 genes (1,390 up- and

1,297 down-regulated) annotated with GO categories, and

868 genes (450 up- and 418 down-regulated) annotated with

KEGG categories.

Figures 8a, 9a and 10a illustrate the biological themes charac-

terizing the transcriptomic signature of the obese WAT three

months after gastric surgery, as indicated by significantly

over-represented categories from GO Cellular Component

(Figure 8a) and GO Biological Process ontologies (Figure 9a),

and from KEGG (Figure 10a). This analysis shows a

diametrical shift in the functional profile of the obese WAT

associated with weight loss. Indeed, the majority of the genes

up-regulated in WAT after gastric bypass were associated

with structural themes (GO Cellular Component) related to

the intracellular domain and organelles ('protein complex',

'cytoplasm', 'mitochondrion', 'endoplasmic reticulum', 'lyso-

some', 'actin cytoskeleton', 'cytosolic part'), while the down-

regulated genes (Figure 8a) were mostly associated with cel-

lular membrane and extracellular space specific themes

('integral to membrane', 'plasma membrane', 'extracellular

region', 'extracellular matrix part'). The cellular processes

(GO Biological Process) associated with the WAT up-regu-

lated genes (Figure 9a) were related primarily to carbohy-

drate and protein metabolisms, including ubiquitin-

dependent protein catabolism ('cellular protein metabolism',

'carbohydrate metabolism', 'ubiquitin-dependent protein

catabolism'), to energy metabolism ('oxidative

phosphorylation') and to transcriptional, translational and

transport processes ('RNA processing', 'tRNA metabolism',

'translation', 'protein transport'). In contrast, down-regulated

genes were mainly associated with processes related to cell

adhesion and signaling (Figure 9a), notably via G-protein

coupled receptor proteins ('signal transduction', 'cell adhe-

sion', 'G-protein coupled receptor protein signaling pathway',

'cell surface receptor linked signal transduction'), as well as to

the immune response and apoptosis ('immune response',

'apoptosis'). Finally, the KEGG pathways involving WAT

genes up-regulated after weight loss (Figure 10a) were related

to energy and nucleotides metabolisms ('oxidative phosphor-

ylation', 'purine metabolism'), as well as to the degradation of

some key ECM constituents, namely the glycosaminoglycans

('glycan structures - degradation', 'glycosaminoglycan degra-

dation'). In accordance with GO annotations, the down-regu-

lated KEGG pathways were related mostly to signaling

processes and immune and inflammatory responses (Figure

10a), including complement and coagulation cascades and

signaling of T and B cell receptors ('MAPK signaling pathway',

'Wnt signaling pathway', 'Complement and coagulation cas-

cades', 'T cell receptor signaling pathway', 'B cell receptor sig-

naling pathway', 'mTOR signaling pathway', and so on).

The quantification of the transcriptomic interactions relating

biological themes associated with various structures, proc-

esses or regulatory pathways identified a very distinct interac-

tion pattern from that observed in the previous condition.

Figures 8, 9 and 10 illustrate a very dense interaction pattern

relating up- and down-regulated processes in a strongly inter-

connected network. Figure 9c depicts the two most represent-

ative functional interaction modules (GO Biological Process)

in this condition; this illustrates the strong interactions that

connect the up-regulated themes composing the first func-

tional module, mostly related to carbohydrate, energy and

protein metabolism, with the down-regulated themes

grouped in the second interaction module and related essen-

tially to immune and inflammatory responses, signaling, cel-

lular proliferation and apoptotic processes.

Co-expression networks underlying these functional modules

(see the online supplementary data [20]) confirmed the dense

interaction pattern associating genes related to the ECM and

inflammatory and metabolic processes. A number of ECM

components showed opposite expression patterns to those

noted in the previous condition, some being induced by

weight loss while others were down-regulated (online supple-

mentary Table 2 [20]). Among others, several genes coding

Gene co-expression network underlying the GO Biological Process interaction map in obese WATFigure 4 (see following page)

Gene co-expression network underlying the GO Biological Process interaction map in obese WAT. The relationships of differentially expressed genes 
annotated with over-represented categories of the GO Biological Process ontology were determined in order to build a co-expression network. The 
absolute value of a Spearman's correlation coefficient Rs ≥ 0.8 between expression profiles was used as a co-expression threshold to relate co- or 
inversely expressed genes. Red lines indicate co-expression relationships while blue lines illustrate inverse expression relationships. Genes with a yellow 
border code for known ECM components, while genes with a blue border are related to mitochondrial components. The enrichment in genes expressed 
preferentially in one of the two main cellular fractions of WAT, illustrated in a percentage scale (mature adipocytes in light gray versus SVF in black), was 
significantly different in the two modules (p value < 0.05). The shapes indicate the module to which the analyzed genes belong: a triangle for Module 1 and 
a lozenge for Module 2.
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Figure 4 (see legend on previous page)
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for structural proteins were significantly down-regulated

after weight loss (online supplementary Table 2 [20]), includ-

ing members of the integrin family, such as integrin alpha V

(ITGAV), integrin beta 4 (ITGB4), and integrin beta 6

(ITGB6). Enzymes involved in the degradation of

glycosaminoglycans and proteoglycans were also significantly

up-regulated after weight loss, as shown by the induction of

the related KEGG pathways (online supplementary data

[20]). In addition, some metallopeptidases implicated in the

degradation of other ECM components were equally induced,

such as the matrix metallopeptidase 2 (MMP2), concomi-

tantly with several metallopeptidase inhibitors from the tis-

sue inhibitor of metalloproteinase family (TIMP1, TIMP2).

Finally, a remarkable number of genes related to mitochon-

drial enzymes involved in the oxidative phosphorylation

pathway (Figure 10; online supplementary data [20]) were

significantly up-regulated after weight loss, including genes

coding for NADH dehydrogenases (NDUFA3, NDUFA5,

NDUFA6, NDUFA9, NDUFA11, NDUFA4L2, NDUFB7,

NDUFB11, NDUFS2, NDUFS8), ATP synthases (ATP5G1,

ATP5G2, ATP5H, ATP5I, ATP5O, ATP6AP1) and cytochrome

c-1 (CYC1).

Morphological characterization of the subcutaneous 

WAT in obese subjects

Analysis of functional and gene co-expression networks sug-

gested a link between ECM remodeling, inflammatory

changes and deregulation of adipocyte metabolism in relation

to the degree of obesity. In chronic low-grade inflammatory

diseases, prolonged inflammation stimuli result in tissue

injuries that can lead to excessive synthesis of ECM elements

and their progressive deposition. Examination of the func-

tional interaction networks indicated that a similar phenom-

enon may occur in the obese WAT, involving the presence of

inflammatory cells and a possible contribution by fibroblast

derived pre-adipocytes in producing ECM components. We

therefore combined series of optical, electron microscopy and

immunohistochemistry analyses to examine the extracellular

space of obese WAT and to quantify fibrosis in WAT of lean

and obese subjects, in weight stable conditions and after

weight loss.

Macrophages, lymphocytes and NK cells in adipose tissue of 

massively obese subjects

Functional analysis using KEGG annotations showed that the

pathway of NK cell mediated cytotoxicity was significantly

enriched in genes up-regulated in obese WAT (Figure 3a),

while the T cell receptor signaling pathway was enriched in

genes down-regulated after gastric bypass (Figure 10a).

Immunostaining for T lymphocytes and NK cells using CD3

and NKp46 antibodies confirmed the presence of these cells

in the adipose tissue of morbidly obese subjects (Figure 11a-

d), although at low abundance. Macrophages, demonstrating

cytoplasmic extensions, and lymphocytes were detected by

electron microscopy in the vicinity of adipocytes and near

vessel walls (Figure 11e-g).

Increased fibrosis in the obese adipose tissue

We quantified fibrosis in the WAT of ten morbidly obese sub-

jects before and three months after undergoing bariatric sur-

gery, and ten age-matched lean controls (Figure 12a-d). The

percentage of fibrosis in the subcutaneous WAT was signifi-

cantly increased in obese subjects compared to lean controls

(6.29% ± 2 versus 2.19% ± 0.25, p value < 0.05; Figure

12a,b,d), and remained high three months after bariatric sur-

gery (5.7% ± 1.63; Figure 12b-d). Examination of WAT

fibrotic zones in obese subjects revealed areas of swirling

picrosirius stained fibers distributed in between adipocyte

Co-expression network of ECM related genes showing significant differential expression in obese WATFigure 5 (see previous page)

Co-expression network of ECM related genes showing significant differential expression in obese WAT. The relationships of differentially expressed genes 
annotated with structural or functional GO categories related to ECM were determined in order to build a co-expression network. The absolute value of 
a Spearman's correlation coefficient Rs ≥ 0.8 between expression profiles was used as co-expression threshold to relate co- or inversely expressed genes. 
Red lines indicate co-expression relationships while blue lines illustrate inverse expression relationships. Genes with a yellow border are annotated with 
significantly over-represented GO Biological Process categories (Figures 2 and 4). The shapes illustrate the membership of those genes in different families 
of ECM components among those listed in the online supplementary table 1 and the Additional file 2.

Significant correlations between the BMI and the expression profiles of the genes annotated with themes composing the first GO Biological Process interaction module in obese WATFigure 6

Significant correlations between the BMI and the expression profiles of the 
genes annotated with themes composing the first GO Biological Process 
interaction module in obese WAT. Significant Spearman's rank 
correlations between BMI and the WAT expression profiles of the genes 
annotated with themes composing the first interaction module (GO 
Biological Process) were selected in relation to a 5% FDR. The expression 
levels of these genes in each of the analyzed subjects are represented as 
green (down-regulated) or red (up-regulated) dots.
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Table 2

Significant correlations between BMI and expression profiles of genes annotated with themes composing the GO Biological Process 

interaction modules in obese WAT

EntrezGene gene ID Gene symbol Gene name Fold* Rs† FDR‡ Tissular fraction§

Module 1

1880 EBI2 Epstein-Barr virus induced gene 2 (lymphocyte-specific G protein-coupled receptor) 1.63 0.62 0.00 SVF

5788 PTPRC protein tyrosine phosphatase,receptor type,C 1.74 0.61 0.00 SVF

1520 CTSS cathepsin S 1.53 0.54 0.00 SVF

51107 APH1A anterior pharynx defective 1 homolog A 1.40 0.50 0.01 SVF

1439 CSF2RB colony stimulating factor 2 receptor,beta,low-affinity (granulocyte-macrophage) 2.03 0.49 0.01 SVF

3937 LCP2 lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76 kDa) 1.87 0.49 0.01 SVF

919 CD247 CD247 molecule 1.36 0.49 0.01 SVF

3301 DNAJA1 DnaJ (Hsp40)homolog,subfamily A,member 1 1.46 0.48 0.02 SVF

131566 DCBLD2 discoidin,CUB and LCCL domain containing 2 2.00 0.47 0.02 -

9448 MAP4K4 mitogen-activated protein kinase kinase kinase kinase 4 1.40 0.47 0.02 -

3091 HIF1A hypoxia-inducible factor 1,alpha subunit (basic helix-loop-helix transcription factor) 1.32 0.46 0.02 SVF

11183 MAP4K5 mitogen-activated protein kinase kinase kinase kinase 5 1.35 0.44 0.03 A

23678 SGK3 serum/glucocorticoid regulated kinase family,member 3 1.48 0.44 0.03 -

667 DST dystonin 1.66 0.44 0.03 SVF

10954 PDIA5 protein disulfide isomerase family A,member 5 1.34 0.43 0.03 -

2113 ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 1.65 0.41 0.03 -

8506 CNTNAP1 contactin associated protein 1 1.24 0.41 0.03 SVF

10437 IFI30 interferon,gamma-inducible protein 30 2.35 0.40 0.04 SVF

10095 ARPC1B actin related protein 2/3 complex,subunit 1B,41 kDa 1.74 0.39 0.04 SVF

Module 2

5256 PHKA2 phosphorylase kinase,alpha 2 0.67 -0.67 0.00 A

3643 INSR insulin receptor 0.67 -0.66 0.00 -

23604 DAPK2 death-associated protein kinase 2 0.44 -0.61 0.00 A

1384 CRAT carnitine acetyltransferase 0.62 -0.61 0.00 A

1968 EIF2S3 eukaryotic translation initiation factor 2,subunit 3 gamma,52 kDa 0.63 -0.58 0.00 -

11000 SLC27A3 solute carrier family 27 (fatty acid transporter),member 3 0.76 -0.56 0.01 SVF

10572 SIVA1 CD27-binding (Siva)protein 0.69 -0.54 0.01 A

6158 RPL28 ribosomal protein L28 0.66 -0.53 0.01 SVF

6206 RPS12 ribosomal protein S12 0.53 -0.52 0.01 SVF

11224 RPL35 ribosomal protein L35 0.65 -0.51 0.01 SVF

6187 RPS2 ribosomal protein S2 0.77 -0.51 0.01 -

51069 MRPL2 mitochondrial ribosomal protein L2 0.59 -0.50 0.01 A

93974 ATPIF1 ATPase inhibitory factor 1 0.79 -0.49 0.01 -

134 ADORA1 adenosine A1 receptor 0.75 -0.48 0.01 A

51023 MRPS18C mitochondrial ribosomal protein S18C 0.74 -0.48 0.01 A

35 ACADS acyl-CoA dehydrogenase,C-2 to C-3 short chain 0.69 -0.48 0.01 A

6227 RPS21 ribosomal protein S21 0.62 -0.48 0.02 SVF

4694 NDUFA1 NADH dehydrogenase (ubiquinone)1 alpha subcomplex,1,7.5 kDa 0.86 -0.48 0.02 A

1936 EEF1D eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein) 0.75 -0.47 0.02 SVF

3991 LIPE lipase,hormone-sensitive 0.76 -0.46 0.02 A

10063 COX17 COX17 cytochrome c oxidase assembly homolog 0.71 -0.45 0.02 -

5346 PLIN perilipin 0.71 -0.45 0.02 A

27335 EIF3S12 eukaryotic translation initiation factor 3,subunit 12 0.73 -0.43 0.03 A

84545 MRPL43 mitochondrial ribosomal protein L43 0.78 -0.43 0.03 A
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lobules (Figure 12e). Electron microscopy study of a similar

fibrotic region showed layers of cell-free amorphous

structures characteristic of extracellular matrix (Figure 12f).

Additionally, we scored liver fibrosis in the same obese

subjects and analyzed its relation to the amount of fibrosis in

the WAT. This analysis showed that patients having the high-

est hepatic fibrosis score (fibrosis = 2) have also more WAT

fibrosis than those with a lower hepatic fibrosis score (fibrosis

= 0 or 1) (p value < 0.05).

Macrophage secretions promote ECM component expression and 

secretion by pre-adipocytes

Cellular studies were further performed to examine the possi-

bility that pre-adipocytes may produce ECM components and

cytokines with fibrotic properties when submitted to an

inflammatory stimulus. To address this question, we used our

previously described cell culture system in which human pre-

adipocytes are cultured with activated macrophage (AcMC)

conditioned media [42]. A transcriptomic analysis was per-

formed on these cells to identify the genes and functions

induced by this pro-inflammatory stimulus. More than 5,200

genes were significantly up-regulated in pre-adipocytes

treated by AcMC medium (Additional data file 1). The

functional analysis, using either GO or KEGG annotations,

revealed that most over-expressed genes were involved in

inflammatory, immune and stress responses, as well as in cell

adhesion related processes, as shown in Figure 13. The

examination of the genes grouped in these functions retrieved

representatives from all classes of ECM components, such as

structural proteins, including members of the collagen family

and several precursors of collagen formation, adherent pro-

teins, such as fibronectin 1 and its receptor, as well as laminin

family members, glycosaminoglycans and proteoglycans

(lumican (LUM)), and specialized glycoproteins, including

several integrins. ECM remodeling enzymes (metallopro-

teases and hydroxylases involved in collagen synthesis and

degradation), but also TIMP1, a natural inhibitor of the

matrix metalloproteinases, were also induced (online supple-

mentary Table 3 [20]). Among the ECM-related genes show-

ing significant differential expression in the obese WAT

compared to lean controls, 71.4% registered also significant

8613 PPAP2B phosphatidic acid phosphatase type 2B 0.50 -0.42 0.03 SVF

1983 EIF5 eukaryotic translation initiation factor 5 0.76 -0.42 0.03 SVF

1611 DAP death-associated protein 0.70 -0.40 0.04 SVF

6166 RPL36AL ribosomal protein L36a-like 0.73 -0.40 0.04 -

6152 RPL24 ribosomal protein L24 0.74 -0.40 0.04 SVF

122970 ACOT4 acyl-CoA thioesterase 4 0.65 -0.40 0.04 A

5255 PHKA1 phosphorylase kinase,alpha 1 0.81 -0.39 0.04 -

6165 RPL35A ribosomal protein L35a 0.72 -0.39 0.04 SVF

*Gene expression fold change in the obese versus lean condition. †Spearman's correlation coefficients between gene expression profiles and the BMI 
of analyzed subjects. ‡The q-values obtained by applying the Storey (2002) FDR method to adjust the p values computed with the Spearman's 
correlation test. §Genes expressed predominantly in one of the two main cellular fractions of the adipose tissue: mature adipocytes (A) or the 
stroma vascular fraction (SVF). Hyphens indicate genes for which no significantly predominant expression in one of the two main cellular fractions of 
the adipose tissue could be detected.

Table 2 (Continued)

Significant correlations between BMI and expression profiles of genes annotated with themes composing the GO Biological Process 

interaction modules in obese WAT

Significant correlations between the BMI and the expression profiles of the genes annotated with themes composing the second GO Biological Process interaction module in obese WATFigure 7

Significant correlations between the BMI and the expression profiles of the 
genes annotated with themes composing the second GO Biological 
Process interaction module in obese WAT. Significant Spearman's rank 
correlations between the BMI and the WAT expression profiles of the 
genes annotated with themes composing the second interaction module 
(GO Biological Process) were selected in relation to a 5% FDR. The 
expression levels of these genes in each of the analyzed subjects are 
represented as green (down-regulated) or red (up-regulated) dots.
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expression changes in pre-adipocytes cultured with AcMC

medium (Additional data file 2). Sixty percent of these ECM-

related genes demonstrated a similar variation of their

expression patterns in both in vivo and in vitro conditions, a

proportion significantly greater (p value < 0.05) than the

overall percentage of genes sharing similar expression pat-

terns among those demonstrating a significant differential

expression in the human and cell studies.

Additionally, we also observed in the cell culture study that a

panel of inflammatory cytokines, including interleukins and

their inducers (members of the interferon family), acute

phase proteins (SAA), and chemokines (CCL5) and their

receptors, were up-regulated (online supplementary Table 3

[20]). Among them, we noted the induction of IL13RA1, a

subunit of the IL13 receptor complex reported to play a role in

the internalization of IL13, and a major profibrotic protein

known to induce transforming growth factor beta, and also of

the IL4 receptor, which binds IL13 and IL4 and represents

another well recognized profibrotic cytokine. It was indeed

suggested that IL4 could be involved in the regulation of

profibrotic events [43]. CCL5/rantes, known to stimulate

liver fibrogenesis [43,44], was also induced. Also, real time

quantitative PCR (RTqPCR) analysis of the gene encoding

transforming growth factor beta in this set of experiments

showed a 2.5-fold increase in pre-adipocytes treated by

AcMC-conditioned media (p value < 0.05).

To find whether this change in gene expression pattern could

be associated with an increase in the secretion of ECM pro-

teins, we used the same cell culture system and performed

immunofluorescence experiments using anti-collagen type I,

the most abundant component of the ECM, and anti-

fibronectin antibodies after ten days of culturing pre-adi-

pocytes in the presence of AcMC-conditioned media. Colla-

gen type I and fibronectin were over-expressed in AcMC-

conditioned media and organized in a fiber network structure

(Figure 14a-d). Electron microscopy of this ECM area illus-

trates macrophages in close contact with collagen type I fibers

(Figure 14e).

Discussion
The transcriptomic signature of obese WAT illustrates 

the central role of ECM components in linking 

inflammatory and adipose metabolic anomalies

In the present study we relied on an original strategy that

combined the two conventional frameworks of functional

genomic profiling and gene co-expression network analysis

into an integrated analytical approach. This strategy enabled

us to evaluate transcriptomic interactions between relevant

functional themes and to quantify their overall significance

within the global transcriptomic profile of obese WAT. The

bioinformatic analysis of gene expression data identified rel-

evant biological themes, including structural components,

cellular processes and regulatory pathways, significantly

enriched in up- or down-regulated genes, and compiled them

into a comprehensive map of interactions illustrating the

transcriptomic signature of obese WAT (Figure 15). This sys-

tematic approach provides significant advantages over con-

ventional methods of functional profiling or transcriptomic

network analysis, since it allows the extraction of robust and

reliable information about the transcriptomic proximity of

biological themes from the expression similarity (that is, co-

expression) of their related genes. The advantage of analyzing

transcriptomic interactions between biological themes is par-

ticularly well illustrated by the 'weight loss' condition, where

the gene co-expression networks (online supplementary data

[20]) are very dense and do not provide an immediate com-

prehensive view of interacting genes and related functions in

the adipose tissue.

Our full-scale exploratory analysis of the obese WAT tran-

scriptomic signature highlights the central place occupied by

inflammatory and immune processes and shows the strong

interaction with ECM components grouped in the same mod-

ule (module 1). More precise examination of this module also

suggests the involvement of several inflammatory cell types,

among them T lymphocytes and NK cells, in addition to

macrophages. This analysis also highlighted a segregated

transcriptomic interaction pattern in obese WAT, distin-

guishing two interaction modules: one (module 1) grouping

inflammatory and ECM related processes and another (mod-

ule 2) associating adipose metabolic functions and other

themes related to apoptosis and protein synthesis processes.

This segregated interaction pattern was also confirmed by the

observation that a significant fraction of the genes composing

module 1 were positively correlated with BMI, while most of

the genes grouped in module 2 showed negative correlation

with the degree of obesity.

In spite of the segregated interaction pattern, the analysis of

gene co-expression networks underlying the two functional

interaction modules identified several candidate genes as

having a mediator role in relating inflammatory phenomena

and ECM remodeling to adipocyte biology. A number of up-

GO Cellular Component enriched themes and their interaction map, illustrating the transcriptomic signature of WAT in obese subjects three months after gastric bypassFigure 8 (see following page)

GO Cellular Component enriched themes and their interaction map, illustrating the transcriptomic signature of WAT in obese subjects three months 
after gastric bypass. (a,b) Structural themes, represented by enriched annotation categories of GO Cellular Component (a), were correlated in an 
interaction network after quantifying their proximity based on the expression similarity of their annotated genes (a). Continuous lines indicate the 
strongest interactions superior to the upper quartile of their distribution, while dashed lines depict medium strength interactions superior to the median 
of the distribution but inferior to its upper quartile.
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Figure 8 (see legend on previous page)
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regulated genes coding for ECM components belonging to the

integrin family showed a significant inverse expression

pattern with down-regulated genes coding for enzymes

related to lipid and energy metabolism. It is well known that

ECM modulations are transmitted to integrin complexes that

regulate cytoskeleton dynamics and intracellular pathways.

These phenomena have to be better understood in the context

of adipocyte biology and, in particular, the links that connect

ECM changes and integrin mediated signaling to processes

such as cell apoptosis, protein synthesis and fatty acid oxida-

tion in mitochondria. This latter process appeared recently to

be more important than initially thought in human WAT [45].

Interestingly, the surgery induced weight loss was associated

with a major shift of the WAT regulatory and interaction pat-

terns, which reversed the functional genomic profile of the

obese WAT and dramatically increased the intensity of the

interactions between up-regulated adipose metabolic proc-

esses and down-regulated inflammatory and immune

responses. Associated with the down-regulation of genes

coding for inflammation mediators, an important number of

genes related to oxidative phosphorylation and various other

mitochondrial enzymes, as well as genes coding for enzymes

involved in the degradation of glycosaminoglycans and

proteoglycans, registered a significantly increased expression

after weight loss.

Inflammatory cells in human adipose tissue

Our analytical strategy raises several pathophysiological

hypotheses that propose that an excessive synthesis of ECM

components plays a mechanistic role in the constellation of

anomalies characterizing obese WAT. The functional themes

grouped in module 1 are enriched in genes expressed predom-

inantly in the SVF, suggesting that several immune cell types

may provide a local chronic inflammatory stimulus. Among

them, we confirmed the significant presence of macrophage

cells in human WAT [46]. In obese mice, a shift in the activa-

tion state of WAT macrophages from an M2 'alternatively

activated' state to an M1 'pro-inflammatory state' was

observed in response to diet-induced obesity [47]. The precise

phenotype of macrophages in the human WAT is still

unknown. Our analysis, showing the up-regulation of several

genes known to be induced by Th2 cytokines, such as CCL18

and CD163, suggests that M2-polarized macrophages infil-

trate the WAT of severely obese subjects. This may be

associated with the presence of M1 macrophages, since genes

encoding pro-inflammatory factors were also induced.

In addition to macrophages, several other lymphoid cells may

synthesize families of cytokines, promoting a local

inflammatory state and, thus, affecting the fibrotic response.

Several genes of module 1, known to be markers of lym-

phocytes and NK cell activation, were strongly co-expressed

with ECM components. We observed the presence of NK and

T lymphocytes in obese WAT, although they appeared to be

less abundant than macrophage cells. NK and natural killer T

cells (NKT), as well as subclasses of T lymphocytes, have been

previously described in obese WAT in animal models. A rela-

tionship between lymphocyte count and the weight of visceral

and subcutaneous fat pads was also noted [48]. To date, only

a few comparative studies have described the lymphoid accu-

mulation in WAT of obese subjects [49].

Interstitial fibrosis in human adipose tissue

Fibrosis, studied in several common diseases [50-54], is usu-

ally defined by the modification of the amount and the com-

position of a wide panel of ECM proteins, including collagen

types (notably fibrillar collagens I and III) and glycoproteins

(laminin, fibronectin, elastins). The persistence of tissue

injuries can lead over time to an excessive production of ECM

components, which accumulate progressively and may result

eventually in impaired tissular function. Both our functional

analysis and cellular studies indicate that such a pathological

process might occur in obese WAT. Histological examination

confirmed that the subcutaneous WAT of obese subjects had

a significant increase of interstitial fibrosis, as suggested pre-

viously by a more limited assessment performed in obese

children [55]. The fibrotic material was located around

adipocytes, forming amorphous zones in electronic micros-

copy, possibly indicative of tissue deterioration. Ffibrosis

quantification in the same subjects three months after bariat-

ric surgery found no significant decrease of interstitial fibro-

sis, in spite of a significant down-regulation of the genes

related to inflammatory and immune responses and

extensive variations in the expression of genes involved in

ECM remodeling. One possibility is that there is a degree of

irreversibility of WAT interstitial fibrosis, consistent with

processes previously described in the liver [56]. The irrevers-

ibility of hepatic fibrosis has been challenged since some

authors hypothesize a potential resolution step involving the

activation of ECM degradation enzymes from the matrix met-

alloproteinase family [57]. The co-expression network

analysis showed a concomitant up-regulation of genes related

to both matrix metalloproteinase and tissue inhibitor of met-

alloproteinase families (online supplementary Table 2 [20]),

GO Biological Process enriched themes and their interaction map, illustrating the transcriptomic signature of WAT in obese subjects three months after gastric bypassFigure 9 (see following page)

GO Biological Process enriched themes and their interaction map, illustrating the transcriptomic signature of WAT in obese subjects three months after 
gastric bypass. (a,b) Functional themes, represented by enriched annotation categories of GO Biological Process (a), were correlated in an interaction 
network after quantifying their proximity based on the expression similarity of their annotated genes (b). Continuous lines indicate the strongest 
interactions superior to the upper quartile of their distribution, while dashed lines depict medium strength interactions superior to the median of the 
distribution but inferior to its upper quartile. (c) A close-up view of the two most important functional interaction modules.



http://genomebiology.com/2008/9/1/R14 Genome Biology 2008,     Volume 9, Issue 1, Article R14       Henegar et al. R14.19

Genome Biology 2008, 9:R14

Figure 9 (see legend on previous page)
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Figure 10 (see legend on next page)
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which could explain the reduced degradation of ECM compo-

nents after weight loss. Another possibility could be that

fibrosis may take more than three months to resolve, lagging

behind the amelioration of WAT inflammatory status

observed after bariatric surgery. It is noteworthy to mention

that some dissociation between mechanisms regulating fibro-

sis and inflammatory processes have also been proposed [58].

Cell types producing ECM components in adipose 

tissue: the role of pre-adipocytes

In fibrotic diseases it has been shown that the accumulation

of ECM components can be driven primarily by inflammatory

processes [59]. Several cell types in adipose tissue may have

the capacity to synthesize ECM components, particularly in a

pro-inflammatory environment characterized by an excessive

production of a wide panel of cytokines and chemokines,

some with well-described profibrotic properties. The

transcriptomic profile of the two main cellular fractions of

adipose tissue (adipocytes and SVF cells) obtained from over-

weight human subjects [13] showed that genes encoding ECM

components or related to inflammatory processes were pre-

dominantly expressed in the SVF. This observation is sup-

ported by the RTqPCR quantification of a panel of ECM

related genes, performed separately in the two cellular frac-

tions of obese and lean subjects. Indeed, this quantification

showed that, for most of the analyzed genes, the increase in

their expression level in the obese state occurs more

predominantly in the SVF cells than in mature adipocytes

[20], thus supporting the predominant role of these cells in

the excessive production of ECM components affecting the

adipose tissue of obese subjects. However, these results do

not exclude the role of mature adipocytes in the excessive syn-

thesis of some ECM components.

We formulated the hypothesis that pre-adipocytes in the

presence of inflammatory stimuli might contribute to the syn-

thesis of ECM components. Recent data provided by our team

showed that human pre-adipocytes in contact with activated

macrophage media display a fibroblastic-like appearance,

significantly proliferate and acquire pro-inflammatory prop-

erties [42]. Microarray analysis confirmed that pre-adi-

pocytes treated by AcMC-conditioned media displayed an

increased expression of a panel of genes related to ECM com-

ponents or involved in inflammatory processes. In agree-

ment, human pre-adipocytes cultured in the presence of

AcMCs increased their production of fibronectin and collagen

type I, which formed a fibrous network around the pre-adi-

pocytes. Whether different factors produced by other adipose

SVF cells in obese subjects could contribute to modify the pre-

adipocyte phenotype in a similar manner as the one observed

with AcMC media needs to be further explored, as well as the

participation of other cell types, such as myofibroblasts or

fibroblasts derived from blood-borne mesenchymal progeni-

tors. A more precise characterization of the cells composing

the adipose SVF is necessary to determine if such cell types

are also components of the human WAT.

Conclusion
From a temporal perspective, human obesity can be consid-

ered as a set of phenotypes that develop successively over

time. In this sequence one can distinguish: a 'pre-obese static

phase' when the individual at risk of obesity has a stable

weight and energy balance status; a 'dynamic weight gain

phase' during which weight increases as a result of a positive

energy balance with intakes exceeding expenditures; and an

'obese static phase' when the individual stabilizes their weight

status at a higher level and the energy balance is re-estab-

lished [60]. Once the obese phase is attained, the new weight

status appears to be strongly defended by both biological and

psychological regulatory mechanisms. In the initial phase,

behavioral and environmental factors could play a key role in

the constitution of adipose tissue excess on a genetically

predisposed background [61]. Progressive biological altera-

tions of adipose tissue metabolism could also lead to some

degree of irreversibility and contribute to the development of

obesity-linked metabolic and cardiovascular complications.

As suggested by studies in mice and, to a lesser degree, in

humans, inflammation characterized by the infiltration of

various types of circulating immune cells appears to follow

the different phases of fat mass accumulation, but the mech-

anisms and roles of these inflammatory phenomena in the

different stages of human obesity remain to be established.

Our study of functional profiles and transcriptomic

interactions characterizing the adipose tissue of subjects in

the obese static phase confirm the strong relationship linking

inflammatory processes and ECM remodeling, associated

with different inflammatory cell types and to some degree of

interstitial fibrosis in WAT. Fibrosis may be more than a

passive witness of the pathologic state of the tissue, possibly

indicating a degree of irreversibility in the evolution of obes-

ity, as seems to be suggested by its persistence after a drastic

decrease of the adipose mass, in spite of the regression of the

local inflammatory phenomena. More needs to be understood

about the dynamics of WAT fibrosis in the different stages of

obesity, its role in the perturbation of pre-adipocyte and

KEGG enriched themes and their interaction map, illustrating the transcriptomic signature of WAT in obese subjects three months after gastric bypassFigure 10 (see previous page)

KEGG enriched themes and their interaction map, illustrating the transcriptomic signature of WAT in obese subjects three months after gastric bypass. 
(a,b) Functional themes, represented by enriched annotation categories of KEGG (a), were correlated in an interaction network after quantifying their 
proximity based on the expression similarity of their annotated genes (b). Continuous lines indicate the strongest interactions superior to the upper 
quartile of their distribution, while dashed lines depict medium strength interactions superior to the median of the distribution but inferior to its upper 
quartile.
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adipocyte biology, and in the resistance to weight loss.

Regardless of the actual mechanism explaining its persist-

ence, the increase of interstitial fibrosis in the adipose tissue

could impair cell-cell contact and, therefore, interfere with

cellular signaling mechanisms that regulate adipogenesis and

metabolic functions of WAT. Our work opens new perspec-

tives on the molecular mechanisms involved in fibrosis devel-

opment and its possible consequences for adipose tissue

function.

Materials and methods
Subjects and study design

Fifty five obese subjects (BMI 44.07 ± 9.06 kg/m2, aged 40.13

± 11.67 years) and 15 lean controls (BMI 23.67 ± 1.51 kg/m2,

aged 34.2 ± 8.52 years) were prospectively recruited in the

nutrition department at the Hôtel-Dieu hospital (Paris,

France) between 2002 and 2006. We excluded subjects with

associated acute or chronic inflammatory diseases, infection

and/or cancer. All obese subjects had a stable weight status

for at least three months before inclusion. Ten of the obese

subjects underwent gastric bypass, which was performed in

the surgery department of Hôtel-Dieu hospital (Paris,

France). Clinical and biochemical parameters were assessed

and recorded at their peak weight before and three months

after bariatric surgery. Blood samples were withdrawn after

overnight fasting for biochemical testing of circulating pro-

teins (such as serum leptin, adiponectin, IL6, tumor necrosis

factor (TNF)α and high-sensitivity C reactive protein

(hsCRP)). Controls were healthy lean subjects with no per-

sonal history of obesity undergoing esthetic surgery proce-

dures. The overall clinical and biochemical parameters of the

analyzed subjects are shown in Table 1. Further details for

each subgroup of subjects are provided as online supplemen-

tary data [20]. There was no significant difference in terms of

age between obese subjects and lean controls. All clinical

investigations were performed according to the Declaration

of Helsinki and were approved by the Ethics Committees of

Hôtel-Dieu hospital (Paris, France). Signed informed con-

sents were obtained for all subjects involved in the study.

Laboratory tests

Blood samples were collected after an overnight fast of 12

hours. Glycemia was measured by enzymatic methods. Serum

insulin concentrations were measured using a commercial

IRMA kit (Bi-INSULINE IRMA, CisBio International, Saclay

France). Serum leptin and adiponectin were determined

using a radioimmunoassay kit from Linco research (Saint

Louis, MI, USA), according to the manufacturer's recommen-

dations. The sensitivity of these assays was 0.5 ng/ml and 0.8

ng/ml for leptin and adiponectin, respectively. Serum levels

of IL6 and TNFα were measured by an ultrasensitive ELISA

system (QuantikineUS, R&D Systems Europe Ltd, Abingdon

UK). The sensitivity of this assay was < 0.04 pg/ml and 0.12

pg/ml for IL-6 and TNFα, respectively. Intra-assay and inter-

assay coefficient of variation (CV) were below 8% for IL6 and

8.8% and 16%, respectively, for TNFα. Orosomucoid and

hsCRP were measured using an IMMAGE automatic immu-

noassay system (Beckman-Coulter, Fullerton, CA, USA). The

sensitivity was 35 mg/dl and 0.02 mg/dl, respectively. Intra-

assay and inter-assay CV were below 4% and 6%, respectively,

for orosomucoid and below 5% and 7.5%, respectively, for

hsCRP.

Insulin sensitivity of subjects was evaluated using the quanti-

tative insulin sensitivity check index (QUICKI) method,

which was shown to be well correlated with the hyperin-

sulinemic euglycemic clamp method, considered as the refer-

ence method. The calculation was performed for fasting

glucose and insulin as described previously [62].

Microarray experiments

Samples of subcutaneous WAT were obtained from the peri-

umbilical region of obese and lean subjects through a needle

aspiration procedure. Total RNA was prepared using the

RNeasy total RNA Mini kit (Qiagen, Courtaboeuf, France),

according to the manufacturer's protocol. The concentration

of total RNA was determined using a Ultrospec 2000 spectro-

photometer (Pharmacia Biotech, Piscataway, NJ, USA) and

the integrity of the RNA was assessed using a 2100 Bioana-

lyzer (Agilent Technologies, Massy, France). One microgram

of total RNA from each sample preparation was amplified

using the MessageAmp RNA kit (Ambion, Austin, TX), and 3

μg of amplified RNA (aRNA) was Cy-dye labeled using the

CyScribe first-strand cDNA labeling kit (Amersham Bio-

sciences, Orsay, France) [63,64].

To compare microarrray experiments performed in obese and

lean subjects, we used a common reference pool generated by

mixing equal amounts of total RNA extracted from adipose

tissue samples of all analyzed patients. aRNA from the refer-

ence pool was labeled with Cy3, while the aRNA from the test-

ing samples was labeled with Cy5. A total of 35 individual

cDNA microarrays were performed in this condition.

Presence of macrophages, T lymphocytes and NK cells in the subcutaneous WAT of morbidly obese subjectsFigure 11 (see previous page)

Presence of macrophages, T lymphocytes and NK cells in the subcutaneous WAT of morbidly obese subjects. (a-d) Immunohistochemistry on paraffin-
embedded adipose tissue and nuclei staining with haematoxylin (blue) shows CD3 positive cells between adipocytes (f) and in vessel walls (b), as well as 
NK cells (anti NKp46) (c,d). (e-g) Electron microscopy of adipose tissue shows macrophages ('m') with cytoplasmic expansions (arrows) in stromal areas 
between adipocytes ('a') and sometimes close to lymphocytes ('L'). (a,b) Representative images of ten independent slides taken from ten obese or ten lean 
patients; (c,d) representative images of five slides taken from five patients.
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In the gastric surgery condition the aRNA extracted from

each WAT sample before surgery was labeled with Cy3 dye,

while the aRNA from the WAT samples obtained three

months after surgery was labeled with Cy5 dye. A total of ten

individual cDNA microarrays were performed for this

condition.

Differences in gene expression between isolated adipocytes

and SVF cells were examined from subcutaneous WAT speci-

mens of previously described overweight subjects (women, n

= 9, BMI 27.9 ± 6.8 kg/m2) [11]. This group of subjects was

different from the subjects who participated in the clinical

investigation protocols. We compared total RNA extracted

separately from adipocytes and from SVF cells, obtained after

enzymatic digestion of WAT specimens and separation of the

two cellular fractions as previously described [11]. It cannot

be excluded that this enzymatic digestion technique may have

a potential influence on the expression profiles of separated

cells, as noted previously in mouse studies [65]. In this condi-

tion, the cDNA microarray experiments were performed after

pooling an equal amount of total RNA from adipocyte and

from SVF cell preparations, repeated six times. aRNA from

SVF cells was labeled with Cy3, whereas aRNA from adi-

pocytes was labeled with Cy5.

Finally, eight cDNA microarray experiments were performed

to evaluate gene expression changes in cultured human pre-

adipocytes induced by inflammatory cytokines secreted by

lipopolysaccharide-activated circulating monocytes (AcMCs).

The aRNA extracted from cultured pre-adipocytes incubated

with control RPMI medium was labeled with Cy3 dye, while

the aRNA obtained from pre-adipocytes incubated with

AcMC-conditioned media was labeled with Cy5 dye.

For all these conditions, the hybridization, washing, and

scanning procedures were performed as previously described

[11]. Several quality cross-checks (for total RNA quality,

aRNA quality, dye incorporation efficiency, and so on) and

microarray 'dye swap' experiments were also performed. The

raw microarray data relating to all these conditions has been

deposited in the Gene Expression Omnibus [66] public repos-

itory (accession number: GSE9157).

Real time quantitative PCR

We validated the gene expression changes by reverse tran-

scription and RTqPCR, performed as described in [63]. These

results are presented as online supplementary data [20]. We

used 18S ribosomal RNA (Ribosomal RNA Control TaqMan

Assay kit, Applied Biosystems, Foster City, CA, USA) as a nor-

malization control. The primers and TaqMan probes for

mRNA were obtained from Applied Biosystems. These probes

were labeled with a reporter dye (FAM) on the 5' end. The

probe for 18S ribosomal RNA was labeled with the reporter

dyes VIC and TAMRA on the 5' end and the 3' end, respec-

tively. For each primer and probe pair, a standard curve was

obtained using serial dilutions of human adipose tissue cDNA

prior to mRNA quantification.

Statistical analyses

A print-tip loess normalization of the microarray experiments

was performed after the log-transformation of the back-

ground-corrected expression measurements, as indicated in

[67]. Transcripts with significant expression changes were

identified by applying the SAM procedure [21]. Significant

differential expression was established by imposing a 5% FDR

threshold in the SAM selection procedure for all conditions. A

Wilcoxon test was further used to evaluate differential

expression of the genes analyzed by RTqPCR (for example,

obese versus lean, before versus after bariatric surgery). Cor-

relations between gene expression measurements, and clini-

cal and biochemical parameters were examined with the

Spearman's rank test. In all analyses the threshold for statis-

tical significance was considered as corresponding to a p

value < 0.05. In all conditions in which multiple testing errors

were expected, due to the high number of consecutive statis-

tical computations, the p values computed from the afore-

mentioned tests were adjusted by applying the Storey (2002)

correction approach [68], corresponding to an estimated

FDR of 5%. All statistical analyses were performed with the R

software environment for statistical computing [69].

Analysis of the biological interactions characterizing 

the transcriptomic signature of obese WAT

The integrative strategy, applied to analyze differentially reg-

ulated genes, consisted of three consecutive steps: first,

identification of contextually relevant biological themes

through an automated annotation of differentially regulated

genes; second, quantification of the transcriptomic interac-

tions relating relevant biological themes and construction of

functional interaction maps characterizing the

transcriptomic signature of obese WAT in the two analyzed

clinical situations; and third, analysis of the gene co-expres-

sion networks underlying the biological interaction modules

and computation of network centrality measures for related

gene nodes.

Quantification and characterization of interstitial fibrosis in subcutaneous WAT (scWAT) of morbidly obese subjectsFigure 12 (see previous page)

Quantification and characterization of interstitial fibrosis in subcutaneous WAT (scWAT) of morbidly obese subjects. (a-c) Low magnification pictures of 
adipose tissue connective areas (stained with picrosirius, red) in a lean control and an obese patient before and three months after bariatric surgery. 
Pictures are representative of ten analyzed subjects. (d) Automated software quantification of picrosirius areas. Error bars indicate the upper limit of the 
95% confidence interval of the mean percentage of fibrosis (e,f) Appearance of stromal connective tissue at higher magnification (e) and by electron 
microscopy (f) showing layer shaped fibers.
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Biological annotation of differentially regulated genes

An automated annotation procedure of differentially regu-

lated genes in microarray experiments was performed based

on the GO [22] and KEGG [23] annotating systems [70,71].

EntrezGene numbers [72] were used as a standard transcript

accession system to ensure a correct over-representation

analysis, as they allow one to map gene identifiers to GO or

KEGG biological categories. The gene annotation procedure

was applied separately for each of the three GO ontologies

(Biological Process, Cellular Component, and molecular func-

tion), as well as for the KEGG categories.

To minimize the false over-representation of GO categories

related to the redundant annotation of genes' roles in the GO

lattice, and to ensure a homogenous degree of specificity of

the extracted biological annotating information, an informa-

tion driven procedure was devised and applied to compute

the gene enrichment for each annotating GO category (that is,

the proportion of differentially expressed genes annotated

with a category in relation to all the genes annotated with it).

This procedure related gene enrichment computations to

information-specific levels of GO, defined with respect to the

precision of the annotating information encoded in the onto-

logical lattice. A reference level of maximum annotation

specificity was first defined by considering for each GO cate-

gory only its directly annotated transcripts, regardless of the

category's position within the GO lattice. Then, by reference

to this level, we derived a number of decreasingly specific sub-

sequent levels by transitively reassigning annotated genes

within the GO lattice (that is, by reassigning annotated genes

to less specific ontological categories guided by the subsump-

tion relations encoded in the ontological lattice). Afterwards,

a gene enrichment measure was computed for each GO

category, at each information-specific level resulting from

stepwise reassignment of GO annotations (that is, from each

GO category to its direct ontological hypernyms). A p value of

gene enrichment significance, computed from a Fisher's exact

test as previously described [13,73], allowed us to identify sig-

nificantly over-represented biological themes at each infor-

mation-specific level. A similar gene enrichment computation

was performed for KEGG categories, except that no

information-specific levels were considered in this situation,

as these categories are not constrained by ontological rela-

tions. The resulting p values were adjusted for multiple test-

ing errors by applying the Storey (2002) FDR correction

approach [68]. After expert inspection of automated annota-

tion results, the fourth information-specific level of GO was

retained for further analysis, as it provided an optimal trade-

off between the specificity of the annotating information and

its biological interpretability.

Analysis of transcriptomic interactions between over-represented 

biological themes

The analysis of transcriptomic interactions aimed to extract

relevant information about the complex relationships

between various structural and functional themes in the

Functional profiles illustrating the transcriptomic signature of human pre-adipocytes cultivated with AcMC-conditioned mediaFigure 13

Functional profiles illustrating the transcriptomic signature of human pre-
adipocytes cultivated with AcMC-conditioned media. Relevant biological 
themes, showing significant enrichment in genes up- or down-regulated in 
human pre-adipocytes cultivated with AcMC-conditioned media, are 
represented as annotation categories of the (a) GO Cellular Component 
and (b) GO Biological Process ontologies, and (c) KEGG.
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human WAT (that is, structural components, cellular proc-

esses, and regulatory pathways) from the similarity of the

gene expression profiles annotated with significantly

enriched GO or KEGG categories related to these themes. For

this purpose we relied on an analytical framework designed to

explore proximity relationships between abstract 'multiple-

instance' objects, corresponding to annotating categories in

our context, constituted as sets of annotated gene-instances

represented by their vectors of expression measurements

[73,74]. A non-linear dynamic system model, relating the

multiple-instance representation of GO and KEGG categories

to the expression profiles of their annotated genes, was used

to extract information about the proximity between the anno-

tating categories from the expression similarity of their anno-

tated genes (C Henegar, K. Clement and J-D. Zucker,

manuscript in preparation). An unsupervised spectral tech-

nique [75] was applied to the resulting adjacency matrix,

encoding proximity information, to cluster themes into bio-

logical interaction modules (C Henegar, K. Clement and J-D.

Zucker, manuscript in preparation). The selection of the opti-

mal cluster partitions relied on the Silhouette quality index,

used to compare clustering results because of its good rele-

vance to the genomic context underlined in previous evalua-

tions [76]. Finally, the Cytoscape software environment for

biomolecular interaction networks analysis [77] was used to

construct comprehensive maps illustrating the interactions

between biological themes characterizing the transcriptomic

signature of obese WAT in the analyzed conditions.

Analysis of the gene co-expression networks underlying biological 

interactions in WAT

Co-expression networks analysis was performed to relate dif-

ferentially expressed genes annotated with relevant biological

themes and to evaluate their biological importance based on

conventional measures of network centrality. The analytical

framework used to construct networks of co-expressed genes

has been described in [78]. A co-expression matrix was first

computed by relying on the Spearman's correlation coeffi-

cient to quantify the similarity of gene expression profiles in

the analyzed conditions. Then, an adjacency matrix was

obtained by applying a signum function to the co-expression

matrix. The signum adjacency function implements a 'hard'

thresholding approach that relies on a predetermined thresh-

old parameter. This threshold parameter, which represents a

co-expression significance indicator, was determined by max-

imizing a scale-free topology criterion as previously described

[78]. To assess the potential biological relevance of individual

genes, network centrality measures, such as the betweenness

and the intra-modular connectivity of gene nodes, were com-

puted from the constructed co-expression networks, as previ-

ously proposed [79].

Morphometry

Peri-umbilical subcutaneous WAT biopsies were performed

by surgeons during gastric surgery interventions. Samples

were fixed overnight at 4°C in 4% paraformaldehyde then

processed for standard paraffin embedding. Thin sections (5

μm thick) were haematoxylin-eosin stained and analyzed by

three independent observers in a blind fashion with a Zeiss 20

Axiostar Plus microscope (Zeiss, Germany). Digital images

were captured by a Sony triCCD camera (Sony, France). Cell

diameter was measured in 400 adipocytes per sample using

PerfectImage Software (Claravision, Orsay France). A mean

diameter was calculated for each WAT biopsy.

Liver histopathology

A liver biopsy was performed in each of the ten lean subjects

and ten obese patients before and after weight loss. Liver

samples were formalin fixed, paraffin-embedded and rou-

tinely stained (haematoxylin and eosin, Masson's trichrome,

picrosirius red and Perl's staining). Slides were coded and

analyzed by a single expert pathologist blind to the identity of

the biopsy. Major histopathological features were recorded

and semi-quantified according to previously published

criteria [80]. Fibrosis was classed as stage 0 (none), stage 1

(1a-b zone 3 perisinusoidal fibrosis only, 1c portal fibrosis

only), stage 2 (zone 3 perisinusoidal fibrosis and periportal

fibrosis without bridging), stage 3 (bridging fibrosis) and

stage 4 (cirrhosis, probable and definite).

Fibrosis quantification

Adipose tissue was collected from ten lean and ten obese sub-

jects, before and 3 months after bariatric surgery and paraf-

fin-embedded as described above. These patients were the

same group used to study liver histopathology. Slides were

stained with picrosirius red [81]. Briefly, the sections were

incubated in 0.2% phosphomolybdic acid, 0.1% picrosirius

red (direct red 80 in saturated picric acid), and 0.01 N HCl

and then dried and mounted in Permount. Fibrosis analysis

was performed using Alphalys platform (Histolab software,

Plaisir, France) at ×100 magnification with constant color

thresholds. Quantification was assessed as a percentage of

red staining (fibrosis)/tissue surface ratio.

Immunohistochemistry

Immunohistochemical detection of T lymphocytes using CD3

(Neomarker Microm, Francheville France) was performed

with the avidin-biotin peroxidase (ABC) method [82]. Immu-

nohistochemical detection of NK cells using NKp46 (RnDsys-

tem, Lille France) was performed with EAC (Dako

Cytomation, Trappes France). De-waxed sections (5 μm

thick) of subcutaneous WAT were processed through the fol-

lowing incubation steps: first, antigen unmasking by 750 W

micro-wave washing in a solution of citrate buffer (10 mM pH

6.0) three times; second, hydrogen peroxide 3% in water for

15 minutes to block endogenous peroxidase; third, Tris-buff-

ered saline/Tween20-Casein 0.02 M solution (TBS-TC) for 10

minutes; fourth monoclonal mouse antibodies diluted 1:200

(1 h) in TBS-TC at room temperature; fifth, multilink anti-

mouse biotinylated immunoglobulins (Dako Cytomation)

diluted 1:200 in TBS-TC for 20 minutes; sixth, the standard

streptavidin-biotin-peroxidase complex (SABC) method was
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applied using a commercially available kit (ABCYS, Biospa,

Milano, Italy); and seventh, the staining was visualized using

diaminobenzidine, and the slides were counterstained with

Mayer's haematoxylin. Processed slide images were acquired

by a microscope-camera system (Nikon, France).

Electron microscopy

Small fragments of tissue were fixed in 4% glutaraldehyde in

0.1 M phosphate buffer, pH 7.4, for 4 h, post-fixed in 1%

osmium tetroxide, and embedded in an Epon-Araldite mix-

ture. Semi-thin sections (2 μm) were stained with toluidine

blue, and thin sections were obtained with an ultratome,

stained with lead citrate, and examined with a transmission

electron microscope.

Cell culture

Pre-adipocytes were isolated from the subcutaneous adipose

tissue obtained from the peri-umbilical region of five healthy

non-obese women undergoing elective surgery, and cultured

as described in [83,84]. Briefly, minced adipose tissue was

digested by collagenase treatment. The digested material was

filtered and centrifuged. The resulting pellet (the SVF) was

resuspended in erythrocyte lysis buffer (154 mM NH4Cl, 5.7

mM K2HPO4, and 0.1 mM EDTA, pH 7.0) at 250 g for 10

minutes. After washing in phosphate-buffered saline (PBS),

the SVF cells were suspended in DMEM-10% fetal bovine

serum and used for cell culture at passage 2 to eliminate non-

pre-adipocyte cell contamination as confirmed by negative

staining for macrophage markers (Ham 56 and Mac-1). Iso-

lated pre-adipocytes were further cultured for 24 h in 1 ml of

DMEM-10% fetal bovine serum at a cell density of 105 cells

per well on round glass coverslips in 12-well plates. They were

then incubated with (AcMC) or without (Control) 0.25 ml

AcMC-conditioned media [42], and 0.75 ml of DMEM/F12

induction medium (final concentration of 50 nM insulin, 100

nM dexamethasone, 0.25 mM inhibitor 1-methyl-3-iso-

butylxanthine, and 100 nM rosiglitazone) for 4 days. Then,

this medium was replaced by 0.25 ml of control or AcMC

medium and 0.75 ml DMEM/F12 culture medium (final con-

centration of 50 nM insulin and 100 nM rosiglitazone). The

medium was changed every two days until the tenth day. Cells

were then fixed with 4% paraformaldehyde and immunos-

tained: after permeabilization for 5 minutes in PBS, 3%

bovine serum albumin and 0.1% triton (only for collagen I

staining) and blocking for 1 h in PBS and 3% bovine serum

albumin the cells were incubated overnight in a 1:100 dilution

of either anti-fibronectin (BD Bioscience, San-Jose, CA, USA)

or Collagen I (NOVUS, Littleton, CO, USA) antibody at 4°C

under constant agitation. Revelation used cyanin 2 for

fibronectin, cyanin 3 for type I collagen and DAPI nuclear

staining. The coverslips were mounted in Fluoprep medium

(Biomérieux, Narcy L'Etoile, France) and observed with an

Axiovert microscope coupled to an Axiocam HR camera

(Zeiss). Colors are arbitrary applied to grayscale pictures.
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human pre-adipocytes cultured with AcMC medium. Addi-

tional data file 2 is a table listing ECM-related genes showing

significant differential expression in obese WAT compared to

lean controls, and in pre-adipocytes cultured with AcMC

medium. Further details and results are available online on

the companion web-site associated to this manuscript .
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Macrophages promote ECM component secretion by pre-adipocytesFigure 14 (see following page)

Macrophages promote ECM component secretion by pre-adipocytes. (a-d) Immunofluorescence analysis of pre-adipocytes cultivated with control (a,c) or 
AcMC-conditioned media (b,d) reveals that they express type 1 collagen (b, green staining, arrows) and fibronectin (d, red staining) in the latter condition. 
(e) Electron microscopy picture of an adipose tissue macrophage ('m') shows its collocation with collagen fibers ('c') and a lipid droplet ('l'). (a-d) 
Representative images of five independent experiments.
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