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Laurent Alberamember, IEEEANnne Ferréol, Delphine Cosandier-Rimélé, Isabelleldte Fabrice Wendling

Abstract—A high resolution method for solving potentially ill-  brain, as it is a biophysically-relevant representatioa sfmall
posed inverse problems is proposed. This method named FO-cortical area activity. As neuronal electromagnetic fieds
D-MUSIC allows for localization of brain current sources with  ganitive to geometrical and electrical properties of tifferd
unconstrained orientations from surface electro- or magn®- . . .
encephalographic data using spherical or realistic head gane- e_nt head tissues (brain, bone, sk!n), the heaq can be modeled
tries. The FO-D-MUSIC method is based on i) the separabilityof ~ €ither by a set of nested concentric spheres with homogeneou
the data transfer matrix as a function of location and orientation ~and isotropic conductivities [20], or by realistically geal
parameters, ii) the Fourth Order (FO) virtual array theory, and models built from3D anatomical data (Magnetic Resonance
iii) the deflation concept extended to FO statistics accouilty | 54ing MRI), with refined tissue conductivity values [10]
for the presence of potentially but not .completely stat|§nglly Durina the last th d d . th-
dependent sources. Computer results display the superidyi of uring the last three decades, many array processing me
the FO-D-MUSIC approach in different situations (very closed 0ds were developed to estimate multidimensional paraseter
sources, small number of electrodes, additive Gaussian rs& with  of sources such as localization parameters. In particular,
unknown spatial covariance, ...) compared to classical atgithms. among subspace approaches, the Second Order (SO) MUSIC

(MUltiple Signal Classification) method [21] [22], can |dica

Index Terms—Sequential Source Localization, Backward Prob- intracerebral sources in overdetermined contexts. Skevaria
lem, EEG, MEG, MUSIC, Fourth Order Statistics. ants were then proposed to improve the MUSIC performances.

On the one hand, Time MUSIC-like methods were reported,
such as the extension of the original MUSIC algorithm to
Fourth Order (FO) statistics proposed by Porat et al. [19].
E LECTROENCEPHALOGRAPHY (EEG) and magneto-The particularity of this algorithm is to deal with the case

— encephalography (MEG) are two complementary techt ynderdetermined source mixtures. Among Time MUSIC-
nigues measuring, at the surface of the head, electricahpotjjke algorithms, sequential approaches [17] [25] [15] stou
tials and magnetic fields produced by neuronal activitypees pe mentioned. They are based both on the SO statistics and
tively. The localization of the sources of this neuronahdit  he deflation concept introduced to increase localizat@st r
(during either cognitive or pathological processes) reIto  |ytion. The RapMUSIC algorithm [15], a sequential method
solve the inverse problem; i.e. to localize sources only_mfrobased on Ferrara’s works [7], is of particular interest.sThi
surface recordings. In the general case, the EEG/MEG ievefethod takes advantage of the factored matrix formulation
problem is an ill-posed and under determined problem, as ethe transfer relationship between the deep sources and th
number of sources is larger than the number of measuremg‘gmp data to reduce computing time by separating quaailine
points. To overcome this difficulty, localization techn@u from non-linear source parameter estimation.
assume a finite number of sources to be localized. When thisgp the other hand, Time-Frequency (TF) approaches were
number is lower than the number of sensors positioned on %posed as reported for example by Sekihara et al. [23]
scalp, the problem is overdetermined and a unique solutigRd Belouchrani et al. [3]. Their objective was to improve
can be obtained. It is noteworthy that the inverse problemsge resolution of the localization in the case of very closed
not specific to the field of neurophysiology, but it can be fdunsgyrces withspectral non-stationarproperties. Besides sub-
in many other areas such as digital radiocommunications [12nace methods, other localization methods applied to EEG an

The solution of the inverse problem implies that a MOd§hEG data were reported. Readers may refer to the recent
of sources and a model of volume conductor are defined. A& iew by Michel et al. [14] for details.
the study of cerebral activity, the current dipole is the mos | practice, the physiological signals of interest have-non
commonly used model for a source of electrical activity ia thzerg higher order statistics. Nevertheless, most of theeafo

L. Albera, D. Cosandier-Rimélé, 1. Merlet and F. Wendliage with mer_wti(_)ned array processing methO(_js are based _only on SO
INS.ERM, U’642‘, Rennes, F-35000,' F.rance; and with Univergi¢’ Rennes StaliStics. Therefore, they are restrictive and suboptméhey
1, LTSI, Rennes, F-35000, France. (email:laurent.albers@rennesl.fr). A. do not take advantage of the information available at higher
Ferréol is with the THALES Communications group, 146 Buale de Valmy, qgrders. Moreover, TF approaches are not useful for sources
BP 82, F-92704 Colombes, France. S . . . .

This work was supported in part by the Regional Council oft-Bri with identical TF supports. Besides, Time SO technlques
tany (http://www.region-bretagne.fr) and it is protected a patent intited cannot deal with underdetermined mixtures of sources dr wit
"Procédé et dispositif d'identification de pargmétres_l_tjdin)ensic_)nnels : a Gaussian noise of unknown coherence. Higher Order (HO)
application a la localisation et la reconstruction d'acitiés électriqgues de methods inherently account for these limitations. However

profondeur au moyen d’observations de surfaoghose reference is WO : -
2007/057453. to date, there is no attempt to propose a FO method taking

I. INTRODUCTION
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advantage of the separability of the matrix transfer fuorcti potential differences (or magnetic fields) generated from s

between the input and output data and of the deflation concdpte electrodes by a current dipole with a unit time course
The intent of the present paper is to describe a new H@alized at a given positiop for a given orientatiorp. Recent

MUSIC-like method addressing these issues. This methampirical work on closed-form approximations for sphdrica

referred to as FO-D-MUSIC, is based on i) the separabilignd realistic head geometries (see [16] for more detailsjval

of the data transfer matrix as a function of location anfibr the approximation o&(6) by the product of ai{x3) gain

orientation parameters and on i) the FO virtual array theomatrix G(p) and the orientation vectap:

[5], and accounts for the presence of potentially but not

completely statistically dependent sources. MoreoverRbe a(8) = G(p) ¢ ®)

D-MUSIC method uses the deflation concept which non-trivigihere the multi-parameter vectér=[p" ¢7]" of the consid-

extension to FO statistics is also presented in this pag®. Tored dipole includes the non-linear location paramgtemd

paper is organized as follows. Assumptions about the Noigy quasilinear orientation parametgr

mixture of sourcesare introduced in section Il. SO and FO Although the method we developed can be applied to both

statistic properties are presented in section Ill. Priesiof £EG and MEG data, and to both spherical and realistic head

the proposed algorithm are described in section 1V which a'ﬁqodels, the following results will be presented in the EEG

provides some identifiability results (section IV-E). Alga context using a spherical head model. In other words the

computer experiments are presented in section V. observed data are assumed, in the sequel, to be electrical
potentials. The head is represented by three nested coiccent
Il. NOTATIONS AND HYPOTHESES spheres (brain, skull, and scalp), with conductivitiessehas

A. The problem statement constant and isotropic.

We assume tha realizations of arV-dimensional random ) o ) )
vectorz are observed. Besides, vectoris given by: B. Gain matrix in an EEG context with spherical head model

In the case of &-shell spherical head model, theth row

z=A(0)s+v (@) @, (p) of the gain matrixG(p), has the following expression
where s = [s1,---,sp|" is a P-dimensional random vector, [4] [16]:
called source vector, which observations correspond to the 3
time courses of theP current dipoles. MatrixA(®) = G.(p) = Z,\j (h(r1, ;) — h(rng, ip))" (4)
[a(61),---,a(6p)] is the (Vx P) static mixing matrix, which j=1

depenc_is or® = {6y,...,6p}, that is, the collection .Of the The (N+1)-th electrode is used as single common reference in
P multi-parameters of the sources. As far as the noise vecto

r . . .
v is concerned, it is assumed to be Gaussian and statisticrfl“’der fo computeV potential differences from the potentials

. tetorded at theV other electrode locations. TH&x 1) vector
independent of the source vector. Moreover, some compsneEéT p) is given by [16]:

of vectors can be statistically dependent, i.e. sources can
partially, but not com_pletely correlated (in_a wide-sena_ta, " (ci(r,p) — ca(r, p)T7P) p + ea(7, p) HPHQT (
order2 and4). So, without loss of generality, it is possible (r,p)=

to divide the P sources intoJ groups, with P sources in

the j-th group ( < j < J), in such a way that sourceswWhereos is the conductivity of the outermost layer of the
of same group are statistically dependent, while sourcesShere head model, and parameters-, p) andc,(r, p) are
different groups remain statistically independent. Irtipatar, defined by:

J = P corresponds taP statistically independent sources

5)
dros | pl|”

c ('P )_2(T—p)TP+ 11
whereasJ =1 corresponds to the case where all the sources “1\""P)= < 7=p= T r—p[ — 7] (6)
are dependent. Of course, thf¢ parameters are such that ca(r, p)= I o+ 17 —PIHTI T
bt . . Ir=plI* " e lir—pl(Irilr-pHr|>—pTr)
P=73;_, P;. Under these notations, the observation vector
@ can be rewritten as follows: Constants{\ }, ;5 and {;},_;; — the so-called "Berg
J parameters” [4] — are only dependent on thephere head
z— ZA(Gj)Sj Ty ) model radii { %}, ;4 and conductivities{aj}lgjﬁg. They
i should be fitted numerically by minimizing the right side of

equation (5i") given by Zhang [27]. For instance, we comgdute

where A(©;) is the (V x P;) submatrix of A corresponding the "Berg parameters” for specific radii [20] and condudits
to the j-th group of sources angl; is the corresponding’;- [24] values, as shown in table I.

dimensional subvector of. It is noteworthy that the division

of the P sources intoJ groups will be very useful in the Ry (cm) | Ra R o1 (Slcm) | o2 o3

following sections to find the identifiability conditions tfie 8 8.5 9.2 3.3e-3 | 8.25e-5| 3.3e-3

FO-D-MUSIC method, that is, the maximal number of sources

which can be processed for a given number of observations.
In EEG (or MEG) applications, each source localization

vector a(@) of the static mixing matrix represents electrical

A1 A2 A3 B b2 13
05979 | 0.2037| 0.0237| 0.6342 | 0.9364 | 1.0362

TABLE |
THE "B ERG PARAMETERS FOR A SPECIFIC3-SPHERE HEAD MODEL
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I1l. SO AND FO STATISTICS calledcovariance matrixand in a (V>xN?) symmetric matrix
Q,., calledquadricovariance matrixrespectively:

Bo(ni,m2) = Cninse
Qu(N(m —1)+m,Nng—1)+m) = Cnynyngnae
) whereR, (i, ) and@x (i, j) correspond to théi, j)-th compo-
U (u) = Elexp(iu')] (7) nent of R, andQ, respectively. It is noteworthy that, contrary

hereEl+] denotes th th tical ati i to the covariance matrix, the quadricovariance matrix is no
whereE|[z] denotes the mathematical expectationzofSince generally positive definite.

e (0)=1 and \11;1). IS cc.)ntlntjlc))us, then a small neighbour=" Ny jet's consider vectox given by model (1) where the
hoodi/ of 0 exists, in which¥; " does not vanish. Denoting noise vectorv is assumed to be Gaussian and statistically
log the principal branch of the logarithm in the right halépe, jhgependent of the source vectsr Then themultilinearity

we define the second characteristic functibf’ by property enjoyed by cumulants [13] gives the following rela
tion between cumulants @ and cumulants ok:

R.=Y]_, A(®,)) Ry A(®;) + R,

Momentsare the coefficients of the expansion of the first Qm:ijl(A(Gij(@j))QSj (A(©))®A(©)))"
characteristic functiorﬂ/g) about the origin, andumulants
are those of the second characteristic functibff). More

precisely, one defines the entries :eth order moment and
cumulant tensors at, respectively, as

A. Moments and cumulants

Recall that the first characteristic functimil) of a random
vectorx always exists, is continuous and is defined by

(12)

vuel, IP(u)= log(\If(ml)(u)) (8)
(13)

whereR,, andQ., are the {;xF;) covariance and the’xP?)
guadricovariance matrices, respectively, of the souregove
s;, and whereR, is the noise covariance matrix. For any
rectangular matrice& and H, of size (Ng x R;) and (Ny x

aT\I](l)(u) Py) respectively, the Kronecker matrix produe H of size

def AT . . K
My, ng,oonp,e = (=) it O, - Ot (9)  (NgNy x R:Py) is defined by:
u=0 G,))H --- GO,R)H
and GoH = SN 5 (14)
o ey o (w) (10) G(Ng,)H --- G(Ng,Ry)H
B i, Oy -+~ Q. | Although matricesR, and@,, can be written as a function of

) ) . the static mixtureA(®;), they have different algebraic struc-
Note_ that, using the Leonov-Shiryaev formula [13], it Iures. Consequently, matriR, cannot be simply replaced by
possible to relate cumulant tensors to moment tensors; ¢ iy source localization algorithms based on the covariance
particular, ther-th order cumulant tensor is related to moment, 5rix. Indeed, given the algebraic structure of the quadri
tensors of order smaller than or equalrtoFor instance, SO | 4riance matrixQ, (13), the extension of a covariance-based
and FO cumulant tensors of a zero-mean random vectEN  athod to FO statistics requires to elaborate an algorithie a
be computed from moment tensorsaofn the following way: 5 fylly exploit the quadricovariance structure insteadtios

M covariance one. This is the purpose of the next section.
ni,n2,xe

C"l;”?)m =

Cn17n2,n37n4,w =Mp, nongna,e = Mny o2 Mg ng e (11)

IV. TOwARDS AFO MUSIC-LIKE APPROACH
_Mnlyn&anzynmw - Mn11n47mMn2,n37m

_ _ A. Some additional assumptions
However, in practice, momen_ts of the data are not eXac@)@sides the assumptions given in section I, the SO MUSIC-
calculable and have to be estimated frdnsamples of data, o methods. for instance MUSIC [7], S-MUSIC [17] and

in a way that is completely described in [1, section IlI-Dfan RapMUSIC [15], need the following hypotheses:
which is not recalled here. ' '

H1) P<N;
H2) Matrix A(®) has a full rank equal td;
B. Moment and cumulant properties However, when FO statistics are exploited, assumptidhs

Moment and cumulant tensors of a real random vectgdez_Can b_e replaced by.the following ones:
are symmetricsince they are invariant under arbitrary indexAl) Y, 1<j<J, B <N; dof
permutations. A2) Vj, 1<j<J, matricesA(®;)®? = A(Q;) ® A(©))
Another important property of cumulants is that if at least ~ and @, have a full rank equal t@?;
two variables or groups _of var_iables are st_atistically pele  A3) R, def Ej:l PjQ < N2:
dent, then gll cumulants_ involving these variables are F!'lhié ) The (V2xR,) matrix B(@)déf [A(©)%2 ... A(©,)%?]
fact that this property is not shared by moments reinforces .
has a full rank equal t@;;

the interest in cumulants, especially in order to proceseemo , . .

sources than observations, as explained in section IV. where ], P; anc_iA((aj) were defmgd n sgctlon_ . Note_that
! under assumption&l to A4, matrix QQ, given in equation

For the sake of convenience, cumulants can be arranged i z

symmetric matrix. Indeed, SO and FO cumulants of a rando(rl?) takes the following matrix form:

vector x can be standed in aV(xN) symmetric matrixR,, Q, = B(®) 9, B(O)' (15)
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where Q, is the (R; xR;) block diagonal matrix constructedassociated with the remaining eigenvalued®pf Indeed, since
from the J source quadricovariance matrio®s . The sparsity R, is a real symmetrical matrix, it can be diagonalized using
level of matrix Qs is straight related to the ratid/P. In a real unitary similarity transformation, namedly=[Us; U,].
particular, for sources that are all statistically depentdd=  Then each column af; is orthogonal to each column &f,.

1), hypothese#\1 to A4 reduce to: Moreover,Span{Us} = Span{A(®)}, that is, each column

A1) P<N; vector of A(®) is a linear combination of the SO signal

A2) Matrices B(®) = A(©) @ A(©) and Q, have a full eigenvectors. Therefore each column&f®) is orthogonal to
rank equal toP?; each column ol,. So, denoting by, the location/orientation

parameters of the-th source andi(6,) the localizing vector
appearing at the-th column of matrixA(®), vectorsa(6,)

(1 < p < P) are orthogonal to each column &f,. Thus the
standard SO metric used in MUSIC [22], S-MUSIC [17] and
IES-MUSIC [25] can be defined as follows:

In such a case, theP¢ x P?) matrix Q, is full and equal
to the source quadricovariance mat€). On the other hand,
when all the sources are statistically independeht=( P),
hypothese#\1 to A4 reduce to:

A'l) P<N?
A’2) Matrix B(®) = A(®)2 A(®) and 9, have a full rank 1(6) = a(0)' U, U, a(6) (18)
equal toP; T T a(0) ale)

whereo denotes the columnwise Kronecker product operatotnother way to define the SO MUSIC metric consists in using
sometimes referred to as the Khatri-Rao product operafdr [khe SO signal eigenmatrix instead of the SO noise eigenmatri
and where the/fx P°) matrix Q; is now diagonal. Let's recall Thjs was done by Mosher et Leahy [15] based on the principal
that for any rectangular matric&s and H, of size (\o X P)  angles concept [9], giving rise to the following metric:

and (Vi x P) respectively, the columns of thé¢ Ng Nyr) x P)

matrix GoH are defined ag, © h,,, whereg, andh,, denote 1(6) = a(6)’' Uf U a(0) (19)
the columns oG and H respectively: a(f) a(0)
G o H = [gi®h, g2®hs -+ gp®hp] (16) Thus theP global minima ofl;, or equivalently theP global

maxima of I{, correspond asymptotically to th® source
According to assumptiolA2 and the FO MUSIC metric, multi-parameters),. However, in the brain source localization
FO-D-MUSIC requires that”? < N2 when all sources are context, this implies a six dimensional (6D) optimization,
statistically dependent, which means that< NN since P and therefore an extremely high computational complekity.
and NV are positive, hence assumptiéi2. Consequently, in order to decrease this computational cost, Ferrara et P&rks
such a case, FO-D-MUSIC, as SO MUSIC-like methods, caand Mosher et Leahy [15] took advantage of the separabiiity o
not process underdetermined mixtures of sources. Howewte data transfer matrix as a function of non-linear andaline
when some sources are statistically independent, and mpggameters. More particularly, when the SO signal eigerixat
particularly when all sources are independent, FO-D-MUSIig used, like in RapMUSIC [15], th& source locationg, can
may process underdetermined source mixtures, accordingotofound as theP global maxima of the following metric:
assumption?®3 andA’1, respectively. Indeed, proof is given , . .
in section IV-D for P independent sources. In brief, statistical Iy(p) = Anax{V(p) Us Us' V(p)} (20)

independence implies better performance when FO statistighich does not depend on the orientation parameter anymore,
are used, especially in terms of maximum number of processaﬁqj where .. {B} denotes the maximum eigenvalue of
SOUrCes. matrix B and V(p) is the left singular matrix ofG(p).

The P source orientationg,, can then be derived from the
B. From SO to FO MUSIC metric eigenvectors corresponding to tffemaximum eigenvalues in

At first sight, SO and FO MUSIC-like approaches share si 20). This way, the.source orientation pargmeters are aatiuc
ilarities. However, the extension of MUSIC [7] to FO statist rom the computation of the source location parameters, and

is not trivial since the covariance and the quadricovagan 0 theGD optimization is reduced Fo aD _opt|m|zat|on.
matrices have different algebraic structures. Consegue¢hé .NOW let the EVD of the quadricovariance matr), be
Eigen Value Decomposition (EVD) of the covariance matri¥'Ven by . .

and the EVD of the quadricovariance matrix will give two Q= E L E; + B L B, (21)

different MUSIC metrics. Before presenting the FO MUS'thereLs is the (R; xR;) real-valued diagonal matrix of the
concept, let's recall the SO MUSIC one. non-zero eigenvalues df,, E, is the (N* x R;) matrix of

Let the EVD of the covariance matrik, be given by: the associated orthonormalized eigenvectors (c&ll@csignal

R, — U AU +U, AU (17) eigenmatriy, L, is the ((NZ—R_J) x (N*~Ry)) real-valued
diagonal matrix of the zero eigenvalues &, and E, is

where A, is the (P x P) real-valued diagonal matrix of thethe (V?x(N?—R,;)) matrix of the associated orthonormalized
P strongest eigenvalues @&, U; is the (V x P) matrix of eigenvectors (calle8O noise eigenmatrjx Indeed, since),
the associated orthonormalized eigenvectors (c@@dsignal is a real symmetrical matrix, it can be diagonalized using a
eigenmatriy, and U, is the (V x (N — P)) matrix of the real unitary similarity transformation, namely = [E; E,|.
orthonormalized eigenvectors (call&D noise eigenmatiix Then each column of; is orthogonal to each column @,,.
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However, if the space spanned by the column vectors of matvikeredet{V'} denotes the determinant of matfiX. On the
U; is equal to the space spanned by the column vectorsarfe hand, note that a FO metric based on the correlation
A(©), a question remains for the space spanned by the colubetweenSpan{B(®)} and Span{E;} instead of the orthog-
vectors of matrixEs? In fact, we can deduce from both matrixonality betweerSpan{ B(®)} andSpan{E, } could be built,
decompositions of),,, given by (15) and (21) respectively, thaigiving birth to a natural extension of the SO metric (20)
Span{Es} = Span{B(©®)}, that is, each column vector ofused in RapMUSIC [15] to FO statistics. A potential tool
B(0©) is a linear combination of the FO signal eigenvectorto measure correlation between two subspaces, as mentioned
Consequently, each column d3(®) is orthogonal to each by Mosher et al. [15], is the principal angle technique [9]
column of E,. So, all the vectorsi(6,*? = a(6,) ®a(f,) and could be used in order to obtain this new FO MUSIC
(1<p < P) of B(®) are orthogonal to each column &,. metric. However, this metric could not be rewritten with
Thus, we can built a FO metric from the FO noise projectdess costly form such as (26). Consequently, at this stage,
P,=E, E, such as: since a determinant computation is less costly than an EVD,
a(6)°*" P, a(6)* especi_ally for high m_atrix dimensions, criterion (26) i_s an
. (22) attractive FO MUSIC-like metric. On the other hand, a simple
a(0)?" a(0)*? algorithm scheme could be performed in order to decrease
where theP roots correspond asymptotically to thiesource the computational cost of (26). It would consist in i) only
multi-parameters,. However, this computation needs6® computing the smallest (in number of elements) family of
optimization and it would be interesting to see if the separgigenvectors, either the noise one or the signal oneQof
bility of the data transfer matrix as a function of locatiamda using for instance the power method [9] and i) deducing
orientation parameters could be used like with the SO mettfte FO noise projecto, from the previous computation.
in order to decrease the computational cost. So let insrt {dore precisely, ifN*—R; <R;, then compute the FO noise
in (22), then.J; becomes: eigenmatrixE, and takeP, = E,, E,’7, otherwise compute the

(G(p) $)%%" P, (G(p) p)*2 FO signal eigenmatrid, and take:
P v P _
(Glp) 97 (Glp) §)2 23) P, —1y: B, (E'E,)

J1(0) =

1

J1(6) = B/ 27)

where (G(p) ¢)** = (G(p) §) @ (G(p) $). Using Kronecker ¢ rom 50 to FO deflation approach
product properties/; can then be rewritten as follows:

J1(0) = »®*' G(pf**' P, G(pf** ¢p*
T TG0 Gl 6

This section reviews the concept of deflation used in S-
MUSIC [17], IES-MUSIC [25] and RapMUSIC [15], and
shows how it can be implemented when FO statistics are
22 ) used, more particularly when criterion (26) is used. AgHiis
where ¢=* = ¢© ¢ and G(p)* = G(p)@G(p) are the FO jniementation is not trivial since matricd, and Q, have
source orientation vector and ,the FO gain matrix, respeigtiv gitterent algebraic structures. Indeed, the SO deflatiam pr
Therefore, using Gantmacher’s wc_)rk [8], criterion (24) ¢en jector used in IES-MUSIC, or in S-MUSIC and RapMUSIC,
concentrated with respect j leading to: cannot be applied when FO statistics are used. Moreover, the

JAP) = Amin LK (p)} (25) choice of this FO deflation projector, especially when sesrc

are spatially correlated, is discussed hereafter.

where K(p) = (G(p)®2TG(p)®2)_1 G(p?'P,G(pf? and  As written in the previous subsection, a first idea would
where \,.;, {B} denotes the minimum eigenvalue of matrixconsist in searching for th& global maximizers of criterion
B. So parameterd, = [p," qpr}T can be obtained first by (20) when SO statistics are used, or searching forttreots
looking for the P roots p, of the function in p defined of criterion (26) when FO statistics are preferred (in thgust
by the minimum eigenvalue of matriG(p)®2'P,G(pf?2 we will refer to both approaches as the MUSIC and FO-
in the metric G(pf®2'G(p)?2, and then by computing the MU_SIC algorithm_s respectively). In_deed, if the n_oise SF:0x59)
vector 22 associated with the-th source as the eigenvectoProjector was estimated perfectly, i.e. asymptoticafigrt the
corresponding to the minimum eigenvalue of matm(pp). source locations would be directly found as tHEgIo_baI
An algorithm is proposed in section IV-C in order to deduc@aximizers of (20) or as the” roots of (26) respectively.
vector ¢ from ¢©2. Consequently the orientation parameteﬂgevertheless, for a finite number of samples, errors in our
are deduced from the location parameters. This waygihe Statistic estimate reduce (20) and (26) to a function with
optimization problem is reduced to D-optimization prob- i) & single global optimum that corresponds for instance to
lem. Since theP source locations found are those for whicfihe source of maximum Signal-to-Noise Ratio (SNR), and ii)
matrix K (p,) has a zero minimum eigenvalue, they can alsg —1 local optima. Although the global optimum is easily
be computed as the source locations for which maktip, ) |dept|f|able, it is more _dlfﬁcult to find thePl—l remaining local
has a deficient rank, that is, a zero determinant. Consegue@Ptima because non-linear search techniques may misswhall
the computational cost can considerably be reduced ifrimite ©F adjacent peaks and return to a previous peak. Algorithms

(24)

Jo is replaced by the following equivalent criterion: have been proposed to solpeak-pickingproblems [12], but
- ) they rapidly become complex and subjective as the number
_ det{G(pf** P, G(pf**} (26) of sources and the dimensionality of vectgfsincrease [15].

3(p) = det{G(p)®2T G(p)®2} In order to avoid this peak-picking problem a computation
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strategy based on the deflation concept was proposed in [18htrix (28) is applied both to the source localizing vector
[17], [25] when SO statistics are used. However, as the SfP9) and to the SO signal eigenmatiiX before looking for
deflation approach cannot be applied to the FO MUSIC mettite second source location. It is noteworthy that this pilaoe
(26), we extended the deflation concept to FO statistics aalibws to remove the contribution of the first source from the
more particularly to criterion (26), giving rise to the FO-D data when criterion (20) is used. Finally in FO-D-MUSIC,
MUSIC method. the contribution of the first source could be removed by

In S-MUSIC and IES-MUSIC, the locatiomy ), and the applying the orthogonal projecting matrix (28) both to the
orientation, ¢, (;), of the first source are determined at theource localizing vectoa(6) and to vectorz. Nonetheless,
same time by searching for the global minimum root of (18yhis procedure would imply a new statistical estimatiorpste
The use of the bijective functiofof {1,2,..., P} into itself such as the estimation of the quadricovariance matrix of the
(i.e. a permutation) is necessary since fheource localizing processed data, and therefore an increased computatmstal ¢
vectorsa(6,) may be found back, but only in the disorderindeed, itis better to remove the contribution of the firstrse
Indeed, as shown in equation (1), the order in which compfsem the initial quadricovariance matrik), instead of the
nents ofs and associated columns 2f(®) are set does not dataxz. However, contrary to the covariance mati;, the
change the expression of As far as the RapMUSIC and FO-quadricovariance matrig),, cannot be multiplied on left and
D-MUSIC methods are concerned, the first source locatioon right by Af and A{ respectively, in order to cancel the
P¢(1) is determined by searching for the global maximizer afontribution of the first source. Indeed, the algebraiccstne
(20) and the global minimum root of (26) over a sufficientlyf @, has to be studied to understand how the first source is
densely sampled grid of the non-linear parameter space, irerolved on it. According to equation (13), the mathemadtica
spectively. Next, the orientation is derived from the seurachallenge then consists in cancelling all the column vescodr
location in both approaches. On the one hand, RapMUSiRatrix B(®) involving vectora(eg(l)), that is, all the column
determines the first source orientatign, , as the normalized vectors of B(©) of the forma(6,1))®b or bra(8 (1)) where
eigenvector corresponding to the global maximum eigemvalti is a (Vx1) vector. When the first found source is statistically
in (20). On the other hand, FO-D-MUSIC finds the first FGhdependent of all the other sources, thatAg,) = 1, the
source orientation vectos(7), as the normalized eigenvectoronly column vector ofB(®) involving a(6e (1)) is a(B¢(1))?2.
corresponding to the gIobaI1 minimum eigenvalue of marherefore it can be cancelled using the following projegtin
Eltlk): (Géll’g(l))®2T G(pe)*?) G(Péy))@f Puf(p§(1)>®2' . matrix:

en, the source orientation vectgr.,, can be compute T 2
from ¢£7), by i) reshaping it into aﬁ(](;xN) matrix Fe () By =1Iy: — a(B¢1))*a(0c))** / [|a(0cy*?||” (29)
(then-th column of F¢(;) is made up from théV consecutive
elements ofp(7) as from the[N(n—1)+1]-th one), and i)
diagonalizing it. Indeed, the normalized eigenvector eissed
with the strongest eigenvalue &t ,), is, up to a sign factor,
equal tog(q)- } . . -

Once tﬁ((e )first source has been localized, its contributia.0;(g()e@ai(rﬁg/’ez(?;)ﬁi‘;(lgﬁg)maz;ﬂgfé))@);](etﬂg)lé;lt—htl)sy
can be removed from the data and the second source mulfirz2 _ Af ®Af. The proof straightly ensues from the

- thi ] 1
]E)_arameter fVﬁCtgﬂffl@)_’ can hbe sea'\;lched for_. tf:|s|de;|nl\(/las g:ﬁlgebraic structure of matribB(®) (see section IV-A) and
irst step of the deflation scheme. Mare particularly, S-MU properties of the Kronecker product. Consequently, in orde

builds the following orthogonal projecting matrix: to process the general case where sogidg is potentially

AL — Ty —al0 0 T 0 2 og) correlated with other sources, the location paramejess;
1 =TI —a(6cn) a(Bc) / [la(8cen) | (28) associated with thg2)-th source, are then found as the global
ef . . ini i i l®2
wherea(6¢ 1)) d:tG(pg(l)) ¢y and applies it to the source Minimizer of (26) replacing=(p) by A7%* G(p) and where
localizing vectora(@) before looking for the second sourc

» will be no longer given from the EVD of matri@Q,,

1®2 12" i ;

multi-parameter vectorf (), from criterion (18). In IES- but from the EVD of A7 Q, A7 . Due to matrix multi-
MUSIC, the projecting matrix is also applied to the sourc

glication, the rank of this last matrix is now strictly sneall

localizing vector, but it is not necessarily orthogonal antf@n”;. Indeed, we decreased the rank@f by removing

depends on a scalar-valued user parameter. Nevertheﬂessﬂfe contribution of the first source from the initial statiat
’ and consequently we increased the dimension of

optimal scalar is derived in [25] only for the case of twdNalrix Qe : :
sources, which requires to know the localizing vectors dhbon0ise subspace. Besides, when soufts is dependent of

sources. Thus, in practice IES-MUSIC needs to estimate b&ié Or several other sources, the use of matpe? instead
source localizing vectors with another method first. Moggov ©f the orthogonal projecting matridB;- (29) allows for a
S-MUSIC and IES-MUSIC are suboptimal since they remo\;;g_eater increase of th_e dlmen3|on of noise subspace, wh|ch
the contribution of the first source only from the sourc@"” lead to a best estimation of the _second source location,
localizing vector. Had they remove it from the data as welPe(2)- Once the second source location has been found, the
they could increase the dimensionality of the noise sulespat?Uurce orientation vectap,) is computed in the same way
and therefore the estimation resolution at each step of & ®¢(1)» replacing¢(1) by £(2), and the localizing vector

deflation scheme. In RapMUSIC the orthogonal projecting(of(g)) def G(pg(2)) Pe(2) can be built. Eventually, it is

However, when sourcé(1) is dependent of one or several
other sources, such as sourdeand j for instance, the pro-
jecting matrix (29) is suboptimal. Vectar(6¢(;))®? of matrix
B(©) has to be cancelled as well as vecta(g;))®a(6;),
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possible to reduce the computational cost of the previous FOStepl Fix p equal to one, estimate the FO statistics

deflation process especially for a large number of obsemati Ci in.is.in,= from the K samples ofz and compute
and consequently large dimensions@j. Indeed, the second an estimate),, of the quadricovariance matrig,,.
source location can be found as the global minimizer of (26) Step2 Build a set of matrices{G(p)@} choosing a suffi-
replacingG(p)“* by A7®” G(p)®* and redefiningP,, by: ciently densely sampled grid of vectops
P, =Ty: — Af®2 E, (ESTA%®2TA%®2ES)_1 ESTAJ1_®2T Step3 Compute the EVD of _matri>@m, extract the. esti-
(30) matesE; and E,, of matricesE; andE,, respectively,

and compute the estimafa, of P, according to the

This way, the diagonalization of aV x N2) matrix is (time end of section [V-B.

consuming for large values df) is avoided. . R o _
Next, the S-MUSIC, IES-MUSIC, RapMUSIC and FO-D- Step4 Compute an estimatels, of criterion J; (26) (using

MUSIC deflation approaches proceed all recursively up to matrix P, instead of P,) over the suitably chosen

estimate theP source parameter vectots = [p,"@,"]". grid, and search for its global minimurpy,,.

The IES-MUSIC needs a scalar-valued user parameter, whichsteps Compute vecto@m,) taking as solution the eigen-

optimal value is only given fo” = 2 sources in [25]. An vector corresponding to the minimum eigenvalue

extension of the outlined algorithm 8> 2 requires more ef- of matrix G(?)E(p))WT P, G(ﬁg(p)>®2 in the metric

fort and notation and is not considered in [25]. The S-MUSIC G(Be P2 G (P 2.

and RapMUSIC methods build the following projecting matrix ‘@ _f(p) - ] )

once thep— 1-th source localization has been achieved: Step6 Extract the estimate,,, of the source orientation
Vi1<j<p—1, a(Bg(j)) = Glpe(s)) beir vectorqbgl(p). from <I>§(p)..AIn order to do this, first
Ay = [a(Be) - a0por)] ‘ (31) reshape it into a matrix ), and secondly com-

i T -1 T pute the normalized eigenvector associated with the
Apy =Iv = Apo1 (Ap-1) Apr)  (Ap) largest eigenvalue af ).

Then, S-MUSIC applies this matrix to the source localizing
vectora(6) whereas RapMUSIC applies it both to the source

localizing vectora(@) and to the SO signal eigenmatrix

Step7 If the rank of matrixE, is not equal to one, that is,
if the P sources are not all localized,

U, before looking for thep-th source parameters. Finally ) |ncrAementpAand build vectora(@(,—1)) =

in the FO-D-MUSIC algorithm, the-th source localization G(pﬁ(p—l))d’f(p—i)' N

step depends on two cases.plf< N, then it mainly con- i)  compute matrixII, ; equal to A;%7 if

sists in minimizing criterionJ; (26) replacingG(p)®? and p<N and to B;-; otherwise (see section

P, by Ajp‘?f G(pf®? and the FO noise projector of matrix IV-C) wheie Ap®? a’ld By, are the esti-

AJ;D_i@f Q Aéi@fT, respectively, whereﬁljff =A§71®Af;71- mzites ong@% andB;_ respectively using

Othgzrwise, ifp> NN, the previous procedure holds buimatrix i g(()egk()zé—clk))tg‘zf[zzi cr)grl)(lzf:(i%;)c):’(p)@ by

1®2 . ; P ; .

A, is replaced by the following projecting matrig,_;: ﬁpfl G(p)®* and whereP, is achieved
Vj, 1<j<p—1, a(0cy)) = Glpes) Pes) from (30) replacingA’®? and E, by II,,_,
B, = [al0c) - a(Og, 1)) (32) and E,, respectively,

—1
B, =Iy:—B, 1 ((B,-1)' B,-1) (B,—1)' else stop the procedure.
Indeed, according to (31), fg5 — N +1 matrix Ajp‘,l is a Note that this |rr.1plem_enta.t|0n requires nelthgr the knovydﬁd.
) P of numberP nor its estimation, since the deflation procedure is
zero square matrix whereas fpr- N +1 matrix A, is not

) @2 stopped as soon as the rank of the estimated signal eiggnmatr
defined. Consequently, matn«f&j;,1 cannot be used as soon ag;,_ s equal to one.

p is strictly greater thaiV. Note that the case for whigh> N
is possible for FO-D-MUSIC since this algorithm, contraoy t —— N
S-MUSIC, IES-MUSIC and RapMUSIC, can process under: 'dentifiability of the FO-D-MUSIC method

determined mixtures of sources (we will justify this aseert  From the previous sections, it appears that, under assump-
in section IV-E). As described in the previous paragrapHons Al to A4, the FO-D-MUSIC method can localiz&

the diagonalization of matrimj;fm Q, Aﬁ? for p < N brain current sources fromV surface obse_rvatioqs. As this
new algorithm may process underdetermined mixtures when

Rome sources are statistically independent (see sectidy), |V

we limit the analysis to the latter case. Moreover, for theesa

of simplicity, we assume that all the sources are statistica

independent. In such a situation, hypothesgéso A4 reduce

) ) to A"l to A"2. Then vectora(6)®? can be considered as an

D. Implementation of the FO-D-MUSIC algorithm actual source localization vector but for a FO virtual array
The different steps of the FO-D-MUSIC method are sunj5] of electrodes, that gives at each measurement tifvie,

marized below, wher observations of the stochastic vectodifferent virtual scalp data\ is directly related to the pattern

x are available. of the actual sensors, to the geometry of the actual array of

(respectivelyB,_; Q, (B,_,)" for p>N) can be avoided in
order to reduce the computational cost of the deflation sehe
P, has to be constructed using equation (30) whdté’? is

®2
replaced byA; ",



1duosnuew Joyine yH

5
%)
®
-
=
o
S
N
(4]
a
©
©
»
<
®
-
0.
S)
5
—

sensors and to the considered head model. Consequergly, hB. Mathematically, we built matrixB(®)=A(©)2 A(O)
means thatN? — A/ components of all the vectorg(0)®? from equations (3) to (6) and we estimated its maximum
are redundant components that bring no information. Asrank thanks to Matlab. Eventually, whereas the FO virtual
consequenceN? — A/ rows of the B(®) matrix bring no array theory gives a theoretical justification of why FO-D-
information and are linear combinations of the others, WhidVlUSIC can process underdetermined mixtures of independent
means that the rank aB(®) cannot be greater tha". In  sources, it also shows why FO-D-MUSIC performs better in
these conditions, matriB(®) may have a rank equal t&® the overderdetermined case when fine resolution is required
only if P < A. Conversely, for a FO virtual array withoutlndeed, as mentionned above, instead of using dwlgcalp

any ambiguities up to ordek”—1, P sources localized aP measurements as the classical SO MUSIC-like methods, FO-
different positions generate a matd¥©) with a full rank ? D-MUSIC exploits\ different virtual scalp data, wher¥ as

as long asP <. Thus the maximal number of statisticallyillustrated in table II.

independent sources able to generate a m&(i®) with rank

P is N'. However, whenP = A/, an arbitrary vecton(6)®?
associated with an arbitrary s@tof localization parameters
is necessarily a linear combination of the source locabnat
vectorsa(6,)®?, 1 <p <N, since matrixB(®) cannot have
a rank greater tha’, and all the multi-parameter vectors
6 are then solutions of equation (22), which does not allow
the source localization. Thus, a necessary condition fer th
localization of the sources to be the only solutions of eiguat
(22) is thatP < A/. This condition becomes sufficient for In this section, the performance of the FO-D-MUSIC al-
FO virtual arrays with no ambiguities. So we deduce that tigorithm are compared with two classical SO MUSIC-like
algorithm which looks for the” minimizers of (22) is able to methods (namely MUSIC [7] and RapMUSIC [15]) in various
process up ta? =N —1 sources, wherd/” can be found as situations using computer simulations. In addition, weidket
the maximum rank of matriB(®). However, when criterion to compute the performances of the FO-MUSIC method,
(26) has to be rendered null instead of criterion (22) for thehich consists in searching simultaneously for tA&’best”
location of the sources only, and not for other locations, tminimizers of criterionJs, in order to show the contribution

(9x9) matrix M (p) d:efG(p)®2T P, G(pf®? has to be full rank of the deflation scheme at the fourth order. As far as the

when p does not correspond to a source’s location. Using thead model is concerned, we used three nested concentric
definition of matrix M (p), this means that rank of matriR, spheres with radius and conductivities values given inetabl
cannot be lower thaf, which means that the rank @, has |. One hundred twenty eight electrodes were placed on the
to be greater than or equal t As, in the presence oP scalp sphere using thE)-5 system [18]. Among them, only
statistically independent sources such tiak A/, the rank nineteen electrodes were used except in section V-E where
of E, is equal toA — P for a FO virtual array without any We studied the effect of the number of surface observations
ambiguities up to ordeN'—1, the maximal number of sourcesby varying the number of electrodes. Besid&s-1 or P=2

that may be processed by FO-D-MUSIC method has to Belependentsources were arranged inithe-plane. Note that
lower than\ —9. Conversely, for a FO virtual array withoutthe origin (O) of the head model was defined as the intersectio
any ambiguities up to orde¥' —1, P sources having different of the O-Cz axis {-axis), the O-T4 axisa-axis) and the O-
locations with different orientations and such tiaK V' —9 Fpz axis {-axis). A physiologically-relevant model was used
are such that their locations are the only solutions thadeen to compute realistic source temporal dynamics. This model
null criterion (26). From the previous results, assumingla Fconsists in a network of coupled neuronal populations. It is
virtual array with A/ different virtual scalp data and with described in previous reports [26] which showed that temlpor
no ambiguities up to ordeN' —1, we deduce that FO-D- dynamics of simulated signals closely resemble those Btua
MUSIC can process up t& =N —9 sources. Although the recorded with intracranial electrodes in epileptic pase6].
maximal number of potentially processed sources is a tgjetar Briefly, the model is a lumped-parameter representation of a
when criterion (22) is used, the minimization of (22) is irpet of interconnected populations of neurons. Each pdpulat
practice difficult to realize: it would need to optimize6a contains two subsets of neurons (main pyramidal cells and
variables function while in criterion (26) 8D minimization local interneurons) that interact via excitatory or inkoby

is sufficient. Note that exact computation &f as a function connections (postsynaptic interactions only). Poputetioan

of N for a particular geometry of actual array of sensors and¢@ coupled either uni- or bi-directionally via excitatorgne
particular head model would require more effort and nomgtionections. Model output corresponds to the local field péaént
and is not considered in this work. However, looking at thgenerated at each population of the network. Figure 1 shows
algebraic structure of vectar(g,)®> shows that\" is smaller the temporal dynamics for sour¢eand2 generated from the
than N (N —1) whatever the actual array is. Moreover, wénodel, as well as five corresponding simulated surface EEG
estimated some values &f (reported in table I1) using Matlab data. Note that the sources have an estim&igdosis (FO
simulations. These values were computed from some valuegbmulant normalized by the square of the variance) equal to

N (6, 9, 18, ...) and from the head model described in sectigf.5 and 5.5 respectively. Besides, The source orientations,
¢, (1 < p < P), were randomly fixed such a$e,|| = 1.

N | 6 9 18 31 63 95
N 21451 171 ] 496 | 2009 | 4340

TABLE I
ESTIMATED NUMBER OF FO VIRTUAL SCALP DATA AS A FUNCTION OF N.

V. COMPUTER RESULTS
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We considered the background noise as Gaussian excepti@sence of a unique source. In fact, since we looked for
section V-D and as temporally and spatially white except famly one source localization, the non-deflation method was
section V-C. In addition, we created a "0.1 mm”-spaced grielquivalent to the deflation one, for a given order of stafisti

in the z0z-plane and computed the SO and FO gain matric&esults are illustrated in figure 2 which displays the vaorat

for each location on the grid. Eventually, the simulationfthe RMSE criterion at the output of the previous algorithm
results were averaged ovér = 200 realizations. From one as a function of the source location (in centimetres) on
realization to another, both temporal dynamics and noise wéhe z-axis. They show that both FO MUSIC-like methods
changed while the mixing matrix stayed unchanged except focalize more precisely the source than both SO MUSIC-like
section V-A. SO and FO cumulants were estimated f6@@0 algorithms, wherever the source is. The PNL criterion was
data samples except for sections V-C and V-D wheEy@00 close to zero for all the methods whatever the source latatio
and 2500 samples were used, respectively. Simulations were
performed using Matlab (V7.0, Release 14). As an example,

when a grid ofL00 location points is used, FO-D-MUSIC takes 20
360 milliseconds to localize two sources from eighteen surface

—MUSIC and RapMUSIC
—FO-MUSIC and FO-RapMUSIC|

observations, on a standard PC computer (64-bit procesor, 81.5*
GB RAM). Two criteria were used to quantify the quality of ‘U-J’
o 1.0 R ' D e
; W
FP2 rervmrtsmtmey Pttt [t ptcmsmtremsorssmiinn x TR I ) R ]

o
o
T

1 2 3 4 5 6 1 8
Dipole position on z-axis (cm)

C3 s sttt [ i tonetsmman st Fig. 2. Effect of dipole location on localization.

N
N

o

2

B. The case of poorly spatialy separated sources

Fig. 1. Five selected surface EEG data from two deep sourgear(d s2) ; i +
having the same SNR equal 10 dB, Figure 3 presents the quant@MSE(Gl)_ RMSH®,) at
the output of the four methods as a function of the distance

the source localization. The first one is the Probability ofN Petween two sources. One dipole was placed at posjiien
Localization (PNL), that is, the probability that the cateied [0; 0,0-8]" (in centimetres) while the other moved along the
localization method does not succeed in finding exadtly @XiS- It clearly appears on figure 3 that both FO approactees ar
solutions. For each localization method, the PNL criteriofu@si-insensitive to the distance between the dipolesagnt

is defined by the ratio between the number of realizatiof SO methods. Indeed, the behaviour of the MUSIC algorithm
for which all the sources are not localized and the totsi Very affected as soon as the distance between sources
number of realizationd/. The second one is the well-knownd€creases belod.5 cm. Performances of the RapMUSIC are
averaged Root Mean Square Error (RMSE), computed fg?tter than those of MUSIC for low distances, however they

each source and for a given source localization method. MJfEN&in inferior to those given by both FO algorithms, whatev
precisely, for a given numbeb!’ (M’ < M) of realizations the distance is. As in section V-A, the PNL was quasi-zero for

for which the considered localization method has succeed@lthe methods whatever the source distance.

in finding exactlyP solutions, the averaged RMSE for source

p associated with the localization estimatidlRMSE®,,), is 25 -=-MUSIC
defined by: 200 e s | —RapMUSIC
~ V2 .
M . 915 o N |==-FO-MUSIC
_ . o ‘m LU . —_ no
RMSES,) = — Zl (12?13{ 6, — 6. H}) (33) 5 FO-D-MUSIC
m= E . - . . - ¥ - B B 4
where Gj(m) is the j-th source parameter vector estimated e 05 ‘\‘ R
during them-th experiment. The minimization over the set ' \ Av‘_’.m:‘_'
{1,2,..., P} of integers is necessary since the source param- 0.9[ e —— e S S
152 253 354 455 556

eter vectors may be recovered only in the disorder. , ,
Distance between dipoles (cm)

A. Effect of the dipole location on source localization Fig. 3. Effect of distance between dipoles on localization.

We studied in this section the behaviour of the MUSIC,
RapMUSIC, FO-MUSIC and FO-D-MUSIC methods in the
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C. The case of colored noise This sum of signals was added to the mixture of two sources,

Both FO algorithms were compared to SO algorithms in tHgcated in depth 4 = [1,0,1]" and p, = [0.875,0, 1.125]"
presence of a Gaussian noise with unknown spatial covarianf€SPectively). The two sources were chosen close to each
Two sources were positioned in depth such that their losati§ther to establish if the superiority of FO-D-MUSIC over
vectors were given by, = [0,0,2]" and p, = [0,0,4.4]" SQ MUSIC-like a_pproa<_:hes was still vallq in such a case
respectively. Figure 4 displays the variations of RMSE andith a non-Gaussian noise. Results are displayed in figure 5
PNL criteria for the four methods as a function of the nois&here RMSE and PNL criteria are represented as a function of
spatial covariance factgr Note that the Gaussian noise modepOth sources SNR for the MUSIC, RapMUSIC, FO-MUSIC
employed in this simulation is the sum of an internal noigg @nd FO-D-MUSIC algorithms. They show that, contrary to
and an external Noise.y:, of covariance matriceg.’ and the FO MUSIC-like approaches, the SO ones do not succeed
Ry respectively such that: in localizing both sources vy|th precision, even for a high

SNR of 80 dB. Besides, unlike FO-MUSIC, FO-D-MUSIC

Rﬁl(n q) def o?8[r—q]/2 Ry (r,q) def an"”*‘”/2 (34) succeeds in localizing both sources at each time as soon as

) def in out . the SNR increases beyord dB. The fact that the PNL of
whereo®, p, Ru(r,q) = Ry (1,9)+Ry" (1;q) are the vari- g6 \mysic does not really tend to zero as the SNR increases
ance of total noise per sensor, the spatial covgnancerft_)éto could be explained by the small number of sampts0()
noise and ther, ¢)-th component of the total noise covariancgseq s this specific simulation. Even with a maximal SNR,
matrix, respectively. ) _ FO-MUSIC might sometimes fail to find a solution (possibly

Figure 4(a) shows that both SO algorithms are sensitig..5se of errors in our FO estimates due to the small number
to a Gaussian noise with unknown spatial covariance apfl samples). This justifies the use of FO deflation scheme
are affected as soon as the.n0|se spatial covariance iBSr'edS an a FO-MUSIC metric is considered. Finally, although
beyond 0.2. Indeed, theoretically MUSIC and RapMUSICy,e Fo.p-MUSIC method seems to be the more efficient in

require a perfect knowledge of the noise covariance [2Z}is simulation, its convergence speed may be reduced by the
On the contrary, FO-MUSIC and FO-D-MUSIC, since the}ﬁresence of a non-Gaussian noise.

use FO cumulants, are asymptotically insensitive to Gaussi
noise, regardless of its space/time color. Computer 1®s

. . 20 1.0
show that, although the PNL of RapMUSIC is quasi-ze - —=MUSiC 0 \ [—-wusic
. . 1.5 ~—RapMUSI .
only FO-MUSIC and FO-D-MUSIC localize both sourceswi € 1 °| I oo | || Remusie
precision whatever the noise spatial covariance is. Nieger 0 19 \ —\\{ —F0-D-MUSIC| O'; — ro-p-music
less, for a given number of ten thousand samples, only FC & %% N ' \
MUSIC among bqth FQ methods succeeds in localizing b~ % 00 0 % o % 6 0w 2,2” \
sources at each time (figure 4(b)). snr x \
20 0.4 N
N5 0.3
3.0, — 10F=r=7 ) o
~,25 ool f W10 (\ \A\‘\ 02 \\
a0 “husic S Fmusic - M~ B = Y \ !
W opgl e ~—RapMUSIC 08bd et x 05 : \{
[ -~FO-MUSIC i RaphlUSIC T~ 0.0 LN
g5 b —FO0-D-MUSIC] LU :Eg:gﬁbcsm W 0 w0 oo o %0 1w <20 0 20 40 60 80
0'8 I n I 0,60+ snr snr
0 01 02 03 04 05 06 07 08 09 - o
Noise spatial correlation go,s (a) RMSE criterion (b) PNL criterion
22 04 Fig. 5. Effect of non-Gaussian noise on localization of 2rees.
<20 03 ]
ws 02 N
g 10 /. \ / )
14 0.: 4 A — ] 01 J; .
08 - 00k E. Effect of the number of surface observations on source
00 01 02 03 04 05 06 07 08 09 00 02 04 06 08 i i
Noise spatial correlation Noise spatial correlation localization
(a) RMSE criterion (b) PNL criterion In order to study the effect of the number of surface

observations on the behaviour of the four previous MUSIC-
like methods, two close sources were considered (locaten p
rameters equal tp, =[—1,0,3]" and p, =[—1.16,0, 3.16]").
_ ) In figure 6, the RMSE criterion at the output of RapMUSIC
D. The case of non-Gaussian noise and FO-D-MUSIC is plotted against the number of surface
Results show that the FO-D-MUSIC algorithm is unaffectedbservations (MUSIC and FO-MUSIC were not represented
by a Gaussian noise even when only a finite number of ddtacause the PNL criterion is close to one in these two cases).
samples are available (figure 4(a)). Therefore, we studied Contrary to FO-D-MUSIC, the RMSE criterion at the output of
behaviour of FO-D-MUSIC in the presence of an additivRapMUSIC needs at least sixty three surface observatians (i
non-Gaussian noise. For that purpose, eye-blink artefamds sixty four with the reference channel) to give accurate lissu
ElectroCardioGraphic (ECG) real signals were added to simand drops for a smaller number of observations. We recently
lated background EEG signals, generated from the model [26ported [2] that FO-D-MUSIC encompasses MUSIC-like

Fig. 4. Effect of colored noise on localization of 2 sources.
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;;' ig 7 ;RapMUSIC proaches. Indeed, FO-D-MUSIC exhibits good performances
w 1'0 |—FO-D-MUSIC for reduced number of surface observations and provides a
0 reliable alternative when high-resolution EEG is unavdda
E gg ‘ ‘ ‘ ‘ Our objective in the forthcoming work is i) to test the
9 18 31 63 95 127 FO-D-MUSIC ability to localize more sources than surface
Number of observations (N) observations, and ii) to evaluate it from real EEG data
~ 20 in epileptic patients in whom strong hypotheses about the
?i“ 1'5 localization of the epileptic zone are available.
'-'U)J 1.0
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