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Brain source localization using a fourth order
deflation scheme

Laurent Albera,member, IEEE, Anne Ferréol, Delphine Cosandier-Rimélé, Isabelle Merlet, Fabrice Wendling

Abstract—A high resolution method for solving potentially ill-
posed inverse problems is proposed. This method named FO-
D-MUSIC allows for localization of brain current sources with
unconstrained orientations from surface electro- or magneto-
encephalographic data using spherical or realistic head geome-
tries. The FO-D-MUSIC method is based on i) the separabilityof
the data transfer matrix as a function of location and orientation
parameters, ii) the Fourth Order (FO) virtual array theory, and
iii) the deflation concept extended to FO statistics accounting
for the presence of potentially but not completely statistically
dependent sources. Computer results display the superiority of
the FO-D-MUSIC approach in different situations (very closed
sources, small number of electrodes, additive Gaussian noise with
unknown spatial covariance, ...) compared to classical algorithms.

Index Terms—Sequential Source Localization, Backward Prob-
lem, EEG, MEG, MUSIC, Fourth Order Statistics.

I. I NTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) and magneto-
encephalography (MEG) are two complementary tech-

niques measuring, at the surface of the head, electrical poten-
tials and magnetic fields produced by neuronal activity, respec-
tively. The localization of the sources of this neuronal activity
(during either cognitive or pathological processes) requires to
solve the inverse problem; i.e. to localize sources only from
surface recordings. In the general case, the EEG/MEG inverse
problem is an ill-posed and under determined problem, as the
number of sources is larger than the number of measurement
points. To overcome this difficulty, localization techniques
assume a finite number of sources to be localized. When this
number is lower than the number of sensors positioned on the
scalp, the problem is overdetermined and a unique solution
can be obtained. It is noteworthy that the inverse problem is
not specific to the field of neurophysiology, but it can be found
in many other areas such as digital radiocommunications [12].

The solution of the inverse problem implies that a model
of sources and a model of volume conductor are defined. In
the study of cerebral activity, the current dipole is the most
commonly used model for a source of electrical activity in the
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brain, as it is a biophysically-relevant representation ofa small
cortical area activity. As neuronal electromagnetic fieldsare
sensitive to geometrical and electrical properties of the differ-
ent head tissues (brain, bone, skin), the head can be modeled
either by a set of nested concentric spheres with homogeneous
and isotropic conductivities [20], or by realistically shaped
models built from3D anatomical data (Magnetic Resonance
Imaging, MRI), with refined tissue conductivity values [10].

During the last three decades, many array processing meth-
ods were developed to estimate multidimensional parameters
of sources such as localization parameters. In particular,
among subspace approaches, the Second Order (SO) MUSIC
(MUltiple SIgnal Classification) method [21] [22], can localize
intracerebral sources in overdetermined contexts. Several vari-
ants were then proposed to improve the MUSIC performances.

On the one hand, Time MUSIC-like methods were reported,
such as the extension of the original MUSIC algorithm to
Fourth Order (FO) statistics proposed by Porat et al. [19].
The particularity of this algorithm is to deal with the case
of underdetermined source mixtures. Among Time MUSIC-
like algorithms, sequential approaches [17] [25] [15] should
be mentioned. They are based both on the SO statistics and
the deflation concept introduced to increase localization res-
olution. The RapMUSIC algorithm [15], a sequential method
based on Ferrara’s works [7], is of particular interest. This
method takes advantage of the factored matrix formulation
of the transfer relationship between the deep sources and the
scalp data to reduce computing time by separating quasilinear
from non-linear source parameter estimation.

On the other hand, Time-Frequency (TF) approaches were
proposed as reported for example by Sekihara et al. [23]
and Belouchrani et al. [3]. Their objective was to improve
the resolution of the localization in the case of very closed
sources withspectral non-stationaryproperties. Besides sub-
space methods, other localization methods applied to EEG and
MEG data were reported. Readers may refer to the recent
review by Michel et al. [14] for details.

In practice, the physiological signals of interest have non-
zero higher order statistics. Nevertheless, most of the afore-
mentioned array processing methods are based only on SO
statistics. Therefore, they are restrictive and suboptimal as they
do not take advantage of the information available at higher
orders. Moreover, TF approaches are not useful for sources
with identical TF supports. Besides, Time SO techniques
cannot deal with underdetermined mixtures of sources or with
a Gaussian noise of unknown coherence. Higher Order (HO)
methods inherently account for these limitations. However,
to date, there is no attempt to propose a FO method taking
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advantage of the separability of the matrix transfer function
between the input and output data and of the deflation concept.

The intent of the present paper is to describe a new FO
MUSIC-like method addressing these issues. This method,
referred to as FO-D-MUSIC, is based on i) the separability
of the data transfer matrix as a function of location and
orientation parameters and on ii) the FO virtual array theory
[5], and accounts for the presence of potentially but not
completely statistically dependent sources. Moreover theFO-
D-MUSIC method uses the deflation concept which non-trivial
extension to FO statistics is also presented in this paper. The
paper is organized as follows. Assumptions about the noisy
mixture of sourcesare introduced in section II. SO and FO
statistic properties are presented in section III. Principles of
the proposed algorithm are described in section IV which also
provides some identifiability results (section IV-E). Finally,
computer experiments are presented in section V.

II. N OTATIONS AND HYPOTHESES

A. The problem statement

We assume thatK realizations of anN -dimensional random
vectorx are observed. Besides, vectorx is given by:

x = A(Θ) s + ν (1)

where s = [s1, · · · , sP ]T is a P -dimensional random vector,
called source vector, which observations correspond to the
time courses of theP current dipoles. MatrixA(Θ) =
[a(θ1) , · · · , a(θP )] is the (N×P ) static mixing matrix, which
depends onΘ = {θ1, . . . , θP }, that is, the collection of the
P multi-parameters of the sources. As far as the noise vector
ν is concerned, it is assumed to be Gaussian and statistically
independent of the source vector. Moreover, some components
of vectors can be statistically dependent, i.e. sources can be
partially, but not completely correlated (in a wide-sense,at
order 2 and 4). So, without loss of generality, it is possible
to divide theP sources intoJ groups, withPj sources in
the j-th group (1 ≤ j ≤ J), in such a way that sources
of same group are statistically dependent, while sources in
different groups remain statistically independent. In particular,
J = P corresponds toP statistically independent sources
whereasJ = 1 corresponds to the case where all the sources
are dependent. Of course, thePj parameters are such that
P =

∑J

j=1 Pj . Under these notations, the observation vector
x can be rewritten as follows:

x =

J∑

j=1

A(Θj) sj + ν (2)

whereA(Θj) is the (N×Pj ) submatrix ofA corresponding
to the j-th group of sources andsj is the correspondingPj -
dimensional subvector ofs. It is noteworthy that the division
of the P sources intoJ groups will be very useful in the
following sections to find the identifiability conditions ofthe
FO-D-MUSIC method, that is, the maximal number of sources
which can be processed for a given number of observations.

In EEG (or MEG) applications, each source localization
vector a(θ) of the static mixing matrix represents electrical

potential differences (or magnetic fields) generated from sur-
face electrodes by a current dipole with a unit time course
localized at a given positionρ for a given orientationφ. Recent
empirical work on closed-form approximations for spherical
and realistic head geometries (see [16] for more details) allow
for the approximation ofa(θ) by the product of a (N×3) gain
matrix G(ρ) and the orientation vectorφ:

a(θ) ≈ G(ρ) φ (3)

where the multi-parameter vectorθ = [ρT φT]
T of the consid-

ered dipole includes the non-linear location parameterρ and
the quasilinear orientation parameterφ.

Although the method we developed can be applied to both
EEG and MEG data, and to both spherical and realistic head
models, the following results will be presented in the EEG
context using a spherical head model. In other words the
observed data are assumed, in the sequel, to be electrical
potentials. The head is represented by three nested concentric
spheres (brain, skull, and scalp), with conductivities chosen as
constant and isotropic.

B. Gain matrix in an EEG context with spherical head model

In the case of a3-shell spherical head model, then-th row
Gn(ρ) of the gain matrixG(ρ), has the following expression
[4] [16]:

Gn(ρ) =

3∑

j=1

λj (h(r1, µjρ) − h(rN+1, µjρ))T (4)

The(N+1)-th electrode is used as single common reference in
order to computeN potential differences from the potentials
recorded at theN other electrode locations. The(3×1) vector
h(r, ρ) is given by [16]:

h(r, ρ)=
(c1(r, ρ) − c2(r, ρ) rTρ)ρ + c2(r, ρ) ‖ρ‖2

r

4πσ3 ‖ρ‖
2 (5)

whereσ3 is the conductivity of the outermost layer of the3-
sphere head model, and parametersc1(r, ρ) and c2(r, ρ) are
defined by:

c1(r, ρ)=2
(r−ρ)Tρ
‖r−ρ‖3 + 1

‖r−ρ‖−
1

‖r‖

c2(r, ρ)= 2
‖r−ρ‖3 +

‖r−ρ‖+‖r‖

‖r‖‖r−ρ‖(‖r‖‖r−ρ‖+‖r‖2−ρTr)

(6)

Constants{λj}1≤j≤3 and {µj}1≤j≤3 – the so-called ”Berg
parameters” [4] – are only dependent on the3-sphere head
model radii {Rj}1≤j≤3 and conductivities{σj}1≤j≤3. They
should be fitted numerically by minimizing the right side of
equation (5i”) given by Zhang [27]. For instance, we computed
the ”Berg parameters” for specific radii [20] and conductivities
[24] values, as shown in table I.

R1 (cm) R2 R3 σ1 (S/cm) σ2 σ3

8 8.5 9.2 3.3e-3 8.25e-5 3.3e-3

λ1 λ2 λ3 µ1 µ2 µ3

0.5979 0.2037 0.0237 0.6342 0.9364 1.0362

TABLE I
THE ”B ERG PARAMETERS” FOR A SPECIFIC3-SPHERE HEAD MODEL
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III. SO AND FO STATISTICS

A. Moments and cumulants

Recall that the first characteristic functionΨ
(1)
x of a random

vectorx always exists, is continuous and is defined by

Ψ(1)
x (u) = E[exp(iuTx)] (7)

whereE[z] denotes the mathematical expectation ofz. Since
Ψ

(1)
x (0)= 1 andΨ

(1)
x is continuous, then a small neighbour-

hoodU of 0 exists, in whichΨ(1)
x does not vanish. Denoting

log the principal branch of the logarithm in the right half plane,
we define the second characteristic functionΨ

(2)
x by

∀u ∈ U , Ψ(2)
x

(u) = log
(
Ψ(1)

x
(u)

)
(8)

Momentsare the coefficients of the expansion of the first
characteristic functionΨ(1)

x about the origin, andcumulants
are those of the second characteristic functionΨ

(2)
x . More

precisely, one defines the entries ofr-th order moment and
cumulant tensors ofx, respectively, as

Mn1,n2,···,nr ,x
def
= (−i)r ∂rΨ

(1)
x (u)

∂un1∂un2 · · · ∂unr

∣∣∣∣∣
u=0

(9)

and

Cn1,n2,···,nr,x
def
= (−i)r ∂rΨ

(2)
x (u)

∂un1∂un2 · · ·∂unr

∣∣∣∣∣
u=0

(10)

Note that, using the Leonov-Shiryaev formula [13], it is
possible to relate cumulant tensors to moment tensors; in
particular, ther-th order cumulant tensor is related to moment
tensors of order smaller than or equal tor. For instance, SO
and FO cumulant tensors of a zero-mean random vectorx can
be computed from moment tensors ofx in the following way:

Cn1,n2,x =Mn1,n2,x

Cn1,n2,n3,n4,x =Mn1,n2,n3,n4,x−Mn1,n2,xMn3,n4,x

−Mn1,n3,xMn2,n4,x − Mn1,n4,xMn2,n3,x

(11)

However, in practice, moments of the data are not exactly
calculable and have to be estimated fromL samples of data,
in a way that is completely described in [1, section III-D] and
which is not recalled here.

B. Moment and cumulant properties

Moment and cumulant tensors of a real random vector
are symmetricsince they are invariant under arbitrary index
permutations.

Another important property of cumulants is that if at least
two variables or groups of variables are statistically indepen-
dent, then all cumulants involving these variables are null. The
fact that this property is not shared by moments reinforces
the interest in cumulants, especially in order to process more
sources than observations, as explained in section IV.

For the sake of convenience, cumulants can be arranged in a
symmetric matrix. Indeed, SO and FO cumulants of a random
vector x can be standed in a (N×N ) symmetric matrixRx,

calledcovariance matrix, and in a (N2×N2) symmetric matrix
Qx, calledquadricovariance matrix, respectively:

Rx(n1, n2) = Cn1,n2,x

Qx(N(n1−1)+n2,N(n3−1)+n4) = Cn1,n2,n3,n4,x
(12)

whereRx(i, j) andQx(i , j) correspond to the(i, j)-th compo-
nent ofRx andQx respectively. It is noteworthy that, contrary
to the covariance matrix, the quadricovariance matrix is not
generally positive definite.

Now, let’s consider vectorx given by model (1) where the
noise vectorν is assumed to be Gaussian and statistically
independent of the source vectors. Then themultilinearity
property enjoyed by cumulants [13] gives the following rela-
tion between cumulants ofx and cumulants ofs:

Rx =
∑J

j=1 A(Θj)Rsj
A(Θj)

T

+ Rν

Q
x

=
∑J

j=1(A(Θj)⊗A(Θj))Qsj
(A(Θj)⊗A(Θj))

T
(13)

whereRsj
andQsj

are the (Pj×Pj) covariance and the (P 2
j ×P 2

j )
quadricovariance matrices, respectively, of the source vector
sj , and whereRν is the noise covariance matrix. For any
rectangular matricesG andH, of size(NG×PG) and(NH×
PH) respectively, the Kronecker matrix productG⊗H of size
(NGNH×PGPH) is defined by:

G ⊗ H =




G(1, 1)H · · · G(1, PG)H

...
. . .

...
G(NG, 1)H · · · G(NG, PG)H



 (14)

Although matricesRx andQx can be written as a function of
the static mixtureA(Θj), they have different algebraic struc-
tures. Consequently, matrixRx cannot be simply replaced by
Qx in source localization algorithms based on the covariance
matrix. Indeed, given the algebraic structure of the quadrico-
variance matrixQx (13), the extension of a covariance-based
method to FO statistics requires to elaborate an algorithm able
to fully exploit the quadricovariance structure instead ofthe
covariance one. This is the purpose of the next section.

IV. TOWARDS A FO MUSIC-LIKE APPROACH

A. Some additional assumptions

Besides the assumptions given in section II, the SO MUSIC-
like methods, for instance MUSIC [7], S-MUSIC [17] and
RapMUSIC [15], need the following hypotheses:
H1) P <N ;
H2) Matrix A(Θ) has a full rank equal toP ;
However, when FO statistics are exploited, assumptionsH1
andH2 can be replaced by the following ones:
A1) ∀j, 1≤j≤J, Pj < N ;

A2) ∀j, 1≤ j ≤ J , matricesA(Θj)
⊗2 def

= A(Θj) ⊗ A(Θj)
andQsj

have a full rank equal toP 2
j ;

A3) RJ
def
=

∑J

j=1 P 2
j < N2;

A4) The (N2×RJ ) matrix B(Θ)
def
= [A(Θ1)

⊗2 · · ·A(ΘJ)⊗2]
has a full rank equal toRJ ;

whereJ , Pj andA(Θj) were defined in section II. Note that
under assumptionsA1 to A4, matrix Qx given in equation
(13) takes the following matrix form:

Qx = B(Θ) Qs B(Θ)T (15)
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whereQs is the (RJ×RJ ) block diagonal matrix constructed
from theJ source quadricovariance matricesQsj

. The sparsity
level of matrix Qs is straight related to the ratioJ/P . In
particular, for sources that are all statistically dependent (J =
1), hypothesesA1 to A4 reduce to:

A’1 ) P <N ;
A’2 ) MatricesB(Θ) = A(Θ) ⊗ A(Θ) and Qs have a full

rank equal toP 2;

In such a case, the (P 2×P 2) matrix Qs is full and equal
to the source quadricovariance matrixQs. On the other hand,
when all the sources are statistically independent (J = P ),
hypothesesA1 to A4 reduce to:

A”1 ) P <N2;
A”2 ) Matrix B(Θ) = A(Θ)⊘A(Θ) andQs have a full rank

equal toP ;

where⊘ denotes the columnwise Kronecker product operator,
sometimes referred to as the Khatri-Rao product operator [11]
and where the (P×P ) matrix Qs is now diagonal. Let’s recall
that for any rectangular matricesG andH, of size (NG×P )
and (NH×P ) respectively, the columns of the ((NGNH)×P )
matrix G⊘H are defined asgp⊗hp, wheregp andhp denote
the columns ofG andH respectively:

G ⊘ H = [g1⊗h1 g2⊗h2 · · · gP ⊗hP ] (16)

According to assumptionA’2 and the FO MUSIC metric,
FO-D-MUSIC requires thatP 2 < N2 when all sources are
statistically dependent, which means thatP < N since P
andN are positive, hence assumptionA”2 . Consequently, in
such a case, FO-D-MUSIC, as SO MUSIC-like methods, can-
not process underdetermined mixtures of sources. However,
when some sources are statistically independent, and more
particularly when all sources are independent, FO-D-MUSIC
may process underdetermined source mixtures, according to
assumptionsA3 andA”1 , respectively. Indeed, proof is given
in section IV-D forP independent sources. In brief, statistical
independence implies better performance when FO statistics
are used, especially in terms of maximum number of processed
sources.

B. From SO to FO MUSIC metric

At first sight, SO and FO MUSIC-like approaches share sim-
ilarities. However, the extension of MUSIC [7] to FO statistics
is not trivial since the covariance and the quadricovariance
matrices have different algebraic structures. Consequently, the
Eigen Value Decomposition (EVD) of the covariance matrix
and the EVD of the quadricovariance matrix will give two
different MUSIC metrics. Before presenting the FO MUSIC
concept, let’s recall the SO MUSIC one.

Let the EVD of the covariance matrixRx be given by:

Rx = Us Λs Us
T + Uν Λν Uν

T (17)

whereΛs is the (P ×P ) real-valued diagonal matrix of the
P strongest eigenvalues ofRx, Us is the (N×P ) matrix of
the associated orthonormalized eigenvectors (calledSO signal
eigenmatrix), and Uν is the (N × (N − P )) matrix of the
orthonormalized eigenvectors (calledSO noise eigenmatrix)

associated with the remaining eigenvalues ofRx. Indeed, since
Rx is a real symmetrical matrix, it can be diagonalized using
a real unitary similarity transformation, namelyU =[Us Uν ].
Then each column ofUs is orthogonal to each column ofUν .
Moreover,Span{Us} = Span{A(Θ)}, that is, each column
vector of A(Θ) is a linear combination of the SO signal
eigenvectors. Therefore each column ofA(Θ) is orthogonal to
each column ofUν . So, denoting byθp the location/orientation
parameters of thep-th source anda(θp) the localizing vector
appearing at thep-th column of matrixA(Θ), vectorsa(θp)
(1 ≤ p ≤ P ) are orthogonal to each column ofUν . Thus the
standard SO metric used in MUSIC [22], S-MUSIC [17] and
IES-MUSIC [25] can be defined as follows:

I1(θ) =
a(θ)

T

Uν Uν
T a(θ)

a(θ)
T

a(θ)
(18)

Another way to define the SO MUSIC metric consists in using
the SO signal eigenmatrix instead of the SO noise eigenmatrix.
This was done by Mosher et Leahy [15] based on the principal
angles concept [9], giving rise to the following metric:

I ′1(θ) =
a(θ)T

Us Us
T a(θ)

a(θ)
T

a(θ)
(19)

Thus theP global minima ofI1, or equivalently theP global
maxima of I ′1, correspond asymptotically to theP source
multi-parametersθp. However, in the brain source localization
context, this implies a six dimensional (6D) optimization,
and therefore an extremely high computational complexity.In
order to decrease this computational cost, Ferrara et Parks[7]
and Mosher et Leahy [15] took advantage of the separability of
the data transfer matrix as a function of non-linear and linear
parameters. More particularly, when the SO signal eigenmatrix
is used, like in RapMUSIC [15], theP source locationsρp can
be found as theP global maxima of the following metric:

I ′2(ρ) = λmax{V(ρ)T Us Us
T V(ρ)} (20)

which does not depend on the orientation parameter anymore,
and whereλmax{B} denotes the maximum eigenvalue of
matrix B and V(ρ) is the left singular matrix ofG(ρ).
The P source orientationsφp can then be derived from the
eigenvectors corresponding to theP maximum eigenvalues in
(20). This way, the source orientation parameters are deduced
from the computation of the source location parameters, and
so the6D optimization is reduced to a3D optimization.

Now let the EVD of the quadricovariance matrixQ
x

be
given by:

Qx = Es Ls Es
T + Eν Lν Eν

T (21)

whereLs is the (RJ×RJ ) real-valued diagonal matrix of the
non-zero eigenvalues ofQx, Es is the (N2×RJ ) matrix of
the associated orthonormalized eigenvectors (calledFO signal
eigenmatrix), Lν is the ((N2−RJ)× (N2−RJ)) real-valued
diagonal matrix of the zero eigenvalues ofQx, and Eν is
the (N2×(N2−RJ)) matrix of the associated orthonormalized
eigenvectors (calledFO noise eigenmatrix). Indeed, sinceQ

x

is a real symmetrical matrix, it can be diagonalized using a
real unitary similarity transformation, namelyE = [Es Eν ].
Then each column ofEs is orthogonal to each column ofEν .
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However, if the space spanned by the column vectors of matrix
Us is equal to the space spanned by the column vectors of
A(Θ), a question remains for the space spanned by the column
vectors of matrixEs? In fact, we can deduce from both matrix
decompositions ofQx, given by (15) and (21) respectively, that
Span{Es} = Span{B(Θ)}, that is, each column vector of
B(Θ) is a linear combination of the FO signal eigenvectors.
Consequently, each column ofB(Θ) is orthogonal to each
column of Eν . So, all the vectorsa(θp)

⊗2 = a(θp)⊗a(θp)
(1≤ p≤ P ) of B(Θ) are orthogonal to each column ofEν .
Thus, we can built a FO metric from the FO noise projector
Pν =Eν Eν

T such as:

J1(θ) =
a(θ)⊗2T

Pν a(θ)⊗2

a(θ)⊗2T

a(θ)⊗2
(22)

where theP roots correspond asymptotically to theP source
multi-parametersθp. However, this computation needs a6D
optimization and it would be interesting to see if the separa-
bility of the data transfer matrix as a function of location and
orientation parameters could be used like with the SO metric
in order to decrease the computational cost. So let insert (3)
in (22), thenJ1 becomes:

J1(θ) =
(G(ρ) φ)⊗2T

Pν (G(ρ)φ)⊗2

(G(ρ)φ)⊗2T (G(ρ)φ)⊗2
(23)

where(G(ρ)φ)⊗2 =(G(ρ)φ)⊗(G(ρ)φ). Using Kronecker
product properties,J1 can then be rewritten as follows:

J1(θ) =
φ⊗2T

G(ρ)⊗2T

Pν G(ρ)⊗2 φ⊗2

φ⊗2T

G(ρ)⊗2T

G(ρ)⊗2 φ⊗2
(24)

whereφ⊗2 = φ⊗φ and G(ρ)⊗2 = G(ρ)⊗G(ρ) are the FO
source orientation vector and the FO gain matrix, respectively.
Therefore, using Gantmacher’s work [8], criterion (24) canbe
concentrated with respect toρ, leading to:

J2(ρ)=λmin{K(ρ)} (25)

where K(ρ) =
(
G(ρ)⊗2T

G(ρ)⊗2
)−1

G(ρ)⊗2T

PνG(ρ)⊗2 and
whereλmin{B} denotes the minimum eigenvalue of matrix
B. So parametersθp =

[
ρp

T φp
T

]
T

can be obtained first by
looking for the P roots ρp of the function in ρ defined
by the minimum eigenvalue of matrixG(ρ)⊗2T

PνG(ρ)⊗2

in the metric G(ρ)⊗2T

G(ρ)⊗2, and then by computing the
vectorφp

⊗2 associated with thep-th source as the eigenvector
corresponding to the minimum eigenvalue of matrixK

(
ρp

)
.

An algorithm is proposed in section IV-C in order to deduce
vectorφ from φ⊗2. Consequently the orientation parameters
are deduced from the location parameters. This way, the6D-
optimization problem is reduced to a3D-optimization prob-
lem. Since theP source locations found are those for which
matrix K

(
ρp

)
has a zero minimum eigenvalue, they can also

be computed as the source locations for which matrixK
(
ρp

)

has a deficient rank, that is, a zero determinant. Consequently
the computational cost can considerably be reduced if criterion
J2 is replaced by the following equivalent criterion:

J3(ρ) =
det

{
G(ρ)⊗2T

Pν G(ρ)⊗2
}

det
{
G(ρ)⊗2T

G(ρ)⊗2
} (26)

wheredet{V } denotes the determinant of matrixV . On the
one hand, note that a FO metric based on the correlation
betweenSpan{B(Θ)} andSpan{Es} instead of the orthog-
onality betweenSpan{B(Θ)} andSpan{Eν} could be built,
giving birth to a natural extension of the SO metric (20)
used in RapMUSIC [15] to FO statistics. A potential tool
to measure correlation between two subspaces, as mentioned
by Mosher et al. [15], is the principal angle technique [9]
and could be used in order to obtain this new FO MUSIC
metric. However, this metric could not be rewritten with
less costly form such as (26). Consequently, at this stage,
since a determinant computation is less costly than an EVD,
especially for high matrix dimensions, criterion (26) is an
attractive FO MUSIC-like metric. On the other hand, a simple
algorithm scheme could be performed in order to decrease
the computational cost of (26). It would consist in i) only
computing the smallest (in number of elements) family of
eigenvectors, either the noise one or the signal one, ofQx

using for instance the power method [9] and ii) deducing
the FO noise projectorPν from the previous computation.
More precisely, ifN2−RJ ≤RJ , then compute the FO noise
eigenmatrixEν and takePν =Eν Eν

T, otherwise compute the
FO signal eigenmatrixEs and take:

Pν = IN2 − Es (Es
TEs)

−1
Es

T (27)

C. From SO to FO deflation approach

This section reviews the concept of deflation used in S-
MUSIC [17], IES-MUSIC [25] and RapMUSIC [15], and
shows how it can be implemented when FO statistics are
used, more particularly when criterion (26) is used. Again,this
implementation is not trivial since matricesRx andQ

x
have

different algebraic structures. Indeed, the SO deflation pro-
jector used in IES-MUSIC, or in S-MUSIC and RapMUSIC,
cannot be applied when FO statistics are used. Moreover, the
choice of this FO deflation projector, especially when sources
are spatially correlated, is discussed hereafter.

As written in the previous subsection, a first idea would
consist in searching for theP global maximizers of criterion
(20) when SO statistics are used, or searching for theP roots
of criterion (26) when FO statistics are preferred (in the sequel
we will refer to both approaches as the MUSIC and FO-
MUSIC algorithms respectively). Indeed, if the noise subspace
projector was estimated perfectly, i.e. asymptotically, then the
source locations would be directly found as theP global
maximizers of (20) or as theP roots of (26) respectively.
Nevertheless, for a finite number of samples, errors in our
statistic estimate reduce (20) and (26) to a function with
i) a single global optimum that corresponds for instance to
the source of maximum Signal-to-Noise Ratio (SNR), and ii)
P −1 local optima. Although the global optimum is easily
identifiable, it is more difficult to find theP−1 remaining local
optima because non-linear search techniques may miss shallow
or adjacent peaks and return to a previous peak. Algorithms
have been proposed to solvepeak-pickingproblems [12], but
they rapidly become complex and subjective as the number
of sources and the dimensionality of vectorsρp increase [15].
In order to avoid this peak-picking problem a computation
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strategy based on the deflation concept was proposed in [15],
[17], [25] when SO statistics are used. However, as the SO
deflation approach cannot be applied to the FO MUSIC metric
(26), we extended the deflation concept to FO statistics and
more particularly to criterion (26), giving rise to the FO-D-
MUSIC method.

In S-MUSIC and IES-MUSIC, the location,ρξ(1), and the
orientation,φξ(1), of the first source are determined at the
same time by searching for the global minimum root of (18).
The use of the bijective functionξ of {1, 2, . . . , P} into itself
(i.e. a permutation) is necessary since theP source localizing
vectorsa(θp) may be found back, but only in the disorder.
Indeed, as shown in equation (1), the order in which compo-
nents ofs and associated columns ofA(Θ) are set does not
change the expression ofx. As far as the RapMUSIC and FO-
D-MUSIC methods are concerned, the first source location,
ρξ(1), is determined by searching for the global maximizer of
(20) and the global minimum root of (26) over a sufficiently
densely sampled grid of the non-linear parameter space, re-
spectively. Next, the orientation is derived from the source
location in both approaches. On the one hand, RapMUSIC
determines the first source orientation,φξ(1), as the normalized
eigenvector corresponding to the global maximum eigenvalue
in (20). On the other hand, FO-D-MUSIC finds the first FO
source orientation vector,φξ(1)

⊗2 , as the normalized eigenvector
corresponding to the global minimum eigenvalue of ma-
trix (G(ρξ(1))

⊗2T

G(ρξ(1))
⊗2)

−1
G(ρξ(1))

⊗2T

Pν G(ρξ(1))
⊗2.

Then, the source orientation vectorφξ(1) can be computed
from φξ(1)

⊗2 , by i) reshaping it into an (N×N ) matrix Fξ(1)

(then-th column ofFξ(1) is made up from theN consecutive
elements ofφξ(1)

⊗2 as from the[N(n−1)+1]-th one), and ii)
diagonalizing it. Indeed, the normalized eigenvector associated
with the strongest eigenvalue ofFξ(1), is, up to a sign factor,
equal toφξ(1).

Once the first source has been localized, its contribution
can be removed from the data and the second source multi-
parameter vector,θξ(2), can be searched for: this defines the
first step of the deflation scheme. More particularly, S-MUSIC
builds the following orthogonal projecting matrix:

A⊥
1 = IN − a

(
θξ(1)

)
a
(
θξ(1)

)
T

/
∥∥a

(
θξ(1)

)∥∥2
(28)

wherea
(
θξ(1)

)def
= G(ρξ(1))φξ(1) and applies it to the source

localizing vectora(θ) before looking for the second source
multi-parameter vector,θξ(2), from criterion (18). In IES-
MUSIC, the projecting matrix is also applied to the source
localizing vector, but it is not necessarily orthogonal and
depends on a scalar-valued user parameter. Nevertheless, the
optimal scalar is derived in [25] only for the case of two
sources, which requires to know the localizing vectors of both
sources. Thus, in practice IES-MUSIC needs to estimate both
source localizing vectors with another method first. Moreover,
S-MUSIC and IES-MUSIC are suboptimal since they remove
the contribution of the first source only from the source
localizing vector. Had they remove it from the data as well,
they could increase the dimensionality of the noise subspace
and therefore the estimation resolution at each step of the
deflation scheme. In RapMUSIC the orthogonal projecting

matrix (28) is applied both to the source localizing vector
a(θ) and to the SO signal eigenmatrixUs before looking for
the second source location. It is noteworthy that this procedure
allows to remove the contribution of the first source from the
data when criterion (20) is used. Finally in FO-D-MUSIC,
the contribution of the first source could be removed by
applying the orthogonal projecting matrix (28) both to the
source localizing vectora(θ) and to vectorx. Nonetheless,
this procedure would imply a new statistical estimation step
such as the estimation of the quadricovariance matrix of the
processed data, and therefore an increased computational cost.
Indeed, it is better to remove the contribution of the first source
from the initial quadricovariance matrixQx instead of the
datax. However, contrary to the covariance matrixRx, the
quadricovariance matrixQ

x
cannot be multiplied on left and

on right by A⊥
1 and A⊥

1

T

respectively, in order to cancel the
contribution of the first source. Indeed, the algebraic structure
of Qx has to be studied to understand how the first source is
involved on it. According to equation (13), the mathematical
challenge then consists in cancelling all the column vectors of
matrixB(Θ) involving vectora

(
θξ(1)

)
, that is, all the column

vectors ofB(Θ) of the forma
(
θξ(1)

)
⊗b or b⊗a

(
θξ(1)

)
where

b is a (N×1) vector. When the first found source is statistically
independent of all the other sources, that isPξ(1) = 1, the
only column vector ofB(Θ) involving a

(
θξ(1)

)
is a

(
θξ(1)

)
⊗2.

Therefore it can be cancelled using the following projecting
matrix:

B⊥
1 = IN2 − a

(
θξ(1)

)
⊗2a

(
θξ(1)

)
⊗2T

/
∥∥a

(
θξ(1)

)
⊗2

∥∥2
(29)

However, when sourceξ(1) is dependent of one or several
other sources, such as sourcesi and j for instance, the pro-
jecting matrix (29) is suboptimal. Vectora

(
θξ(1)

)
⊗2 of matrix

B(Θ) has to be cancelled as well as vectorsa
(
θξ(1)

)
⊗a(θi),

a
(
θξ(1)

)
⊗a(θj), a(θi)⊗a

(
θξ(1)

)
anda(θj)⊗a

(
θξ(1)

)
. This

may be achieved multiplying matrixB(Θ) on the left by
A⊥

1
⊗2 = A⊥

1 ⊗ A⊥
1 . The proof straightly ensues from the

algebraic structure of matrixB(Θ) (see section IV-A) and
properties of the Kronecker product. Consequently, in order
to process the general case where sourceξ(1) is potentially
correlated with other sources, the location parameters,ρξ(2),
associated with theξ(2)-th source, are then found as the global
minimizer of (26) replacingG(ρ) by A⊥

1
⊗2 G(ρ) and where

Pν will be no longer given from the EVD of matrixQx,
but from the EVD ofA⊥

1
⊗2 Q

x
A⊥

1
⊗2T

. Due to matrix multi-
plication, the rank of this last matrix is now strictly smaller
thanRJ . Indeed, we decreased the rank ofQx by removing
the contribution of the first source from the initial statistical
matrix Qx, and consequently we increased the dimension of
noise subspace. Besides, when sourceξ(1) is dependent of
one or several other sources, the use of matrixA⊥

1
⊗2 instead

of the orthogonal projecting matrixB⊥
1 (29) allows for a

greater increase of the dimension of noise subspace, which
will lead to a best estimation of the second source location,
ρξ(2). Once the second source location has been found, the
source orientation vectorφξ(2) is computed in the same way
as φξ(1), replacingξ(1) by ξ(2), and the localizing vector

a
(
θξ(2)

) def
= G(ρξ(2))φξ(2) can be built. Eventually, it is
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possible to reduce the computational cost of the previous FO
deflation process especially for a large number of observations
and consequently large dimensions ofQx. Indeed, the second
source location can be found as the global minimizer of (26)
replacingG(ρ)⊗2 by A⊥

1
⊗2 G(ρ)⊗2 and redefiningPν by:

Pν = IN2 − A⊥
1
⊗2 Es

(
Es

TA⊥
1
⊗2T

A⊥
1
⊗2Es

)−1

Es
TA⊥

1
⊗2T

(30)
This way, the diagonalization of a (N2×N2) matrix is (time-
consuming for large values ofN ) is avoided.

Next, the S-MUSIC, IES-MUSIC, RapMUSIC and FO-D-
MUSIC deflation approaches proceed all recursively up to
estimate theP source parameter vectorsθp =

[
ρp

T φp
T

]
T.

The IES-MUSIC needs a scalar-valued user parameter, which
optimal value is only given forP = 2 sources in [25]. An
extension of the outlined algorithm toP >2 requires more ef-
fort and notation and is not considered in [25]. The S-MUSIC
and RapMUSIC methods build the following projecting matrix
once thep−1-th source localization has been achieved:

∣∣∣∣∣∣

∀ j, 1≤j≤p−1, a
(
θξ(j)

)
= G(ρξ(j))φξ(j)

Ap−1 =
[
a
(
θξ(1)

)
· · · a

(
θξ(p−1)

)]

A⊥
p−1 = IN − Ap−1

(
(Ap−1)

T

Ap−1

)−1
(Ap−1)

T

(31)

Then, S-MUSIC applies this matrix to the source localizing
vectora(θ) whereas RapMUSIC applies it both to the source
localizing vector a(θ) and to the SO signal eigenmatrix
Us before looking for thep-th source parameters. Finally
in the FO-D-MUSIC algorithm, thep-th source localization
step depends on two cases. Ifp ≤ N , then it mainly con-
sists in minimizing criterionJ3 (26) replacingG(ρ)⊗2 and
Pν by A⊥

p−1

⊗2
G(ρ)⊗2 and the FO noise projector of matrix

A⊥
p−1

⊗2
Q

x
A⊥

p−1

⊗2T

, respectively, whereA⊥
p−1

⊗2
=A⊥

p−1⊗A⊥
p−1.

Otherwise, ifp>N , the previous procedure holds but matrix
A⊥

p−1

⊗2
is replaced by the following projecting matrix,B⊥

p−1:
∣∣∣∣∣∣

∀ j, 1≤j≤p−1, a
(
θξ(j)

)
= G(ρξ(j))φξ(j)

Bp−1 =
[
a
(
θξ(1)

)
⊗2 · · · a

(
θξ(p−1)

)
⊗2

]

B⊥
p−1 = IN2 − Bp−1

(
(Bp−1)

T

Bp−1

)−1
(Bp−1)

T

(32)

Indeed, according to (31), forp = N +1 matrix A⊥
p−1 is a

zero square matrix whereas forp>N+1 matrix A⊥
p−1 is not

defined. Consequently, matrixA⊥
p−1

⊗2
cannot be used as soon as

p is strictly greater thanN . Note that the case for whichp>N
is possible for FO-D-MUSIC since this algorithm, contrary to
S-MUSIC, IES-MUSIC and RapMUSIC, can process under-
determined mixtures of sources (we will justify this assertion
in section IV-E). As described in the previous paragraph,
the diagonalization of matrixA⊥

p−1

⊗2
Q

x
A⊥

p−1

⊗2T

for p ≤ N

(respectivelyB⊥
p−1 Qx (B⊥

p−1)
T

for p>N ) can be avoided in
order to reduce the computational cost of the deflation scheme:
Pν has to be constructed using equation (30) whereA⊥

1
⊗2 is

replaced byA⊥
p−1

⊗2
.

D. Implementation of the FO-D-MUSIC algorithm

The different steps of the FO-D-MUSIC method are sum-
marized below, whenK observations of the stochastic vector
x are available.

Step1 Fix p equal to one, estimate the FO statistics
Ci1,i2,i3,i4,x from the K samples ofx and compute
an estimatêQx of the quadricovariance matrixQx.

Step2 Build a set of matrices
{
G(ρ)⊗2

}
choosing a suffi-

ciently densely sampled grid of vectorsρ.

Step3 Compute the EVD of matrixQ̂
x

, extract the esti-
matesÊs andÊν of matricesEs andEν respectively,
and compute the estimatêPν of Pν according to the
end of section IV-B.

Step4 Compute an estimate,̂J3, of criterionJ3 (26) (using
matrix P̂ν instead ofPν) over the suitably chosen
grid, and search for its global minimum,ρ̂ξ(p).

Step5 Compute vector̂Φξ(p) taking as solution the eigen-
vector corresponding to the minimum eigenvalue
of matrix G(ρ̂ξ(p))

⊗2T

P̂ν G(ρ̂ξ(p))
⊗2 in the metric

G(ρ̂ξ(p))
⊗2T

G(ρ̂ξ(p))
⊗2.

Step6 Extract the estimatêφξ(p) of the source orientation

vector φξ(p) from Φ̂ξ(p). In order to do this, first

reshape it into a matrix̂Fξ(p), and secondly com-
pute the normalized eigenvector associated with the
largest eigenvalue of̂Fξ(p).

Step7 If the rank of matrixÊs is not equal to one, that is,
if the P sources are not all localized,

i) incrementp and build vectora(θ̂ξ(p−1)) =

G(ρ̂ξ(p−1)) φ̂ξ(p−1),

ii) compute matrixΠ̂p−1 equal to Â⊥
p−1
⊗2 if

p≤N and toB̂⊥
p−1 otherwise (see section

IV-C) where Â⊥
p−1
⊗2 and B̂⊥

p−1 are the esti-
mates ofA⊥

p−1
⊗2 andBp−1

⊥ respectively using
a(θ̂ξ(p−1)) instead ofa(θξ(p−1)),

iii) go back to step4 replacing G(ρ)⊗2 by
Π̂p−1 G(ρ)⊗2 and whereP̂ν is achieved
from (30) replacingA⊥

1
⊗2 andEs by Π̂p−1

andÊs, respectively,
else stop the procedure.

Note that this implementation requires neither the knowledge
of numberP nor its estimation, since the deflation procedure is
stopped as soon as the rank of the estimated signal eigenmatrix
Ês is equal to one.

E. Identifiability of the FO-D-MUSIC method

From the previous sections, it appears that, under assump-
tions A1 to A4, the FO-D-MUSIC method can localizeP
brain current sources fromN surface observations. As this
new algorithm may process underdetermined mixtures when
some sources are statistically independent (see section IV-A),
we limit the analysis to the latter case. Moreover, for the sake
of simplicity, we assume that all the sources are statistically
independent. In such a situation, hypothesesA1 to A4 reduce
to A”1 to A”2 . Then vectora(θ)⊗2 can be considered as an
actual source localization vector but for a FO virtual array
[5] of electrodes, that gives at each measurement time,N
different virtual scalp data.N is directly related to the pattern
of the actual sensors, to the geometry of the actual array of
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sensors and to the considered head model. Consequently, this
means thatN2 −N components of all the vectorsa(θ)⊗2

are redundant components that bring no information. As a
consequence,N2 −N rows of the B(Θ) matrix bring no
information and are linear combinations of the others, which
means that the rank ofB(Θ) cannot be greater thanN . In
these conditions, matrixB(Θ) may have a rank equal toP
only if P ≤ N . Conversely, for a FO virtual array without
any ambiguities up to orderN −1, P sources localized atP
different positions generate a matrixB(Θ) with a full rankP
as long asP ≤N . Thus the maximal number of statistically
independent sources able to generate a matrixB(Θ) with rank
P is N . However, whenP =N , an arbitrary vectora(θ)⊗2

associated with an arbitrary setθ of localization parameters
is necessarily a linear combination of the source localization
vectorsa(θp)

⊗2, 1≤ p≤N , since matrixB(Θ) cannot have
a rank greater thanN , and all the multi-parameter vectors
θ are then solutions of equation (22), which does not allow
the source localization. Thus, a necessary condition for the
localization of the sources to be the only solutions of equation
(22) is thatP < N . This condition becomes sufficient for
FO virtual arrays with no ambiguities. So we deduce that the
algorithm which looks for theP minimizers of (22) is able to
process up toP =N −1 sources, whereN can be found as
the maximum rank of matrixB(Θ). However, when criterion
(26) has to be rendered null instead of criterion (22) for the
location of the sources only, and not for other locations, the
(9×9) matrixM(ρ)

def
= G(ρ)⊗2T

Pν G(ρ)⊗2 has to be full rank
whenρ does not correspond to a source’s location. Using the
definition of matrixM(ρ), this means that rank of matrixPν

cannot be lower than9, which means that the rank ofEν has
to be greater than or equal to9. As, in the presence ofP
statistically independent sources such thatP < N , the rank
of Eν is equal toN −P for a FO virtual array without any
ambiguities up to orderN−1, the maximal number of sources
that may be processed by FO-D-MUSIC method has to be
lower thanN −9. Conversely, for a FO virtual array without
any ambiguities up to orderN−1, P sources having different
locations with different orientations and such thatP ≤N −9
are such that their locations are the only solutions that render
null criterion (26). From the previous results, assuming a FO
virtual array with N different virtual scalp data and with
no ambiguities up to orderN − 1, we deduce that FO-D-
MUSIC can process up toP =N −9 sources. Although the
maximal number of potentially processed sources is a bit larger
when criterion (22) is used, the minimization of (22) is in
practice difficult to realize: it would need to optimize a6-
variables function while in criterion (26) a3D minimization
is sufficient. Note that exact computation ofN as a function
of N for a particular geometry of actual array of sensors and a
particular head model would require more effort and notation,
and is not considered in this work. However, looking at the
algebraic structure of vectora(θp)

⊗2 shows thatN is smaller
than N(N−1) whatever the actual array is. Moreover, we
estimated some values ofN (reported in table II) using Matlab
simulations. These values were computed from some values of
N (6, 9, 18, ...) and from the head model described in section

II-B. Mathematically, we built matrixB(Θ)=A(Θ)⊘A(Θ)
from equations (3) to (6) and we estimated its maximum
rank thanks to Matlab. Eventually, whereas the FO virtual
array theory gives a theoretical justification of why FO-D-
MUSIC can process underdetermined mixtures of independent
sources, it also shows why FO-D-MUSIC performs better in
the overderdetermined case when fine resolution is required.
Indeed, as mentionned above, instead of using onlyN scalp
measurements as the classical SO MUSIC-like methods, FO-
D-MUSIC exploitsN different virtual scalp data, whereN as
illustrated in table II.

N 6 9 18 31 63 95
N 21 45 171 496 2009 4340

TABLE II
ESTIMATED NUMBER OF FO VIRTUAL SCALP DATA AS A FUNCTION OF N .

V. COMPUTER RESULTS

In this section, the performance of the FO-D-MUSIC al-
gorithm are compared with two classical SO MUSIC-like
methods (namely MUSIC [7] and RapMUSIC [15]) in various
situations using computer simulations. In addition, we decided
to compute the performances of the FO-MUSIC method,
which consists in searching simultaneously for theP ”best”
minimizers of criterionJ3, in order to show the contribution
of the deflation scheme at the fourth order. As far as the
head model is concerned, we used three nested concentric
spheres with radius and conductivities values given in table
I. One hundred twenty eight electrodes were placed on the
scalp sphere using the10-5 system [18]. Among them, only
nineteen electrodes were used except in section V-E where
we studied the effect of the number of surface observations
by varying the number of electrodes. Besides,P =1 or P =2
independent sources were arranged in thexOz-plane. Note that
the origin (O) of the head model was defined as the intersection
of the O-Cz axis (z-axis), the O-T4 axis (x-axis) and the O-
Fpz axis (y-axis). A physiologically-relevant model was used
to compute realistic source temporal dynamics. This model
consists in a network of coupled neuronal populations. It is
described in previous reports [26] which showed that temporal
dynamics of simulated signals closely resemble those actually
recorded with intracranial electrodes in epileptic patients [6].
Briefly, the model is a lumped-parameter representation of a
set of interconnected populations of neurons. Each population
contains two subsets of neurons (main pyramidal cells and
local interneurons) that interact via excitatory or inhibitory
connections (postsynaptic interactions only). Populations can
be coupled either uni- or bi-directionally via excitatory con-
nections. Model output corresponds to the local field potential
generated at each population of the network. Figure 1 shows
the temporal dynamics for source1 and2 generated from the
model, as well as five corresponding simulated surface EEG
data. Note that the sources have an estimatedkurtosis (FO
cumulant normalized by the square of the variance) equal to
26.5 and 5.5 respectively. Besides, The source orientations,
φp (1 ≤ p ≤ P ), were randomly fixed such as

∥∥φp

∥∥ = 1.
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We considered the background noise as Gaussian except for
section V-D and as temporally and spatially white except for
section V-C. In addition, we created a ”0.1 mm”-spaced grid
in thexOz-plane and computed the SO and FO gain matrices
for each location on the grid. Eventually, the simulation
results were averaged overM = 200 realizations. From one
realization to another, both temporal dynamics and noise were
changed while the mixing matrix stayed unchanged except for
section V-A. SO and FO cumulants were estimated from5000
data samples except for sections V-C and V-D where10000
and 2500 samples were used, respectively. Simulations were
performed using Matlab (V7.0, Release 14). As an example,
when a grid of100 location points is used, FO-D-MUSIC takes
360 milliseconds to localize two sources from eighteen surface
observations, on a standard PC computer (64-bit processor,4
GB RAM). Two criteria were used to quantify the quality of

Fp2

C4

Fz

Fp1

C3

s
1

s
2

Fig. 1. Five selected surface EEG data from two deep sources (s1 ands2)
having the same SNR equal to10 dB.

the source localization. The first one is the Probability of Non-
Localization (PNL), that is, the probability that the considered
localization method does not succeed in finding exactlyP
solutions. For each localization method, the PNL criterion
is defined by the ratio between the number of realizations
for which all the sources are not localized and the total
number of realizationsM . The second one is the well-known
averaged Root Mean Square Error (RMSE), computed for
each source and for a given source localization method. More
precisely, for a given numberM ′ (M ′ ≤ M ) of realizations
for which the considered localization method has succeeded
in finding exactlyP solutions, the averaged RMSE for source
p associated with the localization estimation,RMSE(θp), is
defined by:

RMSE(θp) =
1

M ′

M ′∑

m=1

(
min

1≤j≤P

{∥∥∥θp − θ̂
(m)

j

∥∥∥
})

(33)

where θ̂
(m)

j is the j-th source parameter vector estimated
during them-th experiment. The minimization over the set
{1, 2, . . . , P} of integers is necessary since the source param-
eter vectors may be recovered only in the disorder.

A. Effect of the dipole location on source localization

We studied in this section the behaviour of the MUSIC,
RapMUSIC, FO-MUSIC and FO-D-MUSIC methods in the

presence of a unique source. In fact, since we looked for
only one source localization, the non-deflation method was
equivalent to the deflation one, for a given order of statistics.
Results are illustrated in figure 2 which displays the variations
of the RMSE criterion at the output of the previous algorithms
as a function of the source location (in centimetres) on
the z-axis. They show that both FO MUSIC-like methods
localize more precisely the source than both SO MUSIC-like
algorithms, wherever the source is. The PNL criterion was
close to zero for all the methods whatever the source location.
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Fig. 2. Effect of dipole location on localization.

B. The case of poorly spatialy separated sources

Figure 3 presents the quantityRMSE(θ1)+RMSE(θ2) at
the output of the four methods as a function of the distance
between two sources. One dipole was placed at positionρ=
[0, 0, 0.8]T (in centimetres) while the other moved along thez-
axis. It clearly appears on figure 3 that both FO approaches are
quasi-insensitive to the distance between the dipoles contrary
to SO methods. Indeed, the behaviour of the MUSIC algorithm
is very affected as soon as the distance between sources
decreases below3.5 cm. Performances of the RapMUSIC are
better than those of MUSIC for low distances, however they
remain inferior to those given by both FO algorithms, whatever
the distance is. As in section V-A, the PNL was quasi-zero for
all the methods whatever the source distance.
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Fig. 3. Effect of distance between dipoles on localization.
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C. The case of colored noise

Both FO algorithms were compared to SO algorithms in the
presence of a Gaussian noise with unknown spatial covariance.
Two sources were positioned in depth such that their location
vectors were given byρ1 = [0, 0, 2]T and ρ2 = [0, 0, 4.4]T

respectively. Figure 4 displays the variations of RMSE and
PNL criteria for the four methods as a function of the noise
spatial covariance factorρ. Note that the Gaussian noise model
employed in this simulation is the sum of an internal noiseνin

and an external noiseνout, of covariance matricesRin
ν and

Rout
ν respectively such that:

Rin
ν (r, q)

def
= σ2δ[r−q]/2 Rout

ν (r, q)
def
= σ2ρ|r−q|/2 (34)

whereσ2, ρ, Rν (r, q)
def
= Rin

ν (r, q)+Rout
ν (r, q) are the vari-

ance of total noise per sensor, the spatial covariance factor of
noise and the(r, q)-th component of the total noise covariance
matrix, respectively.

Figure 4(a) shows that both SO algorithms are sensitive
to a Gaussian noise with unknown spatial covariance and
are affected as soon as the noise spatial covariance increases
beyond 0.2. Indeed, theoretically MUSIC and RapMUSIC
require a perfect knowledge of the noise covariance [22].
On the contrary, FO-MUSIC and FO-D-MUSIC, since they
use FO cumulants, are asymptotically insensitive to Gaussian
noise, regardless of its space/time color. Computer results
show that, although the PNL of RapMUSIC is quasi-zero,
only FO-MUSIC and FO-D-MUSIC localize both sources with
precision whatever the noise spatial covariance is. Neverthe-
less, for a given number of ten thousand samples, only FO-D-
MUSIC among both FO methods succeeds in localizing both
sources at each time (figure 4(b)).
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(a) RMSE criterion

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Noise spatial correlation

P
N

L

 

 

MUSIC
RapMUSIC
FO−MUSIC
FO−D−MUSIC

(b) PNL criterion

Fig. 4. Effect of colored noise on localization of 2 sources.

D. The case of non-Gaussian noise

Results show that the FO-D-MUSIC algorithm is unaffected
by a Gaussian noise even when only a finite number of data
samples are available (figure 4(a)). Therefore, we studied the
behaviour of FO-D-MUSIC in the presence of an additive
non-Gaussian noise. For that purpose, eye-blink artefactsand
ElectroCardioGraphic (ECG) real signals were added to simu-
lated background EEG signals, generated from the model [26].

This sum of signals was added to the mixture of two sources,
located in depth (ρ1 = [1, 0, 1]T and ρ2 = [0.875, 0, 1.125]T

respectively). The two sources were chosen close to each
other to establish if the superiority of FO-D-MUSIC over
SO MUSIC-like approaches was still valid in such a case
with a non-Gaussian noise. Results are displayed in figure 5
where RMSE and PNL criteria are represented as a function of
both sources SNR for the MUSIC, RapMUSIC, FO-MUSIC
and FO-D-MUSIC algorithms. They show that, contrary to
the FO MUSIC-like approaches, the SO ones do not succeed
in localizing both sources with precision, even for a high
SNR of 80 dB. Besides, unlike FO-MUSIC, FO-D-MUSIC
succeeds in localizing both sources at each time as soon as
the SNR increases beyond40 dB. The fact that the PNL of
FO-MUSIC does not really tend to zero as the SNR increases
could be explained by the small number of samples (2500)
used is this specific simulation. Even with a maximal SNR,
FO-MUSIC might sometimes fail to find a solution (possibly
because of errors in our FO estimates due to the small number
of samples). This justifies the use of FO deflation scheme
when a FO-MUSIC metric is considered. Finally, although
the FO-D-MUSIC method seems to be the more efficient in
this simulation, its convergence speed may be reduced by the
presence of a non-Gaussian noise.
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Fig. 5. Effect of non-Gaussian noise on localization of 2 sources.

E. Effect of the number of surface observations on source
localization

In order to study the effect of the number of surface
observations on the behaviour of the four previous MUSIC-
like methods, two close sources were considered (location pa-
rameters equal toρ1 =[−1, 0, 3]T andρ2 =[−1.16, 0, 3.16]T).
In figure 6, the RMSE criterion at the output of RapMUSIC
and FO-D-MUSIC is plotted against the number of surface
observations (MUSIC and FO-MUSIC were not represented
because the PNL criterion is close to one in these two cases).
Contrary to FO-D-MUSIC, the RMSE criterion at the output of
RapMUSIC needs at least sixty three surface observations (i.e.
sixty four with the reference channel) to give accurate results
and drops for a smaller number of observations. We recently
reported [2] that FO-D-MUSIC encompasses MUSIC-like
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Fig. 6. Effect of the number of surface observations on localization of 2
sources.

methods when only ten surface electrodes were considered.
Even with 127 EEG channels, RapMUSIC does not localize
the first source as accurately as FO-D-MUSIC. As far as the
PNL criterion at the output of RapMUSIC and FO-D-MUSIC
is concerned, it was quasi-zero. This shows that the use of
the deflation concept at second and fourth orders considerably
increases the algorithm ability to localize both sources. In con-
clusion, the FO-D-MUSIC method outperforms FO-MUSIC as
well as the classical SO MUSIC-like approaches, especially
when sources are close to each other, independently from the
number of observations used.

VI. CONCLUSION

In this paper, we propose a novel algorithm for brain current
source localization, the FO-D-MUSIC method based on i)
the separability of the data transfer matrix as a function of
location and orientation parameters, ii) the Fourth Order (FO)
virtual array theory, and iii) the deflation concept extended
to FO statistics accounting for the presence of potentiallybut
not completely statistically dependent sources. AlthoughHO
cumulants were considered for a long time as too difficult
to estimate, they can be more useful than SO ones to solve
inverse problems since they use, in a way, additional virtual
sensors. This result was shown asymptotically in the presence
of independent sources and reinforced by several simulations,
performed for different numbers of samples, provided that a
FO deflation scheme is used. Indeed, computer results showed
the superiority of FO-D-MUSIC over FO-MUSIC (i.e. similar
version of FO-D-MUSIC without the deflation scheme) and
classical algorithms such as MUSIC [7] and RapMUSIC [15]
for overdetermined mixtures of sources in different situations.
In particular, unlike SO MUSIC-like algorithms the FO-D-
MUSIC method remained unaffected by a Gaussian noise
of unknown spatial covariance. Moreover, the FO deflation
concept used in FO-D-MUSIC increases the probability of
localizing all the sources. In addition, the FO-D-MUSIC
approach shows its superiority specially when a fine resolution
is required, for instance when sources are close to each
other. Besides, at a similar level of performances, our method
requires less surface observations than SO MUSIC-like ap-

proaches. Indeed, FO-D-MUSIC exhibits good performances
for reduced number of surface observations and provides a
reliable alternative when high-resolution EEG is unavailable.
Our objective in the forthcoming work is i) to test the
FO-D-MUSIC ability to localize more sources than surface
observations, and ii) to evaluate it from real EEG data
in epileptic patients in whom strong hypotheses about the
localization of the epileptic zone are available.
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