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Abstract—This paper addresses the problem of the robust 

registration of multiple observations of a same object. Such a 

problem typically arises whenever it becomes necessary to 

recover the trajectory of an evolving object observed through 

standard 3D medical imaging techniques. The instances of the 

tracked object are assumed1 to be variously truncated, locally 

subject to morphological evolutions throughout the sequence, 

and imprinted with significant segmentation errors as well as 

significant noise perturbations. The algorithm operates through 

the robust and simultaneous registration of all surface instances 

of a given object through median consensus. This operation 

consists of two interwoven processes set up to work in close 

collaboration. The first one progressively generates a median and 

implicit shape computed with respect to current estimations of 

the registration transformations, while the other refines these 

transformations with respect to the current estimation of their 

median shape. When compared with standard robust techniques, 

tests reveal significant improvements, both in robustness and 

precision. The algorithm is based on widely-used techniques, and 

proves highly effective while offering great flexibility of 

utilization. 

 
Index Terms—Simultaneous registration, 4D medical imaging, 

joint kinematics. 

I. INTRODUCTION 

DERSRANDING the internal dynamics of complex joint 

systems – such as the tarsus or the carpus – remains a key 

challenge that aims at characterizing articular pathologies 

(e.g., arthritis) as well as designing prostheses. Working in 

vivo and non-invasively to study the precise function of such 

articulations has so far remained beyond the scope of the usual 

movement analysis techniques. Conversely, some 3D medical 

imaging techniques enable in vivo samplings of osteo-articular 

movements inside the most complex articulations. However, 

as the required sequences of 3D images turn out to appear with 

poor resolution, noise and time-varying truncations, these 
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techniques show many limitations when applied to complex 

articulations such as the tarsus or the carpus. Fig. 1 depicts 

typical data samples both for tarsus-MRI and carpus-CT. 
 

 
Fig. 1. Data examples obtained in vivo: MRI (0.5x0.5x1.5mm) of the tarsus 

[1] (a) and CT (0.3x0.3x1mm) of the carpus (b). Segmentation and tracking of 

the bone envelope involves four major difficulties. (i) The device modality 

may not be well adapted to bone delineation (a). Therefore, the result may 

depend on the operator’s expertise. (ii) Due to poor voxel size, joints may 

appear welded (b4) and will require interactive delineation; partial volume 

effects may also increase. (iii) The field of view is confined. As a result, the 

visible part of some articular components can vary considerably as a function 

of the current articular configuration. The registration process will have to 

deal with this uneven clipping. (iv) A noticeable anisotropy may result in a 

dynamic evolution of biases and artifacts as a function of the current articular 

posture. 
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Fig. 2. Difficulties encountered while addressing the kinematics of tarsus 

bone components from MRI segmentation – positions 10° and  20° in 

pronation (t1, t2), neutral position (t3), positions 10°, 20°, 30°, 40°, 50° in 

supination (t4,…,t8). The raw data of one particular instance is shown Fig. 1.a. 

Six structures are tracked (tibia, fibula, talus, calcaneus, navicular, cuboid 

bone). This sequence sweep (a), whose box (b) focuses on a geometric 

reconstruction of the cuboid (blue shapes) from eight instances, shows that, 

due to time-varying segmentation errors, the mobile structure can no longer 

be considered as a perfectly rigid object (b). A usual tracking procedure aims 

at providing each instance of a bone with a kinematically equivalent trihedron 

– whose orthogonal axes are depicted in (a) with red, green and blue stems. 
 
 

 
Fig. 3. Difficulties encountered while addressing the kinematics of carpus 

bone components from in vivo CT segmentations. Figure (a) depicts the 

superposition of nine instances of the left carpus – flexion positions 20°, 40°, 

60° and Max (t1,…,t4), and extension positions 20°, 40°, 60° and Max 

(t6,…,t9). Fifteen structures are tracked  (distal radius, distal ulna, scaphoid, 

semilunar, pyramidal, pisiform, hamate, capitate, trapezoid, trapezium, 

proximal M1–M5). A conventional protocol would require a tedious per-bone 

semi-interactive segmentation whereas a simple isosurface would extract 

outer bone surfaces instantaneously without unreliable extrapolations of sub-

sampled congruent interfaces. As bones appear then welded, a semi-

interactive dissection, through geodesic morphometry driven by torsion 

energy, then makes it possible to easily cut these shapes w.r.t. bone 

components [2]. Figure (b) depicts the resulting label map concerning the 

third instance. Similar results might have also been obtained through a more 

common use of a watershed transform on a 3D gradient image [3], [4] and [5]. 

Box (c) shows the corresponding observable parts of the nine trapezoid 

instances. Hidden parts of its intrinsic shape heavily depend on positions. 

Moreover, as each bone component must be identified in order 

to perform its kinematics estimation, the first processing step 

has to involve a segmentation task. Owing to the fact that the 

available unsupervised rigid registration techniques addressing 

accurate kinematics objectives do not cope with segmentation 

errors, one usually has to undergo some tedious semi-

interactive preliminary work requiring expert-level anatomical 

skills while still obtaining unavoidable errors because of 

incorrect interpretations of MRI data – see Fig. 2. Moreover, 

save for segmentation errors, one may still have problems with 

time-varying large truncations – see Fig. 3. Today, these are 

the main factors limiting the full development of kinematics 

non-invasive protocols based on 3D+T imaging. 

Provided that (i) there are no segmentation errors nor 

truncations, (ii) the dimensions of the moving object are large 

compared to the data resolution, available kinematic-oriented 

procedures assume that the inertia trihedron of a rigid structure 

constitutes an equivalent coordinates system in relation to any 

movement [6], [7], [8]. 3D CT imaging of the wrist kinematics 

is addressed in [9], [10], [11] and [12] whereas 3D MRI 

imaging of the tarsus kinematics is addressed in [13], [14], 

[15], [1] and [16]. However, whenever an object description 

becomes unreliable (segmentation errors and truncations), the 

registration must be refined through more flexible techniques 

– e.g., the ICP-based matching method [17]. In the presence of 

a bone structure whose truncation evolves with the position, 

[18] suggests an intrinsic clipping technique that, provided 

that the shape instances meet some geometric properties, 

enables an equivalence between the inertia trihedron 

estimations to be maintained throughout the sequence. 

However this approach does not deal with all geometries and 

only focusses on the shape parts common to each instance – 

thus, possibly discarding a large useful section of the available 

data. Recently, a voxel-based registration approach aiming at 

carpal bones kinematics through 3D CT sequences was 

proposed in [19]. However, even if this approach performs 

high resolution reconstructions of the common underlying 

bones, it still requires an accurate segmentation of the first 

instance. Thus, as available approaches still have problems 

with time-varying large truncations and segmentation errors, 

they cannot deal both accurately and robustly with 

segmentation results like those involved in the kinematic 

applications depicted in Fig. 2 and 3. 

On account of the information redundancy involved by any 

kinematics-oriented objective, we propose a new point-based 

4D rigid registration framework – whose main lines were first 

introduced in [20] – which is shown to be robust against 

significant shape variations due to (i) noise, (ii) large and 

time-varying missing parts, (iii) large segmentation errors. 

Moreover, while taking into account these drawbacks, our new 

technique is able to deliver both accurate kinematics 

estimations and accurate reconstruction of the bone 

components. We can then consider unreliable segmentations 

as an input and thus rely on automatic and efficient 

segmentation algorithms. Currently, our technique has to 

operate on explicit shape descriptions – i.e., tessellations. This 

implies that this new methodology does not depend directly on 
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the image modality – typ. CT or MRI. The main novel idea 

behind our new algorithm is to look robustly at the 3D+T 

dataset as a whole 4D network with full connectivity w.r.t. 

time axis – i.e., each instance shares a distinct undirected link 

with each of the other instances. In this framework, it becomes 

possible to robustly perform both Simultaneous Matching and 

Fusion (SMAF) of the relevant data within the same 

algorithmic process. This work can also be seen as a first 

experimental attempt to generalize the well-known mean 

shape notion [21] while reconstructing a specific type of root 

shape – that we call Median Consensus Shape (MCS) – 

through robust statistics. Thus, this general working scheme 

will, in the near future, also consider applications that go 

beyond the bounds of kinematics-oriented applications. 

The paper is organized as follows. Section II introduces the 

technical background of our approach w.r.t. computer vision 

research addressing simultaneous registration. Section III 

describes our new algorithm. Section IV summarizes key 

aspects in the validation of the algorithm using both synthetic 

sequences and true data sequences. Section V discusses some 

methodological choices, and section VI concludes with some 

perspectives for future work. 

II. SIMULTANEOUS REGISTRATION 

A. Introduction 

A simultaneous registration approach is expected to 

optimally merge redundant information so that we may 

accurately set up a relevant trihedron marker within each 

instance while dealing with segmentation problems such as 

those underlined in Fig. 2 and 3. This first objective appears 

upstream within the scope of a more general framework that 

addresses inter-relationships between articular surfaces and 

their kinematics. Within this field, the methodology outlined 

below focuses first on rigid movements. A second and 

complementary objective – not explicitly addressed here – is 

to produce an accurate shape description of the bone 

components. This will make it possible to study the geometry 

of the joint surfaces.  

Bearing in mind these objectives, we naturally set out to 

measure bone kinematics using the movements of their 

external cortical interfaces. Thus, as a working hypothesis, 

rigid shapes resulting from the segmentation step are assumed 

to be available in a polyhedral form — i.e., a list of facets 

linked to a cloud of vertices. From a typology aspect, 

registration techniques can be mainly divided into two 

categories: iconic (i.e., voxel-based) and geometric methods. 

The particular case of registration of two surfaces is one of the 

main problems belonging to the second category. A 

bibliography of surface registration techniques used in the 

domain of medical imaging is available in [22]. As the 

registration procedure formulated below derives from the 

Point Matching approach the rest of this paper makes use of 

its terminology. In this framework, terms like object, cloud, 

shape and structure are equivalent, and correspond to different 

levels of abstraction in a same entity: the surface shape. More 

precisely, the term “cloud” only refers to the knowledge of the 

vertex set. Matching a pair of features will imply the definition 

of a vector linking the source point to the target point – these 

corresponding points are also referred to as markers. By 

definition the source point is linked to the source object to 

which corrective positioning movements will be applied, 

while the target point is linked to the reference object.  

In order to account for the dependencies of the main 

algorithmic building-blocks involved in the simultaneous 

registration objectives, Fig. 4 depicts the progressive nesting 

of the sub-problems that are to be solved. First of all, two 

types of problems have to be distinguished: pose estimation on 

one hand, and matching on the other. Pose estimation of two 

instances of an object assumes that exact point 

correspondences are known beforehand; this classical problem 

involves minimizing a constrained error norm applied to 

vectors defining the point correspondences. An important 

feature of this sub-problem is its degree of robustness w.r.t. to 

false correspondences. The second type of problem, matching, 

addresses both dynamic building of correspondence vectors 

and robust pose estimation. The up-do-date algorithm 

described in section II.B, hereafter designed by the acronym 

ICPr, addresses robust matching – i.e., the left column of Fig. 

4. Another dimension of the nesting of sub-problems is 

connected with the number of instances to be taken 

simultaneously into account. Section II.C presents a short 

survey of the algorithms handling simultaneous pose 

estimation or simultaneous matching – i.e., the bottom row of 

Fig. 4. The robust and simultaneous matching of multiple 

objects – i.e., the full domain of Fig. 4 – is still a relatively 

open problem and will be addressed in section III. 

 
Fig. 4. Dependencies of the main sub-problems involved in robust 

simultaneous registrations. 

B. Robust matching of two pointsets 

This classical problem will remain at the core of almost 

simultaneous matching approaches. As stated above, it 

involves an iterative cascading of two sub-problems: pose 

estimation and matching. Pose estimation of two instances of 

an object assumes that point correspondences are known and 

do not depend on the current location of the object instances. 
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transformation 
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This first choice implies that the error distribution should be 

an isotropic Gaussian one. The standardized evaluation of Chi-

2, defined as 
  
!2

= w
i
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2

i" / w
ii" , will be used as the 

indicator of registration quality. This is a well-known sub-

problem for which a comparative test of the main closed-form 

expressions of   T̂  is summarized in [23]–[24]. One of the most 

appropriate techniques makes use of singular values 

decomposition (SVD) and was proposed in [25]. An important 

feature of this sub-problem is its degree of robustness relating 

to false correspondences – i.e., outliers. Thus, searching for 

the optimal transform   T̂  requires resorting to a robust norm 

  
!(e

i
)

i
"  instead of the standard quadratic norm 

  
e

i

2

i
! . The 

function !  usually refers to an M-estimator [26]–[27]. The 

main objective is to lessen the influence of correspondence 

errors whose distribution does not fit a Gaussian model. Let 

the derivative 
  
!" (e)  denote the influence function on the M-

estimator. The norm permissiveness implies that 
  
!" (e)  is 

bounded when 
  
| e |! " . Many M-estimators have a 

redescending influence function. This characteristic may be 

parameterized by writing that 
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, 
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 is the rejection point. As, the minimization of 
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i
"  usually involves an Iterative Reweighted Least 

Squares (IRLS) method [27], [28], an M-estimator is 

sometime named W-estimator. Let 
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i
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i
 denote 

an auxiliary weighting function defined on [0, 1] – which can 

be seen as the Gaussian likelihood of a residual 
 
ei . Each IRLS 

step can then proceed through the update of the weights 

followed by a weighted quadratic optimization of the 

transform parameters. As the second iteration step may then 

refer to a closed-form solution, this results in a very efficient 

algorithm. While addressing the robust pose estimation of two 

point sets, this type of iterative, robust, efficient approach was 

first proposed in [29]. 

Many algorithms make use of the Tukey-Biweight M-

estimator. It is expressed as 
  
!(e) = (1+ e

2/e
r

2
+ e

4/3e
r

4 ) e
2/2e

r
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if 
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r
 and 

  
!(e) = 1 / 6  elsewhere. The weight function 

involved in its IRLS formulation is 
  
�(�) = (1! (� / �r )2 )2  if 

  
| e | ! e

r
 and 

  
w(e) = 0  otherwise. Let  !̂  denote a robust 

estimation of the standard deviation of the residuals. In order 

to introduce an adaptive rejection point, it is usual to write 

  
e

r
= ! =̂ . This deviation estimation can be robustly updated 

through an L-estimator – e.g., 
  
!̂ = 1.5 em , where 

 
e�  denotes 

the median of error modulus over the current fitting. 

Therefore, we will also refer to this algorithm as an LW-

estimator. We make use of this special acronym to underline 

that, unlike the standard setting of an IRLS optimization of a 

robust norm,  !̂  will not remain static. Indeed, its L-estimate 

will be updated within each IRLS iteration. On completion of 

each iteration, the convergence criterion tracks the evolution 

of the global residual ! , defined as the square root of Chi-2. 

Let introduce the minimal relative gain µ  that enables us to 

define the stopping criterion 
 
| ! " | < µ " . An upper bound 

iteration count 
  
It�ax  can optionally be added to this criterion. 

Typical values for !  and µ  are 3 and 0.1% respectively. 

In fact, practical working contexts do not come down to 

pose estimation tasks because point correspondences remain a 

priori unknown. Thus, the registration algorithm must be able 

to dynamically estimate the matching of two clouds by 

identifying homologous points prior to the rigid pose 

estimation step. The standard matching algorithm, the Iterative 

Closest Point (ICP) algorithm, was proposed independently by 

Besl and McKay [17] and Chen and Medioni [30]. In such an 

algorithm, the pose estimation step is encapsulated as the 

second step of a two-step iterative process. The first step 

updates point correspondences w.r.t. the current estimation of  

T – an initial guess T0 is thus required. The second step 

computes an updated estimation of T through a pose 

estimation algorithm and then moves the source cloud 

accordingly. These ICP algorithms mainly differ w.r.t. the 

metric used – a point-to-point metric or a point-to-surface 

metric – that is to say, the way they use or not the normal to 

the surface. In [17], the normals are ignored, and the 

minimized metric refers to the Euclidean distance between a 

source point and its target point. In [30], which is therefore 

restricted to surfaces, the metric refers to the distance between 

a source point and the tangent plane defined by the normal at 

the target point. Due to its first step, it is important to stress 

that an ICP algorithm performs a local search and will become 

unreliable if the clouds are not initially roughly registered. 

Alternative global search techniques are proposed in [31]. In 

oder to reduce the search complexity (step 1) and accelerate 

the convergence, many ICP derivatives  (e.g., [32]) perform a 

search of matching vectors with additional heuristics 

constraints, such as shape invariants. However, following [33], 

the most interesting evolutions are those taking into account a 

robust norm in step 2 in the ICP algorithm.  

C. Availaible strategies aiming at simultaneous registration 

Algorithms performing simultaneous matching can be 

mainly divided into two categories: incremental algorithms 

and global algorithms. The former can be seen as greedy 

algorithms carrying out a sequence of pairwise registrations in 

order to minimize error accumulation over the network linking 

the overlapping instances. Their main objectives are both to 

cope with a large dataset and to allow for the dynamic upgrade 

of the network. Our application context is most concerned 

with the second category. In the point matching operating 

case, while addressing K instances, each consisting of 

   
N

k
, k = 1,!, K  points, a global algorithm performs an 

optimization whose generic minimizer is  
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where 
   
Tl , � = 1,!,K  denotes the set of rigid transformations, 

  
!(e)  is a robust metric applied to the matching error e, C is a 

point matching operator returning a prediction of the target 

point 
   
q

k ,i

j
= C

j
(T

k
( p
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);T

j
)  of the source point 

  
T
k
( p
k ,i )  

w.r.t. instance j relocated by 
 
�j  – i.e., 

  
q

k �i
j  is the closest 

plausible location within the framework of the distance metric 

under consideration. Below, 
   
C

j
( p

k 	i )  will denote 
  
q

k 
i
j  

whenever 
 
T
k
= �� = I . It should be noticed that C is an 

asymmetric operator because of noise and outliers. Since such 

a problem is highly non linear, it cannot be solved analytically 

and it has recourse to an iterative minimization. Thus, having 

an initial guess 
   
�

0 , � = 1,!,�  beforehand becomes a major 

requirement. The minimizer does not depend on the choice of 

the common coordinates system. Therefore, the problem is 

usually regularized by assuming that the relative orientation of 

one of the instances – e.g., the first one – is kept aligned with 

the common coordinates system. 

With respect to published work addressing range image 

registration, the robustness treatment seems not to be the 

primary critical aspect. Indeed, most studies discard outlying 

correspondences through thresholding of the length of the 

matching vectors (and, when available, thresholding of the 

divergence angle between the source and target normals [34]) 

and then come down to a standard quadratic optimization, 

setting 
  
!(e) " e

2  and thus assuming a zero mean Gaussian 

noise. A noticeable exception can be found in [35] where 

matching errors are integrated through an M-estimator and the 

transformations optimized through gradient descent and 

quaternion-based parameterization. 

The main component in the iterative process is still an ICP-

like loop. Thus, it alternates the update of the target point’s 

locations and the optimization of the transformation set, so as 

to move the source points towards their respective target 

points. The local optimization sub-problem then comes down 

to performing simultaneous pose estimations. For this specific 

purpose, four types of iterative process have been proposed. 

• Each of the source points is matched to the union of other 

instance points (i.e., getting K-1 independent target points 

per source point) [36]. This strategy is much related to the 

formulation of the generic minimizer and leads to 

iteratively solving a nonlinear least-squares problem. 

Neugebauer [36] operates through the point-to-plane 

metric whereas [35] makes use of the point-to-point metric. 

However, because it independently and successively 

matches each instance to the union of the K-1 other ones, 

[35] proposes a less optimal strategy. 

• The set of matching pairs resulting from all instances are 

simultaneously taken into account. The transformations are 

optimized through a linear algebra generalization of the 

well-known closed-form solutions of the rigid pairwise 

pose estimation – their main characteristic being to enable 

rotation and translation to be decoupled. A generalization 

of Horn's quaternion-based approach is proposed in [37] 

whereas [38] performs a generalization of Arun's SVD-

based approach. Since the latter leads to a weighted 

iterative process, [38] optionally proposes a seamless 

integration of an M-estimator managed through its usual 

IRLS minimization. 

• Likewise, the correspondences are again simultaneously 

taken into account but the optimization step is carried out 

through a mechanical-based analogy which simulates 

energy minimization over a network of spring-connected 

instances [39, 40]. 

• Each source point is matched to a virtual target point 

coming from the average instance [21]. The optimization 

step can still make use of the usual pairwise methods but 

needs to manage an auxiliary step in order to update the 

average instance. Guehring [34] confines the computation 

to tie points and operates through an anisotropic 

description of their matching noise in order to improve the 

convergence rate. Masuda [41] simultaneously performs 

registrations and explicit reconstruction of the mean shape 

by operating through the signed distance field of each 

instance as well as that of their mean instance. 

Choosing an optimal strategy first requires a trade-off to be 

made between robustness and convergence rate. In fact, [42] 

compares the performance of three simultaneous pose 

estimation algorithms ([21], [37], [40]) and concludes that the 

best (resp. lower) convergence rate is performed by [37] (resp. 

[21]) whereas [21] seems to be the most accurate among these 

three methods. 

III. METHODOLOGY 

A. Overview 

First, before returning to the real working case, let C denote 

a hypothetic and ideally perfect operator able to successively 

match each point of the cloud k with its unique homologous 

point in any cloud k’. In this context, the pairwise rigid 

matching of two point clouds reverts to the classic rigid-pose-

estimation problem. As stated in section II.C, Pennec [21] 

showed that the corresponding simultaneous rigid-pose-

estimation problem can be fairly resolved through an iterative 

application of pairwise-like steps while introducing a simple 

point merging operator M returning, for each source point, a 

unique virtual homologous point built as the mean of its K-1 

homologous points and the source point. After convergence, if 

the noise associated with the point measurements is Gaussian, 

the set of virtual homologous points gives rise to an implicit 

mean shape. Unfortunately, in a real working case the 

availaible operator C always becomes merely approximate. 

However, in the same way as one perform practical pairwise 

point matching, it is straightforward to insert the Pennec 

simultaneous pose estimation approach in an ICP-like iterative 

process. A recent application addressing such a mean shape 

computation can be found in [43]. 

Our present work, whose first results were published in 

[20], is an attempt to address medical simultaneous 

registration problems through some robust generalization of 

the Pennec mean shape approach. As we now have to cope 

with both time-varying large contaminations (accounting for 

pathologies and/or segmentation errors) and large truncations 

– not only Gaussian noise – this makes a world of difference. 

As discussed below, this context limits the achievable point 
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matching operator C to its simplest form – i.e., finding the 

closest point. Thus, as the returned matched points may 

become thoroughly unreliable, our main problem comes down 

to finding a robust binding of the merging operator M in an 

optimal way w.r.t. available information. While making a 

syntactic parallel with the prominent work of John Tukey, 

who had long been dealing with root signal extraction through 

robust statistics [44], this task can be seen as performing root 

shape extraction through a dedicated operator M. Since the 

optimization process has to rely on a robust norm managed 

through an M-estimator, it gives rise to an IRLS optimization 

process involving a per-point auxiliary weighting scheme. As 

a core idea, we propose an implementation of the M-operator 

making intensive use of the valuable extra-information 

managed by this weighting scheme in order to make up for the 

numerous failures of the C-operator. This is expected to 

introduce a transversal information flow and, thus, to enforce 

the global performance of the optimization process. Instead of 

juxtaposing K M-estimators, this attempts to manage a single 

K-dimensional M-estimator in an experimental way. As a 

consequence of our purpose-oriented binding of the M-

operator (discussed in section III.D), the resulting root shape 

(resp. the new algorithm) is then called the Median Consensus 

Shape (resp. the Iterative Median Closest Point (IMCP) 

algorithm). 

The skeleton of the new algorithm is described in section 

III.B. The operator C (resp. M) is then discussed in section 

III.C (resp. III.D). This section will end with the release of the 

full IMCP pseudocode. 

B. Skeleton of the new algorithm 

Initial instance registrations are assumed to be performed 

through alignment of their inertia trihedrons. Let 

   
!k , � = 1,!,�  denote a set of redescending M-estimators 

whose indexation expresses a per-instance management of the 

robustness through adaptive estimation of their rejection point 

 
!" � . According to the technical aspects discussed in section 

II, the iterative process aiming at the simultaneous matching 

of the K instances can be summarized through the following 

five main steps. 

1. Update the points of each instance with their respective 

initial transform 
   
��
0
,!,��

0 . Set the robust norms to the 

quadratic profile (i.e., setting 
   
! � " #, � = 1,!, � ). 

2. Rebuild the matching point set 
   
{q
k ,i

j
= C

j
( p
k ,i

);  

   � = �,!,�;  
   
j = �,!,K , j ! k�  

   
i = �,!,N

k
} . 

3. Using merging operator  M , build the point set 

accounting for the current  estimation of the  implicit 

root instance as 
    
{ !q

k ,i
=M

!
1
,",!

K

( p
k ,i

, q
k ,i

j ,  

   
j = 1,!, K , j ! k);  

   
 = "#!# $%  

   
i = &,!,N

k
' . 

4. Update the rejection points – i.e., 
   
!

1,!,( . Then, obtain 

the correction transforms 
   
T

1

(c) ,!,T
K

(c)  as 

   
{ arg min

T
k

(c )
k=1,!,K

!
k
( | "q

k ,i
" T

k

(c) ( p
k ,i

) |)
i=1,!,N

k
# } . 

5. Update each point’s location with its respective 

correction transform. Jump to step 2 while all of the 

instances have not converged. 

The main part of step 4 simply comes down to a sequence 

of K pairwise robust pose estimations. These estimations are 

carried out through an IRLS optimization and, thus, each of 

them makes use of an auxiliary weighting map – rejection 

points 
 
!
k

 being robustly computed through an L-estimation 

over 
   
{| !q

k ,i
! p

k ,i
|, i = 1,",N

k
} . Since the current internal 

state of a robust norm 
 
!
k

 w.r.t. data is thus made explicit 

through 
   
{ w

k ,i
, i = 1,!, )

k
* , using an IRLS process becomes 

a key advantage of the algorithm. Indeed, these normalized 

weights can now express how well a point is likely to account 

for a zero mean Gaussian perturbation of the current root 

shape estimation. Therefore, interaction levels between global 

and local iterations become reinforced if the M-estimators 

become involved in a hidden transversal link between 

algorithm steps 3 and 4.  

Fig. 5 provides the skeleton of the robust simultaneous 

registration algorithm. It involves a major evolution w.r.t. the 

previous conceptual five-step algorithm. This evolution 

assigns an iteration-level precedence to the step performing 

the matching update – which is thus located within the inner 

loop at line 7. This assumes that trying to obtain an optimal 

correction transform w.r.t. poor matching entries would not 

only waste computation time but would also get the whole 

process trapped into irrelevant minima. This strategy balances 

the crudeness of the matching operator and becomes a major 

requirement for dealing successfully with corrupted datasets. 
 

 

1. Until global convergence:  

2. Increment global iteration count and set transformations T1,…,K to I  

3. For current source cloud k = 1 to K : 

4. Reset local iteration count and copy current value of error !k in !k
0 

Copy the current weights set of the cloud k in their corresponding 

cloud caches. 

5. Until local convergence:  

6. Increment local iteration count. 

7. Using kD-trees and operators (C, M), build the mapping set of the 

point’s source k w.r.t. other clouds. 

8. Compute robust error statistics from mapping vectors lengths and 

get new estimation for =k . 

9. Update source point weights (step 1 of the robust norm 

optimization) and get new estimation for !k . 

10. Keeping weights constant, find the rigid transform T  of the current 

source cloud which minimizes its quadratic error norm (step 2 of 

the robust norm optimization – i.e., weighted SVD) . 

11. Update location of the cloud k with T and replace Tk with T  Tk . 

12. Local convergence if gain | !!k | / !k < µ  (or local count > Itmax). 

13. Update global gain of the cloud k with value  | !k
0 - !k | / !k . 

Save the new weights set of cloud k in their own cloud caches and 

restore the previous ones. 

Apply inv(Tk) to cloud k in order to restore its previous location. 

14. Apply inv(T1) to T1,…,K  (optional step), then apply transformations 

T1,…,K to their respective cloud. For each of the clouds, restore from 

cache it new weights set and put it in its active place. 

15. Global convergence if global gain < µ  for all clouds (or global iteration 

count > Itgmax). 
 

 

Fig. 5. Skeleton of the IMCP algorithm operating on K instances. 

C. Matching operator 

The application of the matching operator C to the current 

source point 
  
p+ ,i  has, through the point-to-point metric, to 

return the set 
   
N

p
={(q

l , j
0

, w
l , j

0

), l !K \ {k}}  of target points 

grouping the closest K-1 neighbors of 
  
p- ,i , where 

  
.0  denotes 
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the index of the closest neighbor of 
  
p/ ,3  assigned in cloud l, 

and where 
  
45 , 6

0

 denotes the current weight assigned to 

location 
  
q7 , 8

0

 by the LW-estimator. As a way to avoid 

combinatorial explosion, this operator requires the 

management of K KD-trees. However, as the current 

applications of the simultaneous registration algorithm address 

rigid transformations, these tree-like structures can remain 

static – i.e., they are built once and for all at the initialization 

step and are then accessed through their own coordinate 

frames. 

While processing in point matching mode, not taking into 

account an available polyhedral description is equivalent to 

working with additional matching noise. In an alternative 

polyhedral mode, target points are thus located on the nearest 

surface location – the matching weight associated with the 

actual target point is computed as the barycentric interpolation 

of the three vertex weights of the triangular facet on which the 

target point is located. At the expense of a slight additional 

cost, the polyhedral mode enables us to better discriminate the 

contamination noise from the Gaussian noise. The examples 

discussed in the application section are performed through this 

polyhedral mode. Such a polyhedral mode should become 

mandatory whenever the vertex density is poor or very 

different from one mesh to the other. Optionally, although not 

used hereafter, this mode enables target points located on 

surface boundaries to be filtered out. 

D. Merging operator 

As introduced in section III.A, the median consensus 

approach is based on the ability to compute target points 

through the auxiliary weighting schemes managed by the LW-

estimator. Let us first recall what, within the IMCP 

framework, the sub-problem to be resolved at the M-operator 

level is. For a given source point 
  
9: ,<  of rank i in a source 

cloud k, on the basis of the set 
  
=>  returned by the matching 

operator, it simply requires being able to predict the 

localization of the virtual target point 
   
!q?@i  that should be 

associated with it. 

Let point 
  
AB ,i  denote some robust centroid, discussed 

below, computed over the set 
  
CD . A first algebraic rule has 

to be defined in order to guarantee that the IMCP algorithm 

provides a mean shape whenever the data set becomes ideally 

Gaussian – i.e., free of contaminations and perfectly matched. 

The virtual target point is defined as 

   
!q

k ,i
= K !Ep

k ,i
+ (K !F)K !Er

k ,i
. Thus, 

   
!q
k Gi ! H

k Gi  as the 

number of clouds increases. Conversely, when K=2, this 

formulation clearly shows that this usual working case is also 

handled as a symmetric problem, where each of the two 

objects is taken in turn as the source object and matched to its 

intermediate mean shape if there are no outliers.  

The computation of the robust centroid 
  
JL ,i  over 

  
MO  first 

requires the definition of a relevant weighting scheme. In our 

robust estimation framework, the normalized target weight 

  
PQ , RS

 returned within 
  
N U  expresses how well point 

  
VW  of 

cloud l is likely to account for a Gaussian perturbation of the 

current evaluation of the implicit root shape. Thus, it does not 

convey any information about the relevancy of its putative 

matching with the source point. In fact, a target point may be 

far away from its ideal location w.r.t. 
  
pX ,i , while still 

remaining pertinent against the root shape. Meanwhile, these 

target weights still carry out a rank of merit between elements 

of 
  
N Y .  

Hopefully, the global statistic measurements managed by 

the IMCP provide, on a per-cloud basis, a useful robust 

estimation of the standard deviation of the Gaussian noise over 

the set of inlier points. Thus, an auxiliary normalized 

weighting 
  
Z
[ , j

0

k ,i  can be introduced to enable a priori scoring 

of the matching of the source 
  
p\ ,i  with the target 

  
q] , ^

0

. Let us 

recall that, on completion of each local iteration, the LW-

estimator updates the estimation of the noise deviation 
 
!_  

associated with cloud k. In order to express the probability of a 

source point being located in the noise envelope associated 

with the source cloud k, this auxiliary weight is defined as 

  
w

l , j
0

k ,i
= (1! ( | p

k ,i
! q

l , j
0

| / "# $
k
)2 )2  if 

  
| p

k ,i
! q

l , j
0

| " #$ %
k

 

and 
  
`
b , j

0

k ,i
= 0  otherwise. This expression may become 

irrelevant whenever the source point belongs to a 

contaminated location of cloud k. To robustify this new 

weighting, we start from the assumption that 
  
c
d , j

0

k ,i  will remain 

combined with the weighting attached to the target point, 

which filters out target points without intrinsic significance. 

Thus, the expression of the weighted centroid is 

  
f
k gi = w

lg j
0

k gi w
lg j
0

q
lg j
0

l! h w
lg j
0

k gi w
lg j
0

l! . This weighting scheme 

is adaptive, since the blurring level it introduces around the 

source cloud decreases at the same time as new iterations 

refine the point's membership w.r.t. the median cloud. Let 

   
no

s  denote the subset of 
  
N u  such that 

  
vy , z

0

> 0 .  

Optionally, in order to take into account non-stationary 

Gaussian noise, we can apply a third corrective coefficient 

  
!~�� � !�  to 

  
�� , ��

, where 
 
!���  is the smaller M-Estimate of 

the noise standard deviation of the clouds involved in 
   
��

� . 

 Dealing with time-correlated contaminations (e.g., 

pathologies or non-rigid parts) is one of the main objectives of 

our algorithm. These contaminations are much less likely to 

undergo random evolution throughout the sequence than 

segmentation-based contaminations. Some of these large 

contaminations may appear stable in a noticeable percentage 

of the instances and may then give rise to secondary attracting 

pools able to bias the global optimization. Therefore, in order 

to prevent the emergence of these pools, an additional quorum 

rule must be applied. This rule adaptively dilates the noise 

envelope so as to cover at least 50% of the nearest target 

points indexed in 
  
�� . Thus, whatever the source point 

  
���� , 

among its K-1 target points 
  
q� , ��

, at least 
  
(� !1) / 2  must 

express a membership 
  
�
� , j�

k ,i
! ���  versus 

  
p� ,i . This leads to a 

simple modification of the previous centroid relationship 

where !"  is replaced by the adaptive expression 

  
max ( !" , ( 2 / ( 2 #1) )1/ 2 $

k

#1 med
l
{| p

k ,i
# �

l , �
0

| }) . This 

quorum rule, in conformity with a democratic acceptance of 

the notion of consensus, ensures that the location of the virtual 

target point 
  
 ¡ ,i  systematically takes into account the 

influence of at least 50% of the K-1 target points. Thus, the 

actual merging operator is said to perform median consensus 

filtering while computing the virtual target points. 
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1.  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

  
!

new¢ " !
old¢ "# , 

  
£̂¤ ! ¥ ,

   
¦ = 1,!,§ ;

  
ˆ̈© ªi ! « , 

   
¬ = 1,!, ,

   
i = 1,!,®¯ ;

  
°±² ! ³ ; 

Repeat 

  
!

newk
" !

oldk
,
   
´ = 1,!,¶ ;

  
·¸¹ ! ·¸¹ +º ; 

For 
   
» = 1,!,¼  do  

  
!"
new ½# !"

old ½ # "
old ½ ;

  
¾̂¿

0
! ¾̂¿ ;

  
ÀÁ
Â
! ÀÁ ;  ÃÄ ! Å ; 

Repeat  

 
Æ !" ;

  
!"
new Ç# !"

old Ç ;  ÈÉ ! ÈÉ +Ê ;  

For 
   
Ë = 1,!,ÌÍ  do 

 
Î !" ; 

For
   
Ï = 1,!,Ð if

 
Ñ ! Ò do

   
j
0
= arg min

j=1,!,Nl
| p
k ,i
0

! p
l , Ó | ,

   
N ! N "{( pÔ , Õ0

, Ö̂Ô , Õ0
,#

old Ô )} ; 

   
!!" # max ( !" , ( 2 / ( 2 $1) )1/2 !%

old k
$1 med

m&N
{| p

k ,i
0 $ p

m
| } ; 

For
  
× !Ø do 

  
!ÙÚ" (1# ( |p

k ,i
0 # pÚ | / !!$ !%

old k
)2 )2

if
  
| p
k ,i
0 ! qÛ | " ##$ #%

old k
, 
  
ÜwÝ " Þ  else ; 

   
ß *

!{( àá ,âá ,"á ) #ß / âá > 0} ;
   
!
min

"min
ã#N

*{!ã} ; for 
  
ä !å do

  
!!wæ" #çèé ê #æ ; 

  
w! wë "wë ""wëë#N$ ; 

   
r
k ,i

! ìí "ìí ""ìí píí#N$ / ì  if
  
î > ï , 

   
ð
k ñi!mòóô"N

{pô}  else ; 

   
!q
k ,i

! K+1õ
k ,ö
÷

+ øK +1ùK+1r
k ,ö ;

   
ú !ú"{( p

k ,i
0 , !q

k ,i
)} ;  

End do 

For 
 
û !ü  do

  
êý ! | þý + pý | ;

  
ÿ̂

k
" 1.5 med

m#Q {ê
m

} ; For 
 
m !�  do 

  
ŵ
k ,m
0

! (1" (�̂
m
/ # $̂

k
)2 )2 if

  
�̂� ! " #̂ k , 

  
�̂� ,�
0

! 0  else ; 

  
!"
new k

# ( �̂
k ,�
0 	̂�

2
�$
% / �̂

k ,�
0

�$
% )1 2
;
  
p � �̂

k ,
0 p"�# / ö�

k ,
0

"�# ;
  
q ! �̂

k ,�
� q��"�# � ��

k ,�
�

�"�# ; 

For 
 
� !�  do

 
p�
c
! p� " p ,

 
q
i
�
! q� + q ;

   
H �{h

n,l
= ŵ

k ,m
0 p

mn

c
m�Q# q

ml

c ; n = 1,!,3; l = 1,!,3} ;
  
USV T! SVD(H ) ; 

  
R̂!V �T ;

  
t̂ ! � " �̂ p ;

   
T̂ !{ � , �#$ ;

   
P%

0
! T̂ P%

0
;
   
&̂' ! T̂ &̂' ; 

While 
  
| !"

new ( # !"
old ( | $ µ !"

old (  and 
  
I) < I)*ax  

End do 

For 
   
+ = 1-!- K  do

  
Ŵ.! Ŵ.

0 , 
  
24! 24

5 ,
  
!

new 6" #!
new 6 ; 

While 
  
! k / | "

newk
# "

oldk
| $ µ "

oldk
 and 

  
78g < 78g9:<  

  

Fig. 6. Pseudocode of the IMCP algorithm. Parameters: (i) outlier error scales ! , !"  (typ. ! = "! = = ), (ii) minimal error gain µ  of global or local iterations 

(typ. 0.1%), (iii) local and global iteration bounds
  
>?@AB ,

  
CDEFGH . Inputs: set of K clouds

   
JPL , M = N,!,OS , with points

   
X
k
! {p

k ,i , Y = 1,!,Z
k
[ . Outputs: (i) 

membership maps 
   
{ \]^ , _ = 1,!,`}  with 

   
bW
k
! { bw

k ,i
, i = 1,!,N

k
}  and (ii) rigid pose estimations 

   
{d̂f , h = 1,!,j}  of the K initial cloud locations, both w.r.t. 

to the location of their common virtual MCS. 

 

Fig. 6 shows the whole pseudocode of the IMCP algorithm 

operating in point mode. The specification of the full content 

of the core loop (including lines 5 to 21) is expected to be 

multithread-safe. 

IV. VALIDATION OF THE IMCP ALGORITHM  

A. Parameters overview 

The IMCP algorithm only brings five parameters into play: 

the relative gain µ  tuning the local and global convergence, 

(typically 0.1%), maximum bounds for the number of local 

iterations 
  
lnors  and global iterations 

  
uvyz~�  (typ. ! , both), 

the scale factor !  associated with the robust error norm, and 

its duplicate !"  in the rule managing the emergence of the 

local consensus. These parameters can be classified in order of 

growing importance. The relative gain µ  should be about 

0.1%. The iteration bounds, especially useful in case of 

meaningless initial registrations, should be set to act as 

algorithmic fuses. However, it should be noted that setting 

  
�����  to 1 leaves both performance and overall computational 

cost mostly unchanged. This enforces redundancy coalescence 

but, in turn, the asymptotic part in the convergence process is 

then solved less efficiently. The auxiliary scale factor !"  

should take a value close to !  and, by default, we state 

!" = " . The only parameter choice that could prove critical is 

! . But tests show that default values such as  ! = �  in point 

mode, and  ! = �  in polyhedral mode, give satisfactory results. 

Finally, due to its adaptive features, the default parameters of 

the IMCP algorithm will seldom require any modifications. 

B. Validation methodology 

The IMCP algorithm is assumed to operate within an 

analysis framework that also enables a rough pre-alignment to 

be performed. As regards bone structures, this initial solution 

is usually provided through alignment of the principal axes of 

the point clouds. Therefore, in this context, the purpose of the 

IMCP is to correct the predictive error introduced by the initial 

registrations. For validation purposes, rather than applying the 

IMCP correction transforms to their respective instances, these 

are kept in their native location. Indeed, the inverse correction 

transforms are applied to their respective pre-alignment 

coordinates system – i.e., their trihedron. In this way, if the 

accumulations of the correction transforms become optimal, 

the trihedrons become superimposed. Thus, rather than 

simulating artificial movements while testing various arbitrary 

pre-defined transforms, this validation approach makes the 

visual validation of the result easier, and allows us to focus on 

the most difficult initial configurations – i.e., correcting the 

overall misalignment biases resulting from by the deficiencies 

embedded in the various instances. The tests discussed below 

refer to the sequence depicted in Fig. 7. This is the most 

difficult artificial one that was tested so far. The trihedrons,  
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Fig. 7. This is a complex artificial sequence designed so as to embed the 

major types of difficulty we expect to experience in real sequences. This 

sequence involves eight instances presenting uncorrelated truncations, 

Gaussian noise, and clippings. The standard deviation of the noise is kept 

constant throughout the sequence. As these shapes are assumed to come from 

some 3D segmentation procedure, their high frequency components are 

smoothed and spread. These instances also involve both large and coherent 

contaminations, and some are intentionally correlated, that are expected to 

account for errors coming from some unreliable automatic segmentation 

procedures as well as some time evolving pathologies. 

 

 
Fig. 8. Improvements obtained through median consensus registration. Ring 

(a) depicts the artificial sequence introduced in Fig. 7. Initial registrations are 

provided from the inertia trihedrons of the shells. In order to enable an 

accurate assessment of the registration results, all of the instances are built at 

the same location as their common native model. Therefore, as soon as these 

trihedrons become kinematically equivalent, they would appear exactly 

superposed. Hence, the transform estimates are not applied to shapes. On the 

contrary, their inverse is applied to their corresponding trihedron. Therefore, 

the mutual scattering of these trihedrons – as drawn in the middle of the rings 

– should account for the matching noise throughout the sequence. Ring (b) 

depicts the pair-wise ICPr alignments w.r.t. instance t1. Apart from one major 

error, all of the alignments remain approximate. In contrast with ICPr results, 

the median consensus through IMCP alignments (ring (c)) does not convey 

perceptible errors. See also Fig. 10 and 11 for a comparative analysis of the 

scattering level of these registrations. 

 

superposed in their initial locations (Fig. 8.a), give an 

overview of the pre-alignment errors to correct. 

So as not to unduly grant the IMCP with the advantages 

coming from the robust norm, section IV.D numerically 

compares its results with those of the robust ICPr algorithm 

described in section II.B. The parameters ( ! , µ ) remain 

common to the two algorithms – as well as supporting the 

polyhedral mode. However, before making numerical 

comparisons, one can already perform some meaningful visual 

comparisons. Fig. 8.b shows the pairwise ICPr correction 

( ! = � ) versus one instance arbitrarily chosen. It is clear that a 

major error is still present, and that, in the other cases, the 

superposition of the trihedrons remains approximate. In this 

sequence, the instances present various levels of difficulty. 

Therefore, in practical circumstances, the relevance of the 

pairwise ICPr result will also depend on how judicious the 

reference choice was. This should be the one that seems the 

most representative (see also section V.D). Fig. 8.c clearly 

shows the improvements achieved by the IMCP algorithm 

( ! = "! = � ). This result underlines the relevance of the 

concept of IMCP registration: while, at the same time, 

discarding the arbitrary part involved in classical pairwise 

approaches, we can obtain a nearly perfect result that confirms 

gains in both robustness and accuracy. 
   

 
Fig. 9. IMCP estimation errors w.r.t. outlier scale l and consensus mode 

setting l’. An infinite value implies no consensus at all. The current working 

cases are similar to the one depicted in Fig. 8.c. Upon convergence, the 

relative location of an instance is expressed through the rigid transform 

aligning its trihedron on the virtual trihedron that accounts for the mean of the 

eight trihedrons. Two numbers then account for the error amplitude of an 

alignment transforms: the rotation angle around its quaternion vector (top 

row) and the modulus of its translation vector (bottom row). Each rectangular 

box plot encloses eight sorted values, including the minimum, median, and 

maximum values. In order to grasp the significance of the translation errors, 

we should keep in mind the major extent of the structure – close to 2 cm – as 

well as the mean edge length of the mesh – 1 mm. 

C. Optimal settings of the consensus emergence 

Considering the processing of the sequence shown in Fig. 8, 

Fig. 9 summarizes the statistical analysis of IMCP alignment 

errors as a function of !  and !" . Here, each of the error 

boxes (depicting the extrema, the quartiles, and the median 

values) accounts for the dispersion of the 8 error estimations. 

To measure the mutual dispersion of these 8 instances, a 

trihedron is built that represents the mean location of the 8 

alignment trihedrons. The misalignment deviation for an 

instance is then quantified by its translation modulus and angle 
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of rotation versus the mean trihedron location. 

Despite the fact that the precision can only decrease as !  

increases, we can note that the precision of the simultaneous 

matching remains nearly constant in the range 
 
! "��, 5� . 

Similarly, the consensus parameter setting does not affect the 

results as long as !"  remains close to ! . In other respects, 

decreasing !"  by values lower than !  rapidly becomes 

ineffective since the quorum rule induces an adaptive increase 

of !"  each time this is required. On the other hand, increasing 

!"  by values higher than !  progressively inhibits any 

expression of the quorum rule. Fig. 9 shows that its inhibition 

( !" # $ ) significantly lessens performance. Indeed, in the 

range 
 
! "��, 5� , we can consider that the �"  setting becomes 

less significant and we set �" = " . However, choosing 

 �" = " / �  may become more suitable whenever !  must be 

set to values higher than 5. For low scale factor values (e.g., 

 ! " � ), it would still be possible to obtain a slight precision 

gain due to actual rejections of object parts having a fuzzy 

rejection status. But this gain would be obtained at the expense 

of long convergence time and would also give false rejections 

of some useful information. To sum up, in the framework of 

this study, an optimal choice for !  would range from 4 to 5, 

which comes down choosing orders of magnitude comparable 

to those usually prescribed for the use of the Biweight M-

estimator (e.g., see [29]). 

D. Testing IMCP versus ICPr 

Fig. 10 summarizes the statistical analysis of errors linked 

with both IMCP and pairwise ICPr alignments. The 

measurement protocol is similar to that on which Fig. 9 is 

based. We can note that the ICPr results are heavily dependent 

on the choice of instance taken as the reference. Only two 

instances lead to acceptable results throughout the whole 

sequence. Moreover, even if the IMCP algorithm is made to 

compete with the best ICPr working case (i.e., reference t8), 

the precision provided by the IMCP approach is higher by one 

order of magnitude than that obtained by ICPr. A more 

meaningful cluster-based comparison is depicted in Fig. 11. It 

no longer make reference to an average location. Henceforth, 

it maps the dispersion of the cluster of residual misalignments 

observed along the 
  
�(� !1) �  non-oriented edges in the 

network embedding the K instances. While addressing the 

scoring of the ICPr approach, the best choice for its reference 

instance cannot be known beforehand. Thus, the 

corresponding cluster (Fig. 11.b) has to expand to 

  
�
� (� !�) �  edges so as to fully account for the poor 

reliability of this standard approach. 

The test case depicted in Fig. 8 corresponds to a difficult 

configuration for which the convergence rate is rather slow. 

Indeed, a Core2Duo-2.33GHz processor operating through a 

singlethread implementation needs one minute. However, as 

the algorithm is intrinsically parallel, a multithread 

implementation could easily divide this time by the number of 

cores. Moreover, IMCP-based result improvements clearly 

counterbalance the processing cost. A simple protocol 

improvement would involve reducing the initial difficulty 

level by applying a pairwise pre-alignment using the ICPr 

algorithm, since this latter converges in less than one second. 

However, other experiment contexts, not discussed here, show 

that this strategy may sometimes worsen the difficulty level 

encountered by the IMCP algorithm; comparing the ICPr 

cluster (Fig. 11.b) to the initial cluster (Fig. 11.a) makes this 

foreseeable. A more promising strategy would be to process 

through a hierarchical IMCP whenever multi-resolution 

meshes can be made available. 
 

 
Fig. 10. Comparison of ICPr and IMCP estimations w.r.t. the artificial 

sequence using the same analyzing technique as Fig. 9. Boxes (a.1) t1 and 

(a.2) t1 both account for the ICPr test case depicted in Fig. 8.b where instance 

t1 is arbitrarily chosen as the common reference instance. In order to provide 

an objective comparison with IMCP results, as the optimal reference index is 

an unknown parameter, we must take into account all of the possible pair-

wise ICPr registration configurations w.r.t. the retained reference index. These 

are drawn by boxes t1 to t8. Even if a user were lucky enough by choosing t8 

as the reference index, Fig. 10.b.1 and 10.b.2 show that the IMCP errors – 

here those related to Fig. 8.c – remain much more homogenously distributed 

and outperform the mean errors of the best ICPr working case with one order 

of magnitude. 

V. DISCUSSION  

To counteract the shortcomings of the nearest neighbor 

operator, a widespread strategy leads to providing the points 

with attributes that are invariant with respect to the geometric 

transformation, for example, in the case of rigid transforms, by 

introducing intrinsic attributes depending on the differential 

geometry. This allows a strategy to be devised that could 

lessen, a priori, the rate of irrelevant point correspondences. 

However, this common approach would only transfer our 

requirement for robustness to the technique used to extract 

these invariants and, furthermore, would lead us to a less 

generic algorithmic strategy. More importantly, as our 

working hypothesis considers shape instances corrupted by 
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Fig. 11. Bivariate comparison of ICPr and IMCP estimations from the 

artificial sequence. Unlike Fig. 10, where statistical comparisons were made 

on a univariate basis, we can account for the relative dispersions of the 

registered instances through bivariate scatter-plots, the translation modulus 

being termed “Rho” and the rotation angle around quaternion vector being 

termed “Theta”. The mutual dispersion of the cloud of eight instances makes 

reference to the full 8(8-1)/2=28 non-oriented edges of the network linking 

the eight nodes of the graph, each edge being valuated by a pair {Rho, Theta}. 

Fig. 11.a (resp. 11.c) depicts the scatter-plot of the 28-edge network 

associated with the initial (resp. IMCP registered) state as shawn by Fig. 8.a 

(resp. 8.c). As a way to provide a statistical counterpart to the reference-

index-choice uncertainty, intrinsic to any pair-wise approach, we have to 

collect observations from the eight possible working configurations. Thus, the 

ICPr results give rise to the cloud of 8x28-points in Fig. 11.b. Unlike ICPr, 

the IMCP results seem perfect as long as Fig. 11.c is seen through the same 

drawing scale. Thus, its cluster has to be magnified. 

 

considerable contaminations and noise, it becomes unrealistic 

to count on reliable estimations of normals and, thus, second 

order attributes. Therefore, as this rules out the use of the 

point-to-plane metric, the point-to-point metric linked to the 

simplest nearest neighbor operator remains the most suitable. 

At first sight, insofar as reliable estimations of normals 

could have been made available, the alternative global 

registration approach described in [41] could seem to meet our 

processing requirements. However, in our processing context, 

even with the availability of reliable normals, using [41] 

would still not remain sound. Indeed, since this previous work 

manages distance field on 3D grids through its first-order 

approximation, it requires bounding the computation of the 

grid-nodes to the neighborhood of the shape boundaries. Thus, 

valid matching vectors whose length exceeds a few grid steps 

become de facto labeled as outlier matches. Therefore, 

performing an accurate and explicit reconstruction of the root 

shape would require starting from a good pre-alignment. This 

is to be compared with our poor pre-alignments (see the error 

magnitudes in Fig. 11.a) making this assumption unrealistic. 

Thus, as part of a point matching process, the root shape has to 

remain implicit. Its explicit reconstruction is deferred to an 

optional and final post-processing step (not discussed here), 

where robust estimations of the normals then become 

achievable. 

As stated in the introduction, the current consensual 

technique focuses on tracking the inertia trihedron linked to 

the binary mask of each bone. It has been extensively probed 

and compared with marker-based measurements [16]. The 

relative locations of these trihedrons provide the initial guess 

required by our algorithm. So, the purpose of our validation 

step is to show that our algorithm improves both accuracy and 

robustness w.r.t. inertia-trihedron-based tracking. As such an 

assessment does not require the availability of a real sequence, 

we build an artificial sequence involving more difficult 

problems than those that can be expected from a real 

sequence. Indeed, since the IMCP accuracy rises to ±0.1 mm 

and ±0.4°, assessing accuracy w.r.t. real sequences would have 

required the availability of a quasi-perfect ground truth. 

Conversely, robustness assessments can still operate through 

an approximate ground truth. 

VI. CONCLUSION AND PERSPECTIVES  

The notion of median consensus provides noticeable 

improvements in terms of accuracy and robustness for any 

problems addressing 3D shape tracking along time and, in 

particular, problems relating to the analysis of articular 

movements. Due to the IMCP robustness, pre-processing tasks 

– like shape segmentation – can involve less reliable 

techniques such as automated ones. Moreover, the algorithm 

proves simple to implement and combines well-known 

techniques. Furthermore, it involves a small number of 

parameters for which a default setup is proposed. Because 

widely dissimilar contexts can be tackled without any 

readjustment, this setup proves to be flexible. The algorithm 

assessment was made on synthetic sequences built so that they 

could account for much more difficult cases than those we 

were expecting to cope within a real sequence. Fig. 12.b, 

where some instances exhibit considerable  truncations, shows  
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Fig. 12. IMCP tracking of inhomogeneous real sequences. Fig. 3 already 

depicted the carpus movements under consideration. Box (a) refers to the 

trapezoid sequence, whereas box (b) refers to the proximal M3 sequence. 

Upon simultaneous registrations, Fig. 12.c (resp. 12.d) represents a 

superposition – not a fusion – with texture colors accounting for the local 

membership likelihood, ranging from 0 to 1, to the virtual MCS of the 

trapezoid (resp. metacarpal M3). In spite of poor initial guess locations, 

accounted for by the trihedrons, and very sparse – e.g. t5 t6 t7 – residual shape 

informations, the IMCP algorithm was still able to recover the relevant co-

locations for each M3 instance. 
 

that the IMCP algorithm successfully deals with each instance 

of an actual difficult sequence. However, as it may become 

too hard to achieve whenever the number of instances become 

large, the convergence criterion still needs future work to 

make it versatile enough. Possible applications go way beyond 

just image sequence analysis. Since the IMCP algorithm 

simultaneously performs an implicit synthesis of the actual 

rigid evolving shape, one useful application could be to link 

the algorithm to a post-processing step aiming at explicit 

reconstruction of the MCS in super-resolution. Applying 

accurate morphological analysis techniques [2, 45] would then  
 

 
Fig. 13. The IMCP algorithm simultaneously provides two types of 

improvements: (i) accurate kinematics and (ii) accurate shape description. 

This picture illustrates MRI-based tarsus kinematics. Once they are registered, 

each cuboid instance receives its MCS membership map (Fig. 13.a). Fig. 13.c 

represents an explicit reconstruction of the MCS from the cuboid sequence. 

Fig. 13.b shows the inertia trihedron errors cancelled through simultaneous 

registration. After applying the same process to the other bones, we obtain an 

IMCP-based reconstruction covering the full tarsus (Fig. 13.d). The available 

shape accuracy then enables us to compute the global symmetries of joint 

surfaces [45]. Fig.13.e depicts the talo-navicular joint (blue) and its global 

symmetries (green osculatory circles). On the other hand, availability of 

accurate and independent kinematics measurements enables us to materialize 

the helical axes sequence accounting for each step of the movement of the 

navicular w.r.t. the talus (red axes, Fig. 13.e). Thus, applying this full 

framework would enable us to materialize inter-relations between global 

symmetries of the joint surface and the set of finite helical axes linking 

consecutive positions of the congruent bones. 

 

enable the shape characteristics of articular surfaces to be 

placed in relation to the observed movements. The preliminary 

results shown in Fig. 13 constitute a first step in this direction.
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