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ABSTRACT

Objective. The purpose of this study was to assess the impact, in terms of statistical
power and bias of treatment effect, of approaches to dealing with missing data in randomized
controlled trials of rheumatoid arthritis with radiographic outcomes.

Methods. A simulation study was performed. The missingness mechanisms we
investigated copied the process of withdrawal from trials due to lack of efficacy. We
compared three methods of managing missing data: (i) all available data (case complete), (i)
last observation carried forward (LOCF) and (iii) multiple imputation. Data were then
analyzed by classical t-test (comparing the mean absolute change between baseline and final
visit) or F test (estimation of treatment effect with repeated measurements by a linear mixed-
effects model).

Results. With missing data rate close to 15%, the treatment effect was underestimated
by 18% as estimated by a linear mixed-effects model with a multiple imputation approach to
missing data. This bias was lower than that obtained with the case-complete (-25%) or LOCF
(-35%) approaches. This statistical approach (combination of multiple imputation and mixed-
effects analysis) was moreover associated with a 70% power (for a 90% nominal level),
whereas LOCF was associated with a power of 55% and case complete a power of 58%. T-
test analysis gave qualitatively equivalent but poorer quality results, except when multiple
imputation was applied.

Conclusion. Our simulation study showed multiple imputation offering the smallest
bias in treatment effect and the highest power. These results can help in planning trials,

especially in choosing methods of imputation and data analysis.



Key words: rheumatoid arthritis, randomized trials, simulation study, radiographic outcome,

missing data
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Rheumatoid arthritis (RA) is the most common chronic inflammatory joint disease and is
responsible for symptomatic manifestations (e.g., functional status, pain) and structural
damage (i.e., damage of the articular cartilage and bone) (1). Effective disease-modifying
anti-rheumatic drugs are increasingly available as therapy (2). Assessing such treatments
requires the measurement of structural outcomes in randomized controlled trials (RCTs) to
demonstrate a retardation of disease progression. Radiographic outcomes are often used as
primary endpoints for assessing structural severity (3-6).

Because retardation of structural damage in RCTs requires observation over time,
follow-up of patients often necessitates intermediate visits, requiring more than two sessions
of radiography in most trials (7). Specific methods such as linear mixed-effects models, which
exploit the richness of the dynamics obtained with such longitudinal, or repeated,
measurements could be applied to estimate the treatment effect (8). Despite repeated
measurements, calculating the mean change between baseline visit and end of the study in
each group and comparing it by use of the classical t-test (or Mann-Whitney test for
nonparametric comparisons) remains the standard analysis.

The intention-to-treat (ITT) principle is the cornerstone of RCTs (9-11) and is widely
recommended to demonstrate the superiority of one treatment over another (12, 13). However,
few trialists use this principle in analyzing their data (14, 15), particularly in trials evaluating
radiographic outcomes in RA (16). The ITT principle requires that all patients, whether their
data is complete or incomplete, be included in the statistical analysis. Approximately two-
thirds of RCTs of RA have a missing data rate greater than 10% for radiographic outcomes
(16), and trialists must use methods for dealing with missing data to apply the ITT principle.

In trials involving longitudinal measurements of radiographic outcome, missing data

can result from lack of efficacy or adverse events, for example. When data are incomplete,
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results of the trial can be affected in two major ways. First, missing data can result in a bias of
treatment effect estimates. For example, patients experiencing greater deterioration in
structural damage may be less likely to complete the visits. If missing data are ignored and
analyses are based on only the data of patients who are doing well, then the disease
progression could be underestimated (17). Second, missing data can result in loss of statistical
power (i.e., the ability of the trial to detect a difference between groups) if data for some
subjects are excluded from the analysis (17).

Several methods exist to adjust for missing data (18). However, conclusions of trials
(i.e., superiority of one treatment over another or not ?) and treatment effect may be affected
by the method used to handle missing data. We aimed to compare the impact of different
approaches chosen to deal with missing data under a scenario that mimics trials of RA with a
radiographic outcome. We performed a simulation study. Such studies, increasingly common
in the medical literature, are used to assess the performance of statistical methods in relation
to the known truth (19). We compared approaches to handle missing data in terms of

statistical power and magnitude of bias introduced by missing data on treatment effect.
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METHODS

The underlying clinical trial

We considered a simulation trial based on a 2-armed RCT resembling RA trials with a control
group and an experimental group. The trial had a 2-year duration with 3 time points of
measurement, 1 year apart, including that at baseline (7).

The primary endpoint was the Sharp-Van der Heijde score (20, 21), a semi-
quantitative radiologic measure recommended as one of the two possible primary endpoints in
evaluating structural damage (22). This score, ranging from O to 448, assesses erosions and
joint-space narrowing separately in the hands and feet. Thirty-two joints in the hands and 12
in the feet are scored for erosions, with a maximum of 5 erosions per joint in the hands and 10
in the feet. Joint-space narrowing was graded from O to 4 in 30 joints in the hands and in 12
joints in the feet. The Sharp-Van der Heijde score is the sum of the erosion and joint-space
narrowing scores.

Simulations of longitudinal measurements involved use of a linear mixed-effects
model with a random intercept and slope. The individual intercept and slope were simulated
for each patient, and radiographic data were simulated with a linear model from these
individual parameters. All simulation values were chosen according to published data of the
TEMPO study (23-25). We assumed that the baseline distribution of the radiographic score
could be approximated by a log-normal distribution (mean=45, standard deviation=45). The
mean progression can be assumed to be linear (26), although the evolution of data for
individual patients shows high variability (27). The slope was simulated by a normal

distribution.
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Simulations were done under the alternative and the null hypothesis. Under the
alternative hypothesis, the slope and its standard deviation were assumed to be greater in the
control group than in the experimental group (mean change over 2 years=3, standard
deviation=10, vs. mean=0, standard deviation 5, respectively), which reflects fewer benefits
from treatment (i.e., greater deterioration of structural damage) in the control group. A sample
size estimation for a two-sided test of efficacy (t-test) resulted in a sample size of 150 patients
per group to achieve a type I error of 5% and a power of 90%. Under the null hypothesis, the

mean change over 2 years in each group was the same (also with 150 patients per group).

Missingness mechanism

After the complete data sets were simulated, patients’ data were deleted according to a
predefined missingness mechanism. We considered only missing data with a monotone
pattern (i.e., data for a patient up to a certain time). We assumed that all baseline data were
observed. Further to our previous literature review (16), we assumed a dropoutrate of 15% at
2 years. Patients with disease progression greater or lower than a defined limit between 2
occasions dropped out of the trial. The probability of dropout was (i) 2.5% if the slope
between 2 successive visits was negative (i.e., improvement), (ii) 5% if the slope was between
0 and 5 points (i.e., slight deterioration) and (ii1) 20% if the slope was greater then 5 points
(i.e., substantial deterioration) (scenario A). The limit of 5 points was chosen in accordance
with published estimations of the minimal clinically important difference and the smallest
detectable difference of the Sharp-Van der Heijde score, which are very close (approximately
5 points) (21). In scenario A, the probability of a missing value was arbitrarily chosen to
ensure a dropout rate of approximately 15% at the final visit. In scenario B, the probability of

a missing value was divided by 2 to achieve a dropout rate of approximately 7.5%.
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Data analysis strategies

The 2-sided t-test was used to test the absolute change between the 2 groups (progression
estimated by the change between the baseline and 2-year visit).

A linear model with mixed effects for repeated measurements with random
intercepts and slopes was also considered. This model takes into account intermediate
measurements (not just 2 measurements). With missing data, this model uses all available
measurements. Restricted maximum likelihood estimation was performed. In the model, the
interaction of group by time of visit (i.e., the difference in slopes) was a fixed effect. A F-test

on this fixed effect was used to compare slopes.

Methods of managing missing data

We considered 3 methods of managing missing data. The two first methods are traditionally
used (16), and the third one is promising. Of the first two methods, the case-complete analysis
ignores the problem of missing data. When considering absolute change, the case-complete
analysis affects only patients with complete data (i.e., complete data at baseline and final
visits). In a linear mixed-effects model, the analysis refers to all available measurements. The
second and most popular method of single imputation was the last observation carried forward
(LOCF) method, whereby the last observation is carried forward and used for all missing
observations at the remaining time points. The third method was multiple imputation (28, 29).
Instead of filling in a single value for each missing value, this technique replaces each missing
value of an incomplete data set with a set of plausible values (n=5 in our study) that represent

the uncertainty in the correct value to impute. The data augmentation Monte Carlo Markov
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chain replacement method was used. Then, each completed data set is analyzed by the
analysis of choice, and results of imputed datasets are combined in a single analysis yielding
point estimates and standard errors.

Methods of managing missing data and data analysis strategies were combined

(Table 1) and applied to the 2 scenarios, A and B, of missing data.

Type I error, power and bias

The type I error and power of the t-test and F test under different approaches were computed.
To estimate the empirical type I error of each approach, the entire trial simulation was
repeated 1000 times under the null hypothesis. The empirical type I error was calculated as
the proportion of P values < 0.05 from testing the null hypothesis of no difference in each
simulated trial. Similarly, to estimate the empirical power of each approach, the entire trial
simulation was repeated 1000 times under the alternative hypothesis. The estimated power for
each approach was the proportion of these 1000 simulated trials showing statistically
significant results (P < 0.05).

Under the alternative hypothesis (i.e., the hypothesis of a treatment effect), estimators
of treatment effect were computed. Treatment effect was the difference in the absolute mean
change between the 2 groups by t-test analysis or estimation of difference in slopes between
the 2 groups by linear mixed-effects analysis. Averaging the estimates derived from the 1000
simulated trials allowed for estimating the expected mean of the treatment effect. Then
comparing this expected mean to the “true” value (used to simulate data) allowed for
calculating the bias. Bias was expressed as relative bias (in percentage) and as absolute bias

(in Sharp-van der Heidje units).



Type I error, power and bias were also computed before the missingness mechanism
was applied (i.e., on complete data sets for which an “ideal” analysis could be performed) as a
reference and to check the validity of simulations.

Simulations of trials involved use of R 2.2.0. Management of missing data and data

analysis involved SAS 9.1.
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RESULTS

Under the alternative hypothesis, the missingness mechanism provided a missing data rate at
2 years of 15.3% for scenario A and 7.9% for scenario B (Table 2). Proportions of dropout in
scenario A for conditions 1, ii and iii were 2.5%, 5.0% and 20.0%, respectively. In scenario B,
these proportions also approximated expected values (1.2%, 2.5% and 10.1%, respectively).

For scenario A under the null hypothesis, type I errors were maintained (i.e.,
approximately 5%) except for the following strategies: the case-complete and LOCF
approaches by t-test (i.e., when comparing absolute change), and the LOCF approach by F
test (i.e., when comparing slopes by linear mixed effect model) (Table 3).. As expected, the
power for complete data sets (i.e., without missing data) was close to 90% whatever the data
analysis used (absolute change or linear mixed-effects model). By scenario of missing data
and when data were analyzed after using imputation techniques (i.e., LOCF or multiple
imputation) or not (i.e., case complete), power ranged from 51% (t-test performed on case-
complete data without missing-data handling methods) to 74% (t-test on missing data handled
by multiple imputation). Whatever the data analysis, the all-available data and LOCF methods
gave equivalent power. By multiple imputation, the power was always higher than that with
other imputation strategies (Table 3).

As expected, the bias of treatment effect with complete data sets (i.e., without missing
data) was very low (i.e., close to 0%) whatever the data analysis (Table 3). For scenario A,
with 15.3% missing data at 2 years, the treatment effect estimated by linear mixed-effect
model with multiple imputation approach was underestimated by 17.7% (equivalent to an
underestimation of 0.53 points in Sharp-van der Heidje units) (Table 3). This bias was lower
than that obtained with all-available-data (-25.0%) or LOCF (-35.4%) methods. When

considering absolute change, again, multiple imputation gave the most precise treatment-
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effect estimates (underestimation of 17.2% vs. —34.0% and —35.8% for case-complete and
LOCEF, respectively).

For scenario B, type I error was maintained for all strategies under the null hypothesis.
Results under the alternative hypothesis with 7.9% missing data at 2 years showed less bias
than with scenario A but followed approximately the same pattern (Table 3). Bias was
minimal with multiple imputation (-8.6% for absolute change and —8.2% for linear mixed-
effects model) and power with multiple imputation was better than with other imputation

strategies.

12
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DISCUSSION

This simulation study evaluated the impact of various approaches dealing with missing data in
RCTs of RA with radiographic outcomes. With rate of missing data approximately 15% for
scenario A, our simulation results showed multiple imputation with better power and more
precise estimations of treatment effect, on average, than other approaches, whatever the data
analysis, absolute change or linear mixed-effects model. With a linear mixed-effect model,
treatment effect was underestimated by 17.7%. The power was lower than the nominal power
(70% vs. 88%), but the ability to detect a difference was superior than with other methods of
managing missing data. When using this statistical approach, type I error was maintained.

The problem of dealing with missing data is tackled extensively in methodological
work involving radiographic endpoints in RA (30-32). The advice is generally to perform
sensitivity analyses (i.e., a set of analyses showing the influence of different methods of
handling missing data on the study results (17)) to ensure that the qualitative conclusion of a
randomized trial provided by the main analysis is not affected by how missing data are
handled. Sensitivity analyses allow for assessing the robustness of the results and are used as
an additional support to the main analysis. Recently, 2 sensitivity analyses, evaluating
different methods of handling radiographic missing data, were performed to confirm the
robustness of radiographic results in published reports of RA trials (24, 33). However,
although sensitivity studies should always be included in the statistical analysis plan of an
RCT, they do not allow for drawing general conclusions (i.e., conclusions applicable to
different trials) regarding the most appropriate method to use in dealing with missing data for
the main analysis. Moreover, we thought it also of interest to assess whether the treatment
effect is affected by the method use to handle missing data. This situation cannot be assessed

in the framework of a sensitivity analysis (since the “true” effect is unknown) but can be

13
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studied in the framework of a simulation study. To our knowledge, this is the first time a
simulation approach has been used to investigate consequences of methods for dealing with
missing data on power and bias of treatment effect in RA. Such an approach has been used for
osteoporosis (34), another progressively deteriorating disease. In this study, the authors found
no strategy adequate for universal use, particularly with a high missing data rate.

In RA trials involving longitudinal measurements of radiographic outcomes, 2 main
sources of missing data are identified: lack of efficacy and adverse events. Unexpected
selective dropout (preferentially in one group) because of lack of clinical efficacy may bias
the trial results. In general, patients with a worse prognosis (greater disease activity, greater
radiographic evidence of disease progression) have a higher prior probability of premature
discontinuation in any clinical trial, and patients completing the entire trial have a more
favourable prognosis, either by nature or by treatment (35). In our missingness scenario, we
particularly focused on missing data due to lack of efficacy by our excluding data for patients
having deteriorated disease with a high probability of dropout. We did not deal with missing
data related to adverse events. Adverse events can lead patients to leave the trial regardless of
good or bad treatment results. Because we compared two active treatments we assumed that
missing data due to adverse events would have been similar in both groups and that they
would have equally affected treatment results in each group (36), so we did not consider
missing data related to adverse events. However, patients experiencing adverse events might
have more comorbidities than others, which leads them to leave the trials.

In trials designed with longitudinal measurements, the use of appropriate statistical
methods for repeated measurements is now recommended (24). Use of a linear mixed-effects
models does not handle missing values; estimates take into account all available data whether
longitudinal data are complete or not. If data are missing completely at random (i.e., when the

missingness is not related to the observed or potential outcome of patients) or missing at

14
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random (i.e., when the missingness can be explained entirely by the observed but not
unobserved outcomes) (37), then the estimates will be unbiased. However, this case is no
longer true when the missingness depends on the unobserved data (i.e., when the missing data
are missing not at random) (37). This case cannot be excluded with missing radiographic data
(e.g., selective dropout).

With linear mixed-effects analysis, tests theoretically tend to be more powerful than
with absolute change analysis. In fact, the linear mixed-effects model takes into account how
the disease and treatment affects each patient over time and how the radiographic data of the
same patient are correlated. To exploit the richness of all measurements, this strategy could be
particularly interesting when the number of intermediate visits is high (38). In this study, we
considered only a 2-year trial duration and one intermediate visit. So our results do not totally
confirm this improvement in power. However, in trials involving more visits, this method
could be promising.

The case-complete approach conflicts with the ITT principle and its use is decreasing.
However, the use of this approach gave us a reference for quantifying bias in treatment effect
introduced by missing data. This bias cannot be neglected (i.e., approximately 34% with 15%
missing data rate).

With the LOCF approach, the missing radiographic value is replaced by the last
available value, assuming no change in radiographic score after the patient drops out. In RA
trials, this concern can lead to considering dropouts as showing less radiographic evidence of
deterioration as compared with completers. This approach is widely criticized and, not
surprisingly, introduced the highest bias in our estimates of treatment effect.

As compared with the LOCF approach, multiple imputation has theoretically good
statistical properties (e.g., unbiased estimates), provided that data are missing at random. In

our study, whatever the data analysis strategy, absolute change or linear mixed-effects model,

15
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multiple imputation gave substantially improved values for power and minimized the bias in
estimates of treatment effect as compared with other approaches. However, this result could
be improved by including in the imputation model selected covariates such as baseline
predictors of dropout or correlated variables of the radiographic score (37).

A well-designed study should always consider the problem of minimizing missing
data (e.g., ensuring appropriate follow-up for all randomized patients by scheduling patients
for radiography even if they drop out of the study) (39). Statistical methods, however well
designed, cannot address missing values of high proportions. In our work, the proportion of
missing values was sufficiently low (i.e., 7.9% or 15.3%) so as to be reasonably considered
with statistical methods. However, some statistical approaches dealing with missing data can
minimize bias with reasonably low rates of missing data but cannot avoid it completely,
particularly with selective dropout.

This study has caveats and limitations. First, these results may not be generalizable to
all radiographic scores used in RA. Even if similar results in relative bias could be expected,
extrapolation to another radiographic score would require a new simulation study. Second, the
random simulations carried out may not reflect all the patterns of missing data that could
occur in real situations. Furthermore, we did not explore all methods of dealing with missing
data. Particularly, Cook and al. have proposed a specific method to deal with data missing not
at random, which uses measurements obtained from out-of-study sources to estimate values
for missing study data in a random effects model (40). In the same way, some other
sophisticated methods, such as selection models or pattern mixture models, were not
considered (41). However, because these models rely on many assumptions, their use suggests
many assumptions, so they cannot be used as a main strategy when analyzing the results of an

RCT. These models can be used in the framework of a sensitivity analysis.

16
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In this simulation study, we showed the influence of the choice of analysis and
methods for handling missing data when analyzing results of RCTs with radiographic
outcomes. Our results, especially those obtained with multiple imputation, can help
investigators in planning clinical trials, especially in choosing methods of imputation and data
analysis. Regardless of the method of handling missing data chosen for the main analysis,

sensitivity analysis is essential to confirm the robustness of the results.
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Table 1. Possible combinations of methods of managing missing data and data analysis

strategies
>
g Approach Management of missing data Data analysis strategies Test
g 1 Case-complete analysis Absolute change t-test
% 2 Case-complete analysis’ Linear mixed-effects model F test
2 3 LOCF Absolute change t-test
g 4 LOCF Linear mixed-effects model F test
é 5 Multiple imputation Absolute change t-test
p
_§ 6 Multiple imputation Linear mixed-effects model F test
<
g- "All available data in the context of linear mixed effect model. LOCF: last observation carried
o

forward.
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Table 2. Simulated rate of missing data in each arm of the trial at each radiology visit for
scenario A, with 15.3% missing data, and scenario B, with 7.9% missing data under the

alternative hypothesis.

I
>
—
£
=5
g Rate of missing data (%)
QD
g Scenario  Radiology Experimental group Control group Global
g .
= visit
=
g
3
8
E A One year 6.1 10.5 8.3
SN
3 Two year 11.1 19.5 15.3
5
@,
S
—
B One year 3.1 5.1 4.1
Two year 6.0 9.9 7.9
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Table 3. Results of simulation study (type I error, power, relative bias expressed as
percentage; absolute bias expressed in terms of Sharp-van der Heijde units) for a dropout rate

of 15.3% (scenario A) and 7.9% (scenario B) at 2 years.

I
>
g Null Alternative hypothesis
g Scenario/ Management of hypothesis Treatment effect
§ Data analysis missing data Type I error Power  Relative Bias Absolute Bias
2
=
A
2 Complete data set 4.9 91.1 +0.1 +0.00
i Absolute Case complete 12.6 50.6 -34.0 -1.02
S Change LOCF 8.2 58.1 35.8 -1.07
o
§ Multiple imputation 6.2 74.3 172 -0.52
<
o)
@,
o
=J
= Complete data set” 42 88.4 +0.4 +0.01
Linear mixed-  All available data 5.7 579 -25.0 -0.75
effects model  LOCF 7.0 55.0 -35.4 -1.06
Multiple imputation 4.1 69.5 -17.7 -0.53
B
Complete data set” 4.6 90.4 -0.8 -0.02
Absolute Case-complete 59 75.4 -16.8 -0.51
Change LOCF 55 77.8 -18.7 -0.56
Multiple imputation 4.4 84.0 -8.6 -0.26
Complete data set” 3.7 87.4 -0.8 -0.02
Linear mixed-  All available data 54 72.0 -12.9 -0.38
effects model = LOCF 4.7 72.4 -14.4 -0.43
Multiple imputation 42 81.2 -8.2 -0.25

" Before applying missingness mechanism (i.e., results provided are obtained on complete

datasets). LOCF: last observation carried forward.
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