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Abstract 

Coordinated movements result from descending commands transmitted by central motor 

systems to the muscles. Although the resulting effect of the commands has the dimension of a 

muscular force, it is unclear whether the information transmitted by the commands concerns 

movement kinematics (e.g. position, velocity) or movement dynamics (e.g. force, torque). To 

address this issue, we used an optimal control model of movement production which 

calculates inputs to motoneurons which are appropriate to drive an articulated limb toward a 

goal. The model quantitatively accounted for kinematic, kinetic and muscular properties of 

planar, shoulder/elbow arm reaching movements of monkeys, and reproduced detailed 

features of neuronal correlates of these movements in primate motor cortex. The model also 

reproduced qualitative spatio-temporal characteristics of movement- and force-related single 

neuron discharges in nonplanar reaching and isometric force production tasks. The results 

suggest that the nervous system of the primate controls movements through a muscle-based 

controller which could be located in the motor cortex. 

 

H
A

L author m
anuscript    inserm

-00212329, version 1



Motor control is central to executive functions of the nervous system. It guarantees that 

planned actions are efficiently translated into appropriate limb displacements. A striking 

feature of this translation from “ideas of motion” to “mechanical motion” is the paradoxical 

contrast between the apparent easiness with which movements are performed on the one hand, 

and the complexity of Newtonian dynamics, and the existence of multiple levels of 

redundancy, on the other hand (Bernstein, 1967). Since the time of Bernstein, this paradox has 

been copiously documented and solutions have been proposed to explain how the nervous 

system can solve such a challenging problem (Bullock & Grossberg, 1988; Uno et al., 1989; 

Kalaska & Crammond, 1992; Harris & Wolpert, 1998; Todorov & Jordan, 2002; Guigon et 

al., 2007). Yet the central issue of the nature of neural control signals (NCSs) that flow from 

central motor systems to the periphery during coordinated movements remains open and hotly 

debated (Kalaska et al., 1989; Caminiti et al., 1991; Fetz, 1992; Feldman & Levin, 1995; 

Georgopoulos, 1996; Kakei et al., 1999; Georgopoulos & Ashe, 2000; Moran & Schwartz, 

2000; Todorov, 2000, 2003; Scott, 2005; Aflalo & Graziano, 2006). 

 A common method to address this issue is to record NCSs in vivo, e.g. using single unit 

recordings in primary motor cortex (M1) and spinal cord of behaving animals (monkeys), and 

to perform a correlation analysis in order to reveal preferential relationships between 

discharge rates and parameters of motor behavior (e.g. direction of movement, velocity, joint 

torques; Evarts, 1968; Georgopoulos et al., 1982; Kalaska et al., 1989; Moran & Schwartz, 

1999). This method has revealed a large repertoire of discharge patterns as well as a large 

repertoire of correlations which were thought to reflect sometimes kinematic (direction, 

velocity), sometimes dynamic (forces) representations of motor acts. However, these 

correlations were time-varying and complex (Ashe & Georgopoulos, 1994; Fu et al., 1995), 
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and were in general contaminated by real or apparent covariations among parameters (Mussa-

Ivaldi, 1988; Todorov, 2000; Scott, 2005). Furthermore, as correlations do not imply 

causality, neurophysiological data are not sufficient to draw firm conclusions on this issue. 

 A complementary approach is to define the requisite characteristics of neural control 

signals based on a model of motor control and to compare requisite and actual properties of 

these signals (Lan, 1997; Bullock et al., 1998; Todorov, 2000; Haruno & Wolpert, 2005). 

Here, we exploit an optimal control model which quantitatively accounts for kinematic and 

dynamic properties of redundant manipulators (Guigon et al., 2007) to address the nature of 

neural control signals generated by the nervous system to control arm reaching movements. 

Materials and Methods 

Scope of the model 

To properly ascertain the contribution of neural activities to movement control, it is necessary 

to consider neural and movement data simultaneously. An appropriate animal (monkey) 

model of this situation is obtained using a mechanical exoskeleton which puts constraints on 

the degrees of freedom (DOF) involved in the movement (Scott et al., 2001; Graham et al., 

2003; Kurtzer et al., 2006). In this case, the mechanical apparatus can be represented by a 

planar two-joint arm. In other studies of interest (Caminiti et al., 1991; Sergio & Kalaska, 

1998; Kakei et al., 1999; Sergio et al., 2005), the movements involved more than 2 DOF. In 

theory, the model could be used to address these experiments (Guigon et al., 2007). However, 

not enough kinematic and kinetic data are available in these studies for a thorough 

comparison between experimental observations and predictions of the model. Accordingly, 

we thoroughly and quantitatively addressed the neural control of planar two-joint arm 
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movements. In this framework, we also reproduced qualitative aspects of motor cortical 

discharge related to nonplanar arm reaching movements (Sergio & Kalaska, 1998; Sergio et 

al., 2005). 

 The model described in this article is formally identical to the model used in Guigon et al. 

(2007). Yet the two articles address complementary issues. In the previous article, we 

described predicted kinematic and dynamic characteristics of upper limb movements. Here, 

we focus on the nature of the predicted control signals which are responsible for these 

movements. For clarity, we give below a brief overview of the model, but a thorough 

presentation can be found in Guigon et al. (2007). 

Overview of the model 

In a schematic view of motor control, a cortical motor center sends a command to a 

neuromuscular apparatus (motoneuron + muscle) which generates a force to displace a set of 

articulated segments. Formally, this series of events can be represented by the action of a 

controller upon a controlled object. Mathematically, the behavior of the controlled object can 

be described by a state-dependent dynamics 

dx/dt = f (x(t),u(t)), (Eq. 1) 

where x is the state vector of the object (position, velocity, muscle state, …), and u = {ui} 

(1 ≤ i ≤ M, M number of muscles) the control vector (or control signal; CS) transmitted by the 

controller. A control problem corresponds to the mastering of the controlled object, i.e. find a 

time series of control u(t) (t in [t0;tf]) in order to satisfy to constraints of a task, e.g. 

x(t0) = x0 and ψ(x(tf)) = 0, (Eq. 2) 

where function ψ expresses constraints on the final state of the object. 
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 Once the control problem is solved, the quantities x(t) and u(t) can be analyzed and 

compared to corresponding quantities obtained in experimental studies: position/velocity to 

movement kinematics, force/torque to movement dynamics, control to cortical activity.  

 In the framework of this study, an appropriate controller should meet the following 

requirements: 1. to provide a unique solution in the face of spatial, temporal, kinematic and 

muscular redundancy; 2. to provide a solution which has realistic kinematic characteristics. 

We have shown previously that a controller which chooses, among solutions to Eqs. 1 and 2, 

the unique solution that minimizes overall control magnitude (E, effort) 

E2 = ∫ [t0;tf] ||u(t)||2 dt, (Eq. 3) 

where ||u(t)|| is the norm of vector u, comply with these requirements (Guigon et al., 2007). 

Technically, u is the solution of an optimal control problem. Since the focus of this article is 

the issue of the nature of neural control signals which are elaborated by the nervous system to 

produce coordinated movements, we do not intend here to show that this controller is more 

realistic or efficient than other controllers. The fact that results described below could be 

obtained with other controllers is not at all detrimental to our purpose. 

 In general, Eq. 1 includes both dynamic (inertial, velocity-dependent) and static (elastic, 

gravitational) forces. A series of arguments (reviewed in Guigon et al., 2007) suggests that 

the nervous systems processes the two types of force separately (separation principle), i.e. 

u(t) = udyn(t) + ustat(t), 

where udyn(t) is the solution to the optimal control problem without static forces, and ustat(t) 

compensates for applied static forces. In the following, we only address the nature of dynamic 

CSs, in the absence of static forces. In the following u corresponds to udyn. 
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 The controller is described here as an open-loop controller. However, it should be noted 

that the model is affiliated with a principled approach to motor control which states that 

feedback is a necessary component of an appropriate neural controller (Guigon et al., 2007). 

Thus the controller can be considered as an optimal feedback controller, i.e. a controller 

which calculates the appropriate command to reach a goal for any estimate of the state of the 

controlled system (see also Todorov, 2004; Scott, 2004). Such a model can work properly in 

the presence of noise in sensory and motor pathways, and perturbations on limb or target 

position (Todorov & Jordan, 2002; Guigon et al., 2007). In practice, the feedback component 

remains hidden since neither perturbations nor noise were introduced in the simulations. The 

results described below can be considered as mean data over noise distributions. 

Controlled object 

The controlled object was a planar, two-joint (shoulder, elbow) arm actuated by two pairs of 

monoarticular muscles and one pair of biarticular muscles (Fig. 1A). For each muscle, actual 

force F was calculated following Zajac (1989) and Brown et al. (1996). We used 

F = Γ × PCSA × Fa (u) × (FV × FL + FP) (Eq. 4) 

where 

- u is a control input (component of vector u for the corresponding muscle), 

- Γ is a tension scaling factor, 

- PCSA is the physiological cross-sectional area, 

- Fa is a unitless quantity derived from muscle input, 

Fa = η(a) 
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υ da/dt = - a + e (Eq. 5) 

υ de/dt = - e + u 

where a and e are muscle activation and excitation, η(z) = [z]+ ([z]+ = z if z > 0 otherwise 

[z]+ = 0), υ is a parameter; 

- FP reflects passive forces 

FP = c2 {exp[k2(L-Lr2}]-1} 

where L is the normalized muscle length (the normalization factor is the length L0 at which 

maximal isometric force is generated), c2, k2, Lr2 are parameters; 

- FL and FV are related to force-length and force-velocity curves of the muscle,  

FL = exp{-[(Lβ-1)/ω]ρ} 

FV = (b1-a1V)/(V+b1) if V < 0 (shortening muscle) 

FV = (b2-a2V)/(V+b2) if V > 0 (lengthening muscle) 

where V is the normalized muscle velocity (in units of L0/s), β, ω, ρ, a1, b1, a2, b2 are 

parameters. The quantity FV × FL + FP is plotted as a function of L and V in Fig. 1B. (Fig. 11B 

in Brown et al., 1996). 

 The muscle forces were translated into joint torques according to 

Tsh = γsh
FL × Fsh

FL - γsh
EX × Fsh

EX + γbish
FL × Fbi

FL - γbish
EX × Fbi

EX  

Tel = γel
FL × Fel

FL - γel
EX × Fel

EX + γbiel
FL × Fbi

FL - γbiel
EX × Fbi

EX  

where γxx
YY are the moment arms of the muscle, with xx = {sh, el, bi, bish, biel} and 

YY = {FL, EX}, sh = shoulder, el = elbow, bi = biarticular, FL = flexor, EX = extensor. 
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 The controlled object contains two elements which are though to play an important role in 

motor control: 1. force-length and force-velocity relationships in muscles (Todorov, 2000); 

2. biarticular muscles (van Bolhuis et al., 1998). To address the influence of these elements in 

the framework of this study, we considered two modified versions of the model: 1. a model 

(NOLV) without force-length and force-velocity relationships in the muscles (i.e. F = Γ × 

PCSA × Fa in Eq. 4); 2. a model (NOBI) without biarticular muscles (γbi*
* = 0). 

Neural control signals 

The control problem (Eqs. 1,2,3) was modified to account for the fact that there are many 

more neurons potentially involved in motor commands than muscles. We assumed that 1. the 

number s of control signals was larger than the number M of muscles; 2. each control signal 

was defined by a fixed synergy of muscles (Eq. 7); 3. the s synergies were uniformly 

distributed in muscular space (Eq. 7). Formally, the problem was similar to the problem 

defined by Eqs. 1,2,3 with the following change. The goal was to find minimum control 

U(t) = {Uj(t)} (1 ≤ j ≤ s), i.e the unique solution that minimizes 

E2 = ∫ [t0;tf] ||U(t)||2 dt, (Eq. 6) 

and is appropriate to displace the articulated segments between given initial and final 

positions, the muscular control vector u(t) = {ui(t)} (1 ≤ i ≤ M) being defined by 

ui(t) = Σ j=1..s βij Uj(t), (Eq. 7) 

where βij are random coefficients drawn from a uniform distribution in [-1;1]. The control 

signals {Uj(t)} are called neural control signals (NCSs). 
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Tasks 

To simulate arm movements, the torques (Tsh,Tel) were translated into displacements using the 

dynamics of the articulated segments (Newtonian dynamics; Guigon et al., 2007). The control 

vector was 

u(t) = [u1,u2,u3,u4,u5,u6] 

i.e. the control for the shoulder flexor, shoulder extensor, elbow flexor, elbow extensor, 

biarticular flexor, biarticular extensor, in this order. For a movement task, the state vector was 

x(t) = [q1,q2,dq1/dt,dq2/dt,a1,a2,a3,a4,a5,a6,e1,e2,e3,e4,e5,e6], 

where q1 and q2 are the shoulder and elbow angles, dq1/dt and dq2/dt the shoulder and elbow 

velocities. The boundary conditions (Eq. 2) were the initial and final arm postures with zero 

initial and final velocity, activation and excitation (i.e. x(t0) = x0 and ψ = x(tf) - xf), where 

x0 = [q10,q20,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

and 

xf = [q1f,q2f,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. 

 To simulate isometric force production, the torques were translated into endpoint force (Φ) 

using 

T = J(q)T Φ, 

where T = [Tsh Tel]T, and J(q) is the Jacobian matrix of the kinematic transformation at 

position q = [q1 q2]T. The state vector was  

x(t) = [a1,a2,a3,a4,a5,a6,e1,e2,e3,e4,e5,e6]. 
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A force trajectory was specified by initial and final forces (Φ0 and Φf). The boundary 

conditions were 

x0 = [a10,a20,a30,a40,a50,a60,e10,e20,e30,e40,e50,e60] 

and 

ψ(x(tf)) = T(tf) - Tf 

where Tf = J(q)T Φf. For simulations, (q1,q2) = (q10,q20). 

Solution to the optimal control problem 

The problem defined by Eqs. 1,2,3 or Eqs. 1,2,6,7 was solved numerically using a gradient 

method (Bryson, 1999; Guigon et al., 2007). The results were obtained as x(tk), u(tk), (or 

U(tk)) for 

tk = t0 + (tf – t0)k/n (Eq. 8) 

with k = 0 … n, and n = 50. 

Data analysis 

The CSs and NCSs can be considered as inputs to motoneurons (Eq. 4), and could correspond 

to activities in subsets of cortical and spinal neurons. They were analyzed as if they were the 

discharge of motor cortical neurons, i.e. by quantifying their directional tuning using 

regression analysis (Georgopoulos et al., 1982). For each NCS, preferred directions (PDs) 

were calculated at each timestep tk (0 ≤ k ≤ n). The main PD was defined as PD(t = t0). 

Population vectors were calculated following classical techniques. Bimodal distributions were 

frequently encountered, and were quantified by a preferred axis as defined by principal 
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component analysis. Electromyographic (EMG) activity was defined as [e]+ (e, excitation; 

Eq. 5). 

Parameters and comparison with experimental data 

The model was built for a direct comparison with experimental data in monkeys (Scott et al., 

2001; Graham et al., 2003; Kurtzer et al., 2006). Thus, a number of parameters were directly 

taken monkey data. Biomechanical parameters (segment inertia I in kg m2, mass m in kg, 

center of mass cof in % of the length, length L in m) were taken from Cheng & Scott (2000) 

for Macaca mulatta. Indexes 1 and 2 are used for upper arm and forearm, respectively. We 

used I1 = 0.00126, m1 = 0.699, cof1 = 0.5, L1 = 0.144, I2 = 0.00621, m2 = 0.781, cof2 = 0.375, 

L2 = 0.257. Muscular parameters were taken from Brown et al. (1996): c2 = -0.02 , k2 = -18.7, 

Lr2 = 0.79, β = 2.3, ω = 1.26, ρ = 1.62, a1 = 0.17, b1 = -0.69, b2 = 1.8, a2 = pL2 + qL + r, 

p = -5.34, q = 8.41, r = -4.7. Muscle time constant was υ = 0.05 s (van der Helm & 

Rozendaal, 2000). The moment arms (Graham & Scott, 2003) are shown in Fig. 1C. 

 Parameters which are less well defined are the tension scaling factor Γ (Buchanan, 1995), 

and the PCSAs which depend on the muscles which are actually involved at a given 

articulation. We chose Γ = 35 N/cm2, and the PCSAs were used as free parameters, and were 

adjusted according to the following criteria: 1. Each PCSA is in a reasonable range (1-15 

cm2); 2. Movement trajectories have a direction-dependent curvature (Fig. 1 in Graham et al., 

2003); 3. Spatial selectivity of the muscles is as close as possible as that described by Kurtzer 

et al. (2006). Yet, as the model entails a number of simplifications, we though that the search 

of an exact fit of the data would be meaningless. Thus, we used a set of PCSAs which provide 

a good description of experimental observations. The PCSAs (in cm2) were (for shFL, shEX, 
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elFL, elEX, biFL, biEX): 10, 10, 11, 11, 9.9, 9.9. 

 For comparison between outcomes of the model and experimental data, we either 

reproduce an original figure, or indicate in the text a reference to one or more published 

figures. 

Results 

Properties of planar, 2-DOF reaching movements 

Mechanical, muscular and neural characteristics of planar, 2-DOF reaching movements have 

been thoroughly studied by Scott et al. (2001), Graham et al. (2003), and Kurtzer et al. (2006) 

(noted Scott, Graham and Kurtzer below). In these experiments, monkeys performed radial 

reaching movements toward 16 targets. Movement amplitude was 6 cm, and movement 

duration was ~600 ms (576 ms in Scott; Figs. 1,2 in Graham; Figs. 1,2 in Kurtzer). Initial 

posture was ~(30°,90°) in Graham and Kurtzer (Fig. 2C in Graham; p 3221 in Kurtzer), but 

was not reported in Scott. In this latter case, we used (30°,80°) which provides a good fit to 

the data. We simulated similar movements with the model, and we obtained movement 

kinematics (trajectories), movement kinetics (torques, power), muscular activities and neural 

control signals. 

Kinematics and kinetics 

Trajectories are shown in Fig. 2A, and Fig. 1A,B,C in Graham for comparison. Note that the 

model accounted for directional variations in movement curvature (see also Guigon et al., 

2007). The model also reproduced the anisotropy in motion at shoulder and elbow joints 

(Fig. 2B,C,D,E,F; Fig. 3A,C,D,E,F in Graham, Fig. 2C in Kurtzer). The kinetic data reported 
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by Graham concerned active torques, i.e. the combination of passive torques generated at 

shoulder and elbow and voluntary muscular torques. Active torques were obtained with the 

model by subtracting modeled passive torques (from Fig. 3C,D in Graham) from actual 

torques generated by the controller. The results are shown in Fig. 3. The model reproduced 

directional variations in peak active torque (Fig. 3A,B,C; Fig. 5A,B,C in Graham, Fig. 2C in 

Kurtzer) and peak joint power (Fig. 3D,E,F; Fig. 8A,B,C in Graham). A difference between 

the experiment and the model was found for the spatio-temporal profile of active shoulder 

torques (Fig. 3B; Fig. 5B in Graham). A possible reason for this difference is related to 

approximations in the representation of the passive torques. Similar results were obtained 

with the modified models (NOLV and NOBI). 

Muscular activity 

Peak muscular activities varied with movement direction (Fig. 4A; Fig. 6 in Kurtzer). The 

monoarticular muscles behave as found experimentally [130°-309° (model) vs 130°-319° 

(Kurtzer) axis for the shoulder muscles; 271°-73° (model) vs 275°-70° (Kurtzer) axis for the 

elbow muscles]. We could not reproduce the observations of Kurtzer on the activities of the 

biarticular muscles. The origin of this discrepancy is unclear. We first note that the search 

over PCSAs has never lead to activities of the biarticular muscles as predicted by Kurtzer. 

Furthermore, similar results were reported by Li (2006) with a closely related model (her 

Fig. 5.7; see also Todorov & Li, 2005). Thus our results could hardly be ascribed to some 

errors in the simulations of the model. To deepen this issue, we have plotted the preferred axis 

of the 6 muscular types obtained by Kurtzer in monkeys, by Li (2006) and by us in an optimal 

control model, and by Welter & Bobbert (2002) in humans (Fig. 4D). We observed that the 

tuning of the monoarticular muscles is consistent across the studies, but there is a noteworthy 
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discrepancy between Kurtzer and the other studies for the biarticular muscles (* in Fig. 4D). 

We also note that the model proposed by Kurtzer to explain their data does not reproduce the 

tuning of the biarticular muscles (their Fig. 11C). The discrepancy between the model and the 

data does not prevent the model to explain the characteristics of neural control signals (see 

below). 

Neural control signals 

We analyzed the NCSs (s = 500) corresponding to movements from initial posture (30°,80°). 

We calculated the main preferred direction of each NCS (see Materials and Methods) and 

the distribution of main PDs over the NCSs. This distribution was anisotropic with a preferred 

axis along 123-303° (Fig. 5A; 118-298°, Fig. 3 in Scott). The population vector systematically 

deviated from movement direction (Fig. 5B; Fig. 2A in Scott). We explored the relationship 

between PD distribution and direction-dependent variations in peak angular velocity, peak 

joint torque, and peak joint power. The best correlation was found with peak joint power 

(Fig. 5D; Fig. 4 in Scott). 

 The PD distribution remained anisotropic for different orientations of the arm and the 

forearm, and its orientation rotated with both shoulder and elbow angles (Fig. 6A,B). These 

results can be considered as predictions since the corresponding experiment has not been 

performed with a mechanical exoskeleton. Yet, they are consistent with results obtained with 

other kinematic chains (Caminiti et al., 1991; Kakei et al., 1999). 

 Similar results were obtained with the modified models (NOLV and NOBI). However, the 

correlations with peak joint power were weaker (not shown), and the PD distribution rotated 

more steeply with elbow angle (Fig. 6B). 
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Other movements 

Complementary information on the nature of NCSs can be found in other studies which 

analyzed the temporal structure of motor cortical discharges during reaching movements and 

isometric force production (Sergio & Kalaska, 1998; Sergio et al., 2005). However, as neither 

kinematics nor kinetics were quantitatively described in these studies, we only addressed 

qualitative features of neural discharges. Furthermore, as we found that all the NCSs were 

qualitatively similar, we only analyzed the 6 CSs (one per muscle). 

 The raw temporal profile of the shoulder extensor control is shown in Fig. 7 for 

movements in 8 directions (Fig. 7, center). The control had: 1. an early phasic component 

followed by a depression for the rightward/downward movements; 2. a delayed phasic 

component for a movement in the opposite directions. We note that quantitatively similar 

results were obtained with the NOLV model (Fig. 7, gray lines). Similar temporal profiles 

were found for the other muscles, each with its preferred directional tuning (not shown). For 

comparison with experimental data, we have replotted the control for the shoulder extensor in 

a different format which can be read as a mean discharge frequency (Fig. 8A). Data from 

single unit recording in primate primary motor cortex are reproduced (Fig. 1 in Sergio & 

Kalaska, 1998; Fig. 8B). Visual inspection revealed a close correspondence between real and 

simulated profiles although a difference was visible at the end of the movement (see 

Discussion). We note that the large phasic transient near the end of the movement (Fig. 7; 

Fig. 8A) is due a strict boundary condition (Eq. 2): the movement must finish at a given time 

and position. This type of boundary condition was chosen for simplicity, but requires large 

controls to guarantee the exact fulfillment of spatial and temporal constraints. Yet real 

movements do not in general terminate abruptly, but end up smoothly, e.g. with oscillations. 
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A more realistic movement could be obtained in the presence of noise. In this case, estimated 

limb position is in general different from actual limb position so a nonzero residual error 

should always be present to drive movement corrections. This case is illustrated in Fig. 1D of 

Guigon et al. (2007). 

 For comparison, we applied the model to the production of isometric forces in different 

directions. Since the calculated control signals are related to dynamic forces, they are not 

responsible for static force exertion after the dynamic period. To obtain more realistic control 

signals, we added a static component necessary for the maintenance of a steady final force. 

For a 150-ms force increase from 0 to 1.5 N, the temporal profile of the shoulder extensor 

control signal had a phasic excitation for a rightward-directed force (Fig. 9A, right) and a 

phasic inhibition for a leftward force (Fig. 9A, left). Data from single unit recording in primate 

primary motor cortex are reproduced (Fig. 1 in Sergio & Kalaska, 1998; Fig. 9B). 

 Preferred directions of the CSs were calculated every 10 ms and displayed in a circular plot 

(Fig. 10). In the movement task (Fig. 10A; from top to bottom, sh, el, bi; black circle: flexor; 

gray circle: extensor), the PD reverted during the movement. In contrast, the isometric 

controls did not revert their PDs (Fig. 10B). For comparison, data from Sergio & Kalaska 

(1998) are reproduced in Fig. 10C. 

Discussion 

The present article describes a model-based approach to the nature of neural control signals 

generated by the nervous system of monkeys to control arm movements. The model 

reproduces detailed features of movement kinematics and kinetics, and quantitative 

characteristics of single neuron and population discharges in primate motor cortex. The 
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results support the idea that 1. the motor system controls movement using a muscle-based 

controller; 2. this controller could be located in the motor cortex. 

Nature of the model 

The model is an optimal controller, i.e. a controller which calculates appropriate control 

signals to displace a controlled object using a complete knowledge of the properties of the 

object (here, the dynamics of the arm and the characteristics of the muscles), and an 

optimality criterion. Recent reviews have thoroughly advocated this type of model to address 

behavioral and neural characteristics of goal-directed movements (Todorov, 2004; Scott, 

2004). We refer the reader to these reviews for a detail discussion of optimal control models. 

 The present model is not fundamentally different from previous models which applied 

optimal control techniques to determine the spatio-temporal nature of command signals which 

should enter a neuromuscular system to drive a limb toward a goal (Happee, 1992; Lan & 

Crago, 1994; Lan, 1997; Harris & Wolpert, 1998; Haruno & Wolpert, 2005; Todorov & Li, 

2005; Li, 2006). A common result of these models is that optimal control of a low-pass 

filtering force generating system leads to reasonably realistic EMG and neural control signals. 

The originality of this work is not to describe a new, more efficient model, but to deepen our 

understanding of neural information processing in motor cortex using a model-based 

approach, which proves that observed discharge characteristics of single neurons and 

populations recorded during movements in M1 can be quantitatively explained by observed 

characteristics of the movements. In fact, previous models have addressed properties of 

neurons, but not properties of limb movements (Lan, 1997; Bullock et al., 1998; Todorov, 

2000; Haruno & Wolpert, 2005; Trainin et al., 2007). 
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Limitations 

There are at least three limitations to the present model. First, although the model 

appropriately produces the expected results, the issue of its validity in a broader framework 

remains open. The model was actually tested in various conditions, and was found to be 

consistent with experimental observations (Guigon et al., 2007). Yet some data, e.g. highly 

nonsymmetric velocity profiles, cannot be explained by the model. Second, the way optimal 

feedback control can be computed by brain circuits remains elusive. A third and related 

limitation is the absence of relationship between the computational processes advocated by 

the model and organizational features of the motor cortex (connectivity, intrinsic properties, 

…). The two latter issues raise the problem of neural information processing subserving 

motor control. This problem has been addressed for initial directional commands of reaching 

movements (Baraduc et al., 2001), but remains open for the whole spatiotemporal commands. 

Motor cortical physiology 

Single cell recordings in M1 have revealed a large repertoire of discharge patterns. In fact, the 

greater part of movement parameters, ranging from exerted force (low-level muscle control) 

to serial order of stimuli (cognitive motor control) have been found to influence the discharge 

of motor cortical neurons (Ashe, 1997; Georgopoulos, 2000). This paradox is hotly debated 

(Georgopoulos & Ashe, 2000; Moran & Schwartz, 2000; Todorov, 2000). A central issue of 

the debate is the interpretation of correlation analyses which are used to quantify neuronal 

activities. For instance, Todorov (2000) defends the view that M1 neurons calculate muscular 

activation patterns, and suggests that many correlations between kinematic quantities and 

neural discharges in M1 can be explained by this hypothesis (i.e. they are artifacts). In this 
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framework, a series of studies by Scott and collaborators have attempted to circumvent the 

weakness of correlation analysis (Scott et al., 2001; Graham et al., 2003; Kurtzer et al., 2006). 

They reported a systematic description of planar two-joint arm movements and neural 

correlates of their execution. They found that anisotropic characteristics of movement 

dynamics and muscular selectivities were associated with a similar anisotropy in neural 

selectivities. Our model reproduces a similar relationship between mechanical, muscular and 

neural quantities, and supports the contention of Scott of a tight link between neural 

populations in M1 and the motor apparatus. The model further shows that the spatio-temporal 

profile of the NCSs is qualitatively similar to the activity in a subpopulation of motor cortical 

neurons (located primarily in caudal M1) whose discharge tightly follows the time course of 

required task dynamics (Sergio & Kalaska, 1998; Sergio et al., 2005). Taken together, these 

results suggest that a subset of M1 neurons could actively participate to a muscle-based 

representation of movements (Todorov, 2000, 2003; Sergio et al., 2005). Although a number 

of arguments concur to this conclusion (Scott, 1997; Todorov, 2000, 2003), our model 

provides the first realistic demonstration that muscle-based coding can account 

simultaneously for movement kinematics, movement kinetics, EMGs, and cortical discharges. 

 If our conclusions are correct, the origin and function of other types of neuron (e.g. those 

related to visuospatial and kinematic representations of movements) remain to be explained. 

There are at least two hypotheses. The first is related to the idea of sensorimotor 

transformations (Kalaska & Crammond, 1992; Scott, 2005). The assumption is that the 

nervous system performs sequential operations which progressively translate spatial 

information on the goal of the movement into appropriate commands, going through 

kinematic, dynamic, and muscular stages. In this case, quantities related to desired movement 
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kinematics, in particular desired movement velocity, should be found in M1 (Moran & 

Schwartz, 1999). This explanation relies on the questionable idea that motor control is based 

on trajectory tracking (Todorov & Jordan, 2002; Guigon et al., 2007). The second hypothesis 

ensues from the model. As discussed in the Materials and Methods, the controller can be 

considered as an optimal feedback controller, i.e. an optimal controller coupled with a state 

estimator. We have described properties of the signals elaborated by the controller. Yet other 

signals should be available to indicate the goal and the estimated state. This latter signal 

should convey information related to predicted position, velocity, force, … Such a predictive 

(rather than desired) signal could be a source of kinematic information in motor cortex. For 

instance, cortical velocity signals have been described in M1 which lead actual velocity by 

120-150 ms (Moran & Schwartz, 1999; Wang et al., 2007). As the control signals reported in 

other studies lead movement onset by 100-200 ms (Kalaska et al., 1989; Sergio & Kalaska, 

1998; Sergio et al., 2005), it is possible that the velocity signals derive from the control 

signals through a forward model. However, these data could also be interpreted to support the 

presence of a desired velocity signal. 

 Todorov (2000) has proposed that the dependence of muscle force on length and velocity 

has a substantial influence on neural information processing in motor cortex. Kurtzer et al. 

(2006) have suggested that these intrinsic muscular properties are necessary to account for the 

directional tuning of muscular activities. Our model does not concur with these ideas. First, 

the temporal profile of our control signals did not resemble a velocity profile (Fig. 7; Fig. 2 in 

Todorov, 2000). In fact, low-pass filtering renders the control signals much more “phasic” 

than velocity, even in the presence of a force/velocity relationship in the muscles. Second, 

muscular tuning was only weakly influenced by force/length and force/velocity relationships 
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(Fig. 4). 

 According to the separation principle (Guigon et al., 2007), a complete motor command 

involves both a static and a dynamic component. Although such components have been 

observed experimentally in M1 (Cheney & Fetz, 1980; Kalaska et al., 1989; Kurtzer et al., 

2005), the discharge of many motor cortical neurons appears to carry simultaneously static 

and dynamic commands (Cheney & Fetz, 1980; Kalaska et al., 1989; Sergio & Kalaska, 1998; 

Kurtzer et al., 2005; Sergio et al., 2005). For instance, phasic-tonic neurons recorded by 

Sergio & Kalaska (1998) have an early component that could be related to the control of 

dynamic forces (compare Fig. 8A and 8B), and a late component that could be related to the 

maintenance of posture against a steady force. In fact, Sergio & Kalaska (1998) have found 

phasic, tonic, and phasic-tonic neurons in equal proportions (~30%), and it is possible that 

their phasic neurons (not described in detail) are closer to our NCSs than the phasic-tonic 

neurons. In this case, the phasic and tonic neurons would represent the actual dynamic and 

static commands as defined by the model. This issue remains to be tested experimentally. 

Models of motor control 

The debate on the nature of motor cortical representations of movement is part of a more 

general debate on the nature of motor controllers in the brain (Kawato, 1999; Ostry & 

Feldman, 2003; Todorov, 2003). On the one hand, position control models exploit 

viscoelastic properties of muscles and peripheral reflex loops to define limb movements as a 

series of stable equilibrium postures (Bizzi et al., 1992; Feldman & Levin, 1995). The 

corresponding descending commands can be viewed as kinematic signals as they need not 

take into account biomechanical or muscular characteristics of the moving limb (Flanagan et 
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al., 1993; Georgopoulos, 1996). By construction, the temporal profile of these commands is 

monotonic. Computer simulations have shown that triphasic EMG patterns can be obtained 

from monotonic commands that act to modify the recruitment threshold of muscles rather 

than the force developed by the muscles (St-Onge et al., 1997; Suzuki & Yamazaki, 2005). 

On the other hand, force control models have been developed, based on the idea that the 

nervous system explicitly computes time-varying control signals to achieve a desired 

movement (Kawato et al., 1987; Uno et al., 1989; Todorov, 2000; Franklin et al., 2003). 

Although this type of model has been questioned based on the posture/movement paradox 

(Ostry & Feldman, 2003), it has proven highly efficient to account for a large range of 

characteristics of motor control (trajectory formation, EMG). The force control models 

predict that the neural control signals should have nonmonotonic (acceleration-like, torque-

like, EMG-like) profiles. The present model, which is affiliated to the force control models (in 

the sense that the control signals are directly transmitted to a force-generating system), shows 

that the predicted nonmonotonic NCSs are quantitatively related to the spatio-temporal 

characteristics of a population of motor cortical neurons. There is no corresponding study of 

the control signals predicted by position control models and their relationship to cortical 

physiology. In particular, the origin and role of nonmonotonic discharge patterns in the 

framework of position control models remain unclear (Todorov, 2003). Although our model 

cannot directly settle the controversy between force and position control, it gives a 

physiological basis to the force control models, and contributes to a series of arguments which 

support these models (Kawato, 1999; Todorov, 2000, 2003; Guigon et al., 2007).
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Figure captions 

Figure 1. A. Model of a planar, two-joint arm equipped with two pairs of monoarticular 

antagonist muscles, and one pair of biarticular muscles. Muscle names are indicated for 

correspondence with the study of Kurtzer et al. (2006). B. Length-velocity force curve. C. 

Moment arms at shoulder (left) and elbow (right) for the monoarticular (thin black line) and 

biarticular (thick gray lines) muscles (positive for flexors; negative for extensors). 

 

Figure 2. A. Trajectories and velocity profiles for movements in 16 directions. R: right, A: 

away, L: left, T: toward. Initial posture was (30°,90°). B. Polar plot of peak shoulder (black 

line) and elbow (green line) velocity. Arrows indicate the mean bimodal distribution (dashed 

lines from Graham, Fig. 2C). C. Spatial map of instantaneous angular velocity at shoulder at 

each location in space along the movement. D. Same as C for elbow velocity. E. Change in 

joint joint in joint angle coordinates. Colors are used to indicate the 4 cardinal directions. F. 

Change in joint velocity in joint angle coordinates. 

 

Figure 3. A. Polar plot of peak shoulder (black line) and elbow (green line) torque. Arrows 

indicate the mean bimodal distribution (dashed lines from Graham, Fig. 5A). B. Spatial map 

of instantaneous shoulder torque at each location in space along the movement. C. Same as B 

for elbow torque. D. Same as A for peak shoulder and elbow joint power (dashed lines from 

Graham, Fig. 8). E. Same as B for shoulder joint power. F. Same as E for elbow joint power. 

 

Figure 4. A. (Top) Polar plot of peak shoulder muscle flexor (black) and extensor (gray) 

activity. Arrows indicate the preferred axis of the distribution (dashed lines from Kurtzer, 
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Fig. 6). The dashed line for the shoulder flexor is exactly behind the arrow. (Middle) Same as 

Top for the elbow flexor and extensor. (Bottom) Same as Top for the biarticular flexor and 

extensor. B. Same as A for the model NOLV. C. Same as A for the model NOBI. D. 

Orientation of the preferred axis of muscles obtained from 4 sources. For each muscle, four 

results are given (black: experiment; gray: model): 1. data of Kurtzer (their Fig. 6); 2. model 

of Li (2006) (her Fig. 5.7c). As initial posture was (45°,90°), we subtracted 15° to the reported 

orientations; 3. our results (A); 4. data of Welter & Bobbert (2002) (their Fig. 5). As initial 

posture was (0°,90°), we added 30° to the reported orientations. * indicates a noteworthy 

discrepancy. 

 

Figure 5. A. Frequency distribution of the preferred directions of the NCS (s = 500; mean 

R2 = 0.91). Radial axis is the number of NCSs in a bin (16 bins, bin size is 22.5°). Solid arrow 

is the preferred axis of the distribution. Dashed arrow from Scott. B. Population vector 

(arrow) vs movement direction (gray) for the 16 directions. C. Difference between the 

direction of the population vector and the movement direction as a function of movement 

direction. D. Relationship between NCSs count and peak joint velocity (top), peak joint 

torque (middle), and peak joint power (bottom) for data in A. The regression line is shown. 

From top to bottom: R2 = 0.46, 0.07, 0.75. 

 

Figure 6. A. Preferred axis of the PD distribution as a function of the shoulder angle (10-50°). 

Elbow angle was 90°. Slope was 0.98 (R2 = 1). Gray lines: results obtained with the model 

NOLV (square) and the model NOBI (diamond). Inset: initial arm postures. B. Preferred axis 

of the PD distribution as a function of the elbow angle (70-130°). Shoulder angle was 30°. 

Slope was 0.61 (R2 = 0.98). Gray lines: see A. Inset: initial arm postures. 
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Figure 7. Temporal profile of the shoulder extensor NCS for movements in 8 directions. The 

NCS is depicted with a black surface, and takes both positive (above the gray surface) and 

negative (with in the gray surface) values. The gray lines are the results obtained with the 

model NOLV. Time scale is in ms. The trajectories are shown in the middle.  

 

Figure 8. A. Temporal profile of the shoulder extensor NCS for a leftward (left) and a 

rightward (right) movement. Same data as in Fig. 7, but in a different format. Gray line: 

endpoint force (shifted in time by 100 ms for correspondence with experimental data). B. 

Reproduced from Sergio & Kalaska (1998), Fig. 1. 

 

Figure 9. A. Same as Fig. 8A for an isometric force production (0 to 1.5 N in 150 ms). The 

time course of force variation is shown in gray. Inset: force trajectory (open square: origin; 

open circle: extremity). B. Reproduced from Sergio & Kalaska (1998), Fig. 1. 

 

Figure 10. A. Time course of preferred directions of CSs in the reaching task. Time is 

indicated by the distance from the center (-300 ms) to the external circle (900 ms). PD is 

indicated by an angular position. (Top) Shoulder flexor (black), shoulder extensor (gray). 

(Middle) Elbow flexor (black), elbow extensor (gray). (Bottom) Biarticular flexor (black), 

biarticular extensor (gray). B. Same as A for the isometric force production task. The two 

insets indicate the timing for A (top inset) and B (middle inset). C. Reproduced from Sergio & 

Kalaska (1998), Fig. 2. 

 

H
A

L author m
anuscript    inserm

-00212329, version 1



FIGURE 1

Posterior Deltoid

Anterior Deltoid
Pectoralis Major

Biceps Long
Biceps Short

Triceps Long

Triceps Lateral
Triceps Medial

Brachialis
Brachioradialis

0 90 180

-4

-2

0

2

4

Shoulder angle (deg)

M
om

en
t a

rm
 (c

m
)

0 90 180

-4

-2

0

2

4

Elbow angle (deg)

M
om

en
t a

rm
 (c

m
)

-2
0

2
0.6

1.20

0.5

1

1.5

Normalized lengthNormalized velocity

Fo
rc

e
A

C

B

H
A

L author m
anuscript    inserm

-00212329, version 1



B

CA

D F

E

FIGURE 2

0.2 rad

0.5 rad/s

-2 0 rad/s 2

2 cm

2 cm

2 cm

A

RL

T

0.1 s

1 rad/s

A

RL

T

A

RL

T

A

RL

T

A

T

LR

A

T

LR

el FL

el EX

sh
FL

sh
EX

el FL

el EX

sh
FL

sh
EX

H
A

L author m
anuscript    inserm

-00212329, version 1



B

DA

E

C F

FIGURE 3

A

RL

T0.1 Nm

A

RL

T0.1 W

A

RL

T2 cm

A

RL

T2 cm

-0.1 0 Nm 0.1

A

RL

T2 cm

A

RL

T2 cm

-0.1 0 W 0.1

H
A

L author m
anuscript    inserm

-00212329, version 1



FIGURE 4

A

RL

T

A

RL

T

A

RL

T

A

RL

T

A

RL

T

A

RL

T

A

RL

T

A

RL

T

A B          (model NOLV) C           (model NOBI)

0

90

180

270

360

O
rie

nt
at

io
n 

(d
eg

)

D
sh

FL
sh

EX el
FL

el
EX bi
FL

bi
EX

* *

H
A

L author m
anuscript    inserm

-00212329, version 1



FIGURE 5

0 90 180 270 360
-40

-20

0

20

40

Movement direction (deg)

Er
ro

r (
de

g)

0 0.1 0.2
0

20

40

60

80

Peak joint power (W)

C
el

l c
ou

nt

0 1 2 3
0

20

40

60

80

Peak joint velocity (rad/s)

C
el

l c
ou

nt

0 0.1 0.2 0.3
0

20

40

60

80

Peak joint torque (Nm)

C
el

l c
ou

nt

A

B

C

D

40

80H
A

L author m
anuscript    inserm

-00212329, version 1



FIGURE 6

A B

Pr
ef

er
re

d 
ax

is
 (d

eg
)

Pr
ef

er
re

d 
ax

is
 (d

eg
)

0 20 40 60

105

120

135

150

165

Shoulder angle (deg)
60 90 120 150

105

120

135

150

165

Elbow angle (deg)

H
A

L author m
anuscript    inserm

-00212329, version 1



FIGURE 7

0 600

H
A

L author m
anuscript    inserm

-00212329, version 1



Time (ms)Time (ms)

FIGURE 8

A

B
0 500

0
1
2

N
eu

ra
l c

on
tro

l

0
.5

Force (N
)

0 500

0
1
2

N
eu

ra
l c

on
tro

l

0
.5

Force (N
)

H
A

L author m
anuscript    inserm

-00212329, version 1



FIGURE 9

A

B
0 500

0
1
2
3

Time (ms)

N
eu

ra
l c

on
tro

l

0
1 Force (N

)

0 500

0
1
2
3

Time (ms)

N
eu

ra
l c

on
tro

l

0
1 Force (N

)

H
A

L author m
anuscript    inserm

-00212329, version 1



FIGURE 10

0 300 600-300 900 ms

0

90

180

270

A

C

B

0

150

H
A

L author m
anuscript    inserm

-00212329, version 1


