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2 Emmanuel Guigon et al.

Abstract Recent theories of motor control have proposed that the nervous system

acts as a stochastically optimal controller, i.e. it plans and executes motor behaviors

taking into account the nature and statistics of noise. Detrimental effects of noise

are converted into a principled way of controlling movements. Attractive aspects of

such theories are their ability to explain not only characteristic features of single

motor acts, but also statistical properties of repeated actions. Here, we present a crit-

ical analysis of stochastic optimality in motor control which reveals several difficulties

with this hypothesis. We show that stochastic control may not be necessary to explain

the stochastic nature of motor behavior, and we propose an alternative framework,

based on the action of a deterministic controller coupled with an optimal state esti-

mator, which relieves drawbacks of stochastic optimality and appropriately explains

movement variability.

Keywords: Motor control; noise; model
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Optimality, stochasticity, and variability in motor behavior 3

1 Introduction

Despite multiple levels of redundancy, noisy sensors and actuators, and the

complexity of biomechanical elements to be controlled, the nervous system

elaborates well-coordinated movements with disconcerting ease (Bernstein

1967). In fact, Bernstein (1967) observed that a motor goal can be suc-

cessfully reached although each attempt to reach this goal has unique,

nonrepetitive characteristics. To succeed in this daunting control task,

powerful mechanisms should be at work in brain circuits. Their properties

should encompass the capacity: 1. to reach a goal with little error and small

energy expenditure, i.e. to choose an appropriate set of motor commands

among an infinite number of solutions (degrees-of-freedom problem); 2. to

face deterministic (e.g. change in goal, force applied on the moving limb)

and stochastic (e.g. noise in motor commands) perturbations (variability

problem).

The Bernstein problem which encompasses both the degrees-of-freedom

and variability problems, is illustrated in Fig. 1 for a reaching movement.

In this example, the moving arm has three degrees of freedom (Fig. 1A;

shoulder, elbow, wrist), and moves in a two-dimensional space to reach

a target (Fig. 1B). Thus there exists an infinite number of articular dis-

placements which are appropriate to capture the target (Fig. 1C). In the

presence of noise, the reaching movements are successful, but have dif-

ferent characteristics (Fig. 1D). Since movements can be realized with or
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4 Emmanuel Guigon et al.

without visual feedback (Fig. 1E,F), processes related to state estimation

and multimodal integration are necessary for accurate motor control.

Elements of the Bernstein problem have been synthesized in part in a theory of

motor control based on the engineering tool of stochastic optimal control (Harris and

Wolpert 1998). In this framework, motor controllers in the brain would choose op-

timal command signals that minimize the influence of noise on the achievement of

motor goals (MV, minimum-variance model; Harris and Wolpert 1998; Hamilton and

Wolpert 2002; van Beers et al. 2004). By construction, such a theory represents a

radical departure from most previous optimal control models in the sense that char-

acteristics of motor behavior emerge from a general principle rather than from a

level-specific (e.g. kinematic, dynamic, muscular), effector-specific (e.g. arm, eye) or

task-specific (e.g. posture, locomotion, ...) criterion (see Todorov 2004 for a review).

Furthermore, it accounts not only for level-specific (e.g. typical bell-shaped veloc-

ity profiles, triphasic electromyographic signals), effector-specific (arm movements,

saccades) and task-specific (point-to-point movements, drawing movements, obstacle

avoidance) properties, but also for amplitude/duration scaling and speed-accuracy

trade-off (Fitts’ law) inherent to the functioning of motor systems.

Despite these striking successes, it appears difficult to hypothesize that motor

control is purely an open-loop process (Desmurget and Grafton 2000). This obser-

vation led Todorov and Jordan (2002) to propose that motor behavior results from

the action of a stochastic optimal feedback controller (SOFC), i.e. a controller which

elaborates online motor commands taking into account actual or estimated state of

the motor apparatus and the statistics of noise. Optimality arises from the simul-

taneous minimization of error (e.g. distance to the goal) and effort (e.g. size of the
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Optimality, stochasticity, and variability in motor behavior 5

commands). Although MV and SOFC can be considered to be similar on the surface,

the presence of feedback processes renders SOFC much more versatile. In particular,

it can account for the emergence of uncontrolled manifolds (Scholz and Schöner 1999;

Scholz et al. 2000), i.e. the fact that variability is preferentially reduced along

dimensions that interfere with task requirements (a phenomenon called

structured variability ; Todorov 2004). For instance, if a subject is asked

to point on a line, movement endpoints are scattered along the target

line (Scholz et al. 2000). More generally, it provides a principled approach to the

construction of motor acts in the presence of noise and perturbations which closely

corresponds to experimental observations (Todorov and Jordan 2002).

Although attractive, stochastic feedback optimality is a complex theoretical con-

struct, and should not be considered as a default hypothesis. In fact, due to its central

role in models of motor control (Todorov and Jordan 2002; Saunders and Knill 2004;

Chhabra and Jacobs 2006a), it merits to be questioned (Schaal and Schweighofer

2005). In particular, SOFC has been mostly used for the control of linear systems,

and although results have also been obtained in a nonlinear case (shoulder/elbow arm

with nonlinear muscles; Todorov and Li 2005; Li 2006), the general problem of kine-

matic redundancy, which is a central issue for Bernstein, has not been addressed in

this framework. In this article, we present a critical analysis of stochastic feedback op-

timality to assess whether this hypothesis is appropriate to explain characteristics of

motor control. This analysis led us to show that SOFC does not provide a satisfactory

solution to the degrees-of-freedom problem, and to propose an alternative approach

to motor control. This approach is based on a model (a terminal optimal feedback

controller, TOFC) which provides a quantitative account of the degrees-of-freedom
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6 Emmanuel Guigon et al.

problem (Guigon et al. 2007) (see Section 3 for more details). Our purpose here is to

show that TOFC is also able to master stochastic control problems, and can thus be

considered as a unified model of motor control.

2 Stochastic optimal feedback control

SOFC is an approach to motor control which combines stochastic optimality and feed-

back control. The reader is referred to Todorov (2005) for a thorough introduction

to SOFC (see also Appendix A for a brief survey). A central idea of SOFC is the

emergence of optimal behaviors through minimization of stochastic quantities related

to states and controls (error/effort cost function). However, this form of optimization

cannot in general guarantee that kinematic goals are appropriately reached, i.e. the

actual final state of a simulated movement will not necessarily be equal to the de-

sired final state representing the goal of the movement. The problem arises from the

minimization of the mixed error/effort cost. Such a minimization requires the setting

of parameters which weight the contribution of state errors (velocity, force, ...; pa-

rameters wv, wf in Todorov 2005) and effort (r) in the cost function. Each setting

will lead to a particular time course of states along the movement, and a particular

pattern of constant and variable terminal errors. To illustrate, we consider the shape

of velocity profiles for point-to-point movements simulated as described in Todorov

and Jordan (2002). Different profiles were found for different values of r, wv, and wf

(Fig. 2). Although differences between the profiles could be considered as insignifi-

cant, this result raises the question of what is the setting of these parameters which

defines a “normal” velocity profile to be compared with experimental observations?

SOFC offers no answer to this question. Todorov and Jordan (2002) recognized that
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Optimality, stochasticity, and variability in motor behavior 7

these parameters must be adjusted to each task at hand (their supplementary infor-

mation). Todorov (2005) proposed to set the position and velocity weights according

to movement amplitude and movement time. This issue is crucial to address kinematic

invariance (i.e. the invariant shape of velocity profiles; e.g. Atkeson and Hollerbach

1985; Gordon et al. 1994b). We consider a second example. Programming a grasping

movement with SOFC requires to simultaneously minimize the distance between the

hand and the object, and angular difference between hand and object orientation.

The parameter which weights the two errors should influence the time course of error

reduction along a movement. Coarticulation (i.e. the concurrent reduction of distance

and orientation errors; Torres and Zipser 2004) may or may not be observed depend-

ing on the value of this parameter. In fact, there is no uniquely defined emergent

kinematic property in SOFC. Thus, although SOFC can eliminate redundant

degrees of freedom, it cannot do it in a principled way.

Despite this problem, we cannot easily abandon a model which has proven highly

efficient in other respects (Todorov and Jordan 2002). In particular, the minimal

intervention principle, which predicates that variability is preferentially reduced along

dimensions that interfere with task goal (Todorov and Jordan 2002), is a central

concept to explain the structure of motor variability (Scholz and Schöner 1999; Scholz

et al. 2000; Todorov and Jordan 2002). To resolve this difficulty, we addressed the

origin of the minimal intervention principle in SOFC. Todorov and Jordan (2002)

proposed that this principle derives from optimal compensation for signal-dependent

motor noise (SDNm; for definition, see Harris and Wolpert 1998; Todorov

and Jordan 2002; in Appendix, Eq. A.1, process noise). However, a SOFC is

a complex mathematical object, which contains cost-, task-, and noise-related terms
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8 Emmanuel Guigon et al.

(Eq. A.4 and Eq. A.5), and the specific importance of the different terms has not

been assessed. In particular, the contribution of noise-related terms, which provide

knowledge on the structure (e.g. statistics, correlations) of noise is unclear.

In their line-pointing simulation, Todorov and Jordan (2002) illustrated the emer-

gence of an uncontrolled manifold (UM; Scholz et al. 2000): variability was preferen-

tially oriented along the target line, i.e perpendicularly to the task-error dimension.

We explored the origin of the UM in SOFC. We observed that no UM was found in

the absence of SDNm (for definition, see Eq. A.1 and text below in Appendix

A). We found that the UM arose in the presence of SDNm in any of the following

conditions (Fig. 3A,B): (1) the statistics of SDNm are known to the controller and

estimator (presence of terms with [C1...Cc] in Eq. A.4 and Eq. A.5); (2) the statistics

of SDNm are known only to the estimator (presence of terms with [C1...Cc] only in

Eq. A.5); (3) the statistics of SDNm are unknown (no terms with [C1...Cc] in Eq. A.4

and Eq. A.5), but the statistics of other noises are known (e.g. SINm; presence of Ωξ

in Eq. A.5). Alternatively, no UM was found when the statistics of SDNm were known

only to the controller or completely unknown and no other types of noise were known

(absence of terms with Ωξ, Ωω and Ωǫ). In fact, a common qualitative character-

istic of appropriate (inappropriate) conditions is the efficient (deficient) functioning

of the state estimator, i.e. the fact that the estimator provides an accurate (inaccu-

rate) estimate of the true state (Fig. 3B,C). To understand this result, we have

rewritten the equation of the state estimator (Eq. A.5) in the absence of

signal-dependent noises (absence of Ωε and Ωǫ)






Kt = AΣe

t H
T (HΣe

t H
T + Ωω)−1

Σe

t+δ = Ωξ + (A−KtH)Σe

t A
T
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Optimality, stochasticity, and variability in motor behavior 9

If we assume that Σe

0 = 0 (in fact, the null matrix), i.e. there is no uncer-

tainty on the initial state of the system, the above equation will lead to

zero Kt when Ωξ = 0, or undefined K0 when Ωω = 0. A similar reasoning

can be done for the terms involving the signal-dependent noises.

This observation was confirmed in a series of simulations in which the different

types of noise (SINm, SINs, SDNs) and knowledge of initial state statistics were varied.

We also simulated the via-point task of Todorov and Jordan (2002). As expected

(Fig. 4), structured variability was observed when the estimator was efficient even if

the statistics of SDNm were unknown, and unstructured variability was found when

the state estimator was inefficient. These results support the contention of Todorov

and Jordan (2002) that structured variability results from optimal feedback control

in the presence of SDNm. However, they question the idea that the controller and

estimator need to know the statistics of this noise. These observations are restricted to

the framework of SOFC, and do not preclude the emergence of uncontrolled manifolds

in the absence of signal-dependent noise in other frameworks.

Taken together, these results indicate that SOFC is efficient due to its optimal

feedback component, but deficient due to its cost function. A solution to this difficulty

can be found in Nelson (1983). According to Nelson, skilled movements are built to

satisfy both specific task-oriented objectives (measured, e.g., by errors) and a general

“effort” objective. However, unlike in SOFC, task objectives can be considered as

constraints (“hard” constraints) and not exclusively as costs, i.e. the effort objective is

minimized only for cases when the constraints are satisfied (error is zero). In technical

terms, we can consider a terminal optimal feedback controller (TOFC) rather than
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10 Emmanuel Guigon et al.

an optimal regulator (Bryson and Ho 1975). An open question is whether a terminal

controller can appropriately master a stochastic problem.

3 Terminal optimal feedback control

We define a terminal optimal feedback controller in the presence of noise as a controller

which plans optimal trajectories from ongoing estimated state to the target. Each

trajectory is optimal in the sense that it is a series of optimally planned submovements.

Since optimization operates on each single trajectory, but not across trajectories, the

model is not optimal in a stochastic sense. We note that a TOFC is not a new type of

controller, but in fact a classical controller in the engineering literature (Bryson and

Ho 1975; see also Hoff and Arbib 1993 for a related model applied to motor control).

The theory of TOFC is in fact the theory of optimal control with terminal constraints

which is explained formally in Appendix B and for practical applications in the linear

case in Appendix C. The theory was described with a general cost function (Eq. B.2).

Actually, a quadratic function of controls, similar to the effort term of the cost function

in SOFC (Eq. A.2), was used in the simulations, i.e.

L [x(t),u(t)] = ||u(t)||
2
.

We first note that SOFC and TOFC have a qualitatively similar behavior at the level

of individual movements. For instance, for point-to-point movements, they generate

straight trajectories with bell-shaped velocity profiles. The main difference is that

results obtained with TOFC do not depend on parameters (such as r, wv, wf in

SOFC). We have shown previously that TOFC is appropriate to provide uniquely

defined emergent kinematic properties for kinematically redundant problems (Guigon
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Optimality, stochasticity, and variability in motor behavior 11

et al. 2007). Briefly, the model gives a quantitative account of trajectories (e.g. cur-

vature), velocity profiles, and final postures of pointing and grasping movements, and

explains kinematic invariance for amplitude and load.

We replicated the preceding simulations on the structure of variability with TOFC.

There is no difficulty for the line-pointing task. Emergence of the uncontrolled man-

ifold is shown in Fig. 5A,B. The tests described in Fig. 5 gave similar results with

TOFC. The case of the via-point task is more problematic. There are two ways to

force a movement through via-points. On the one hand, distance to these points can

be introduced in the cost function of the problem. This solution is similar to the

mixed error/effort function of SOFC and is not satisfactory. On the other hand, the

via-points can be entered as constraints similar to initial and final positions. Again,

this method is not fully convincing as, in the presence of noise, we need to know at

each time which via-points remain to be considered. To circumvent this difficulty, we

assumed that the trajectory successfully passes through a via-point if the estimated

position passes close enough to the via-point (i.e. in an arbitrary region around the

via-point; see Figure caption for details). On this basis, we replicated the structured

variability in the via-point task in Fig. 5C. Yet, the question remains how such a task

can be appropriately modeled in SOFC or TOFC framework.

These results provide further support to the analysis of the preceding section.

Structured variability can be obtained with an optimal feedback controller which is

unaware of noise.
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12 Emmanuel Guigon et al.

4 Amplitude/duration scaling

An important issue is the possible origin of amplitude/duration scaling in stochastic

optimal control models. Scaling can result from time minimization to match a given

level of terminal variability (Meyer et al. 1988; Harris and Wolpert 1998). However,

this solution predicts that scaling is associated with constant terminal variability. Ex-

perimental observations show that variability can increase with movement amplitude

for series of movements obeying an amplitude/duration scaling law (Gordon et al.

1994a). Here, we explore an alternative (but not mutually exclusive) solution to scal-

ing in the framework of TOFC, based on time minimization to match a given level of

effort.

We first consider control in the absence of noise. In this case, there exists a mono-

tonic (and thus invertible) relationship between the effort associated to a movement

and its duration for a given amplitude (Fig. 6A). Thus a movement can be univocally

specified by its effort level. This property is formally stated as follows. The ongoing

effort can be used as an additional state variable (z; Appendix B). Specification of

movement duration (T ) can be replaced by specification of total effort (z(T ) = zT )

which is a classical boundary condition. Movement duration emerges from an opti-

mal control problem with open final time (Bryson and Ho 1975). This open final

time terminal controller is also an optimal feedback controller if the effort-to-go at

each processing step (calculated as the difference between the total effort zT and the

already spent effort) is used as an initial condition and by the way as an implicit in-

dication of the remaining time. In this framework, amplitude/duration scaling occurs

when an amplitude/effort relationship is chosen. The simplest relationship is a con-
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Optimality, stochasticity, and variability in motor behavior 13

stant effort (although other relationships could be used; see Discussion). We applied

this relationship to movements of different amplitudes and online corrections of these

movements (Fig. 6B; Pélisson et al. 1986). It predicted amplitude/duration scaling

for the unperturbed movements and a linear change in durations for the corrected

movements (Fig. 6C).

In the presence of noise, amplitude and total effort level are deterministic quan-

tities which are used initially as boundary conditions. In each single trial, the effort-

to-go is a well defined quantity which is used to determine the remaining time at

each step. Thus the functioning of the open final time TOFC is similar in noise-free

and noisy conditions. The sole difference is that, across trials, the effort-to-go is a

random variable in the latter condition, and so is the movement time. We simulated

the open final time TOFC in the presence of noise. The constant effort condition

led to the expected amplitude/duration scaling (Fig. 7A) and amplitude/peak veloc-

ity scaling (Fig. 7B). Here, the duration and peak velocity are mean quantities. We

observed that terminal variability (s.d.) varied linearly with peak velocity (Fig. 7C)

as was observed experimentally (Meyer et al. 1988; Burdet and Milner 1998; Novak

et al. 2000). For comparison, we replicated these simulations for nonconstant effort

conditions (Fig. 7A, inset). These conditions also produced amplitude/duration and

amplitude/peak velocity scaling (Fig. 7A,B), but nonlinear changes in terminal vari-

ability with peak velocity (Fig. 7C).

We also observed that scaling was not associated with a specific pattern of ter-

minal variability (Fig. 7D). In one simulation (black lines), variability increased with

movement amplitude, but other patterns can be found in other noise conditions (gray

lines). We note that the goal here was not to account for a particular pattern of vari-
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14 Emmanuel Guigon et al.

ability (e.g. Gordon et al. 1994a; van Beers et al. 2004), but simply to illustrate the

dissociation between scaling and variability.

5 Discussion

Influence of noise is central to current approaches of motor control (Harris and Wolpert

1998; Todorov and Jordan 2002; Saunders and Knill 2004). A critical issue is the role

of noise in the emergence of motor behaviors. Todorov and Jordan (2002) proposed

that motor controllers in the brain act as stochastic optimal feedback controllers

(SOFCs), and provided strong theoretical and experimental arguments that support

this idea. The main difficulty with this proposal is that a SOFC has no kinematic

competency. Historically, optimality principles have been used in the framework of

motor control to identify unique solutions to redundant problems (trajectory forma-

tion, muscle force repartition, ...). Since SOFC optimizes a parameter-dependent cost

function, it generates an infinite number of reasonable solutions to redundancy. A

supplementary principle is needed to choose among these solutions. Todorov (2005)

proposed to scale the parameters of the cost function with movement amplitude and

duration. Although this scaling is probably efficient, it means that the model should

contain some knowledge of its functioning (i.e. how biases, trajectories, velocity pro-

files depend on the parameters), or some criterion to evaluate its functioning (what

is a normal bias, a normal trajectory or a normal velocity profile?). This point con-

tradicts a major premise of the SOFC model that motor behavior arises from the

specification of a behavioral goal.

To circumvent this difficulty, we tested the idea that a different type of controller

(TOFC), which treats errors and effort separately, could be used to obtain both
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Optimality, stochasticity, and variability in motor behavior 15

kinematic and stochastic competencies. On the one hand, TOFC generates unique

kinematic behaviors since its cost function has no parameters (Guigon et al. 2007). It

should be noted here that satisfying a hard constraint (zero terminal error) does not

preclude the existence of a terminal bias. In fact, errors are measured relative to the

estimated state of the system which need not in general be similar to the real state. On

the other hand, our results show that structured variability (as defined by Todorov and

Jordan 2002) could result from the action of a deterministic controller coupled with

an optimal state estimator. These results are not sufficient to conclude that TOFC

has a real stochastic competency. It is possible that a truly stochastic controller is

necessary to account for motor variability in some experimental conditions. Although

we cannot reject this possibility, our analysis shows that a critical component which

allows a stochastic controller to master a stochastic system, i.e. an efficient state

estimator, is also present in TOFC. For the time being, we can conclude that TOFC

has more kinematic competency, but not less stochastic competency than SOFC.

A critical issue for models of motor control is to explain the scaling between

amplitude and duration. In TOFC, scaling occurs for movements which have the

same effort. This idea is closely related to the emergence of scaling for movements of

identical terminal variance in the MV model of Harris and Wolpert (1998). The main

difference between effort and terminal variance is the variability pattern prescribed

by the scaling law. In the latter case, variability is, by construction, constant. In

the former case, variability changes with movement amplitude with a pattern which

depends on the structure of noise. Constant variance and constant effort are the same

criterion in MV in the presence of SDNm. In this case, the optimal command is

the smaller command since noise increases with the size of the command. In TOFC,
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16 Emmanuel Guigon et al.

constant variance and constant effort are different criteria, which suggests that this

framework could be more appropriate than MV to explain amplitude/duration scaling.

The proposal that scaling is associated with constant effort (or constant variability

in the MV model) was made for simplicity. However, many different relationships

between amplitude and effort lead to scaling. The main interest of the constant effort

is its ecological interpretation: it can be considered as the largest effort that can

be alloted to a single motor act in a series (e.g. experimental session, day, race,

...) given the number of repetitions of this act and the available resources (control,

energy, ...). Furthermore, constant effort predicts that variability increases linearly

with peak velocity (Meyer et al. 1988; Burdet and Milner 1998; Novak et al. 2000).

This relationship is in general nonlinear when the effort is not constant. An interesting

alternative to explain scaling is simultaneous minimization of time and effort (Hoff

1994) using

T + ρ

∫ T

0

u(t)T u(t) dt (1)

as a cost function. Here, ρ is a parameter which sets the trade-off between time and

effort, and defines an amplitude/duration relationship. The two approaches lead to

quite similar results. Yet, the specification of effort appears more principled than the

specification of a hidden parameter (ρ).

Our results show that TOFC is an interesting alternative to SOFC. On the one

hand, the separation of constraints (error) and objectives (effort) relieves the difficul-

ties of the mixed error/effort cost. On the other hand, although it is not stochastically

optimal, TOFC can account for the structure of motor variability much like SOFC.

Thus TOFC could be an appropriate framework for a unified approach to motor con-

trol which would simultaneously account for mean characteristics of motor behavior
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Optimality, stochasticity, and variability in motor behavior 17

(e.g. kinematic invariants; Guigon et al. 2007) and structure of motor variability.

More generally, TOFC provides a principled solution to the Bernstein

problem. Interestingly, this problem raises fundamental questions in the

framework of computational neuroscience: How does the nervous system

tackle redundancy (Wolpert and Ghahramani 2000)? What is the nature

and influence of noise on sensory and motor information processing (Meyer

et al. 1988; Harris and Wolpert 1998; van Beers et al. 2004; Stein et al.

2005)? How does the nervous system control motor behavior in the pres-

ence of noise (Meyer et al. 1988; Harris and Wolpert 1998; Todorov 2004;

Trommershäuser et al. 2005; Chhabra and Jacobs 2006b)? How does the

nervous system perform state estimation and multimodal integration on

noisy information (Wolpert et al. 1995; van Beers et al. 1999; Knill and

Pouget 2004)? Thus the Bernstein problem is a fundamental computational

problem that goes far beyond motor control. The present results should

be of interest in a broad framework which encompasses experimental and

theoretical studies of behavioral variability.
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[Scholz and Schöner 1999] Scholz J, Schöner G (1999) The uncontrolled manifold con-

cept: Identifying control variables for a functional task. Exp Brain Res 126(3):289–

306.
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A SOFC

Derivation of the following results is found in Todorov (2005). We consider the stochas-

tic optimal feedback control problem defined by the noisy dynamics







xt+δ = Axt + But + np
t (process)

yt = Hxt + no
t (observation)

x̂t+δ = Ax̂t + But +Kt(yt −Hx̂t) (estimation)

np
t = ξt +

∑c
i=1 ε

i
tCiut (process noise)

no
t = ωt +

∑d
i=1 ǫ

i
tDixt (estimation noise)

(A.1)

where xt ∈ R
n is the state of the controlled system, ut ∈ R

m a control signal, A

the n × n process matrix, B the n × m control matrix, t = (0, δ, ..., Nδ = T ), δ

the discretization timestep, N the number of time steps, T the duration of process

simulation, yt ∈ R
p the observation vector, H the p×n observation matrix, x̂t the state

estimate, Kt the Kalman gain, ξt a n-dimensional zero-mean Gaussian random vector

with covariance matrix Ωξ (signal-independent motor noise; SINm), εt = [ε1t ...ε
c
t ]

a zero-mean Gaussian random vector with covariance matrix Ωε (signal-dependent

motor noise; SDNm), [C1...Cc] a set of n×m matrices, ωt a p-dimensional zero-mean

Gaussian random vector with covariance matrixΩω (signal-independent sensory noise;

SINs), ǫt = [ǫ1t ...ǫ
d
t ] a zero-mean Gaussian random vector with covariance matrix Ωǫ

(signal-dependent sensory noise; SDNs), [D1...Dd] a set of p × n matrices, and the

cost function

E[

T∑

t=0

xT
t Qtxt

︸ ︷︷ ︸

error

+

T∑

t=0

uT
t Rut

︸ ︷︷ ︸

effort

], (A.2)
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where E is the expectation over noise (SINm, SDNm, SINs, SDNs), Qt a task-specific

error matrix and R an effort penalty matrix. The symbol (T ) denotes the transpose

of a vector or a matrix.

The controller is

ut = −Ltx̂t, (A.3)

where 





Lt =
(
R+ BTSx

t+δB+

∑

i C
T
i Ω

εT (Sx

t+δ + Se

t+δ)Ω
εCi

)−1
BTSx

t+δA

Sx

t = Qt + ATSx

t+δ(A− BLt) +
∑

i D
T
i Ω

ǫTKTSe

t+δKtΩ
ǫDi

Se

t = ATSx

t+δBLt + (A−KtH)TSe

t+δ(A−KtH)

(A.4)

with Sx

N = QT and Se

N = On×n (null n× n matrix). The Kalman filter was






Kt = AΣe

t H
T (HΣe

t H
T +Ωω+

∑

iΩ
ǫDi(Σ

e

t +Σx̂

t +Σx̂e

t +Σex̂

t )DT
i Ω

ǫT )−1

Σe

t+δ = Ωξ + (A−KtH)Σe

t A
T +

∑

i Ω
εCiLtΣ

x̂

t L
T
t C

T
i Ω

εT

Σx̂

t+δ = KtHΣ
e

t A
T + (A− BLt)Σ

x̂

t (A− BLt)
T +

(A− BLt)Σ
x̂e

t HTKT
t +KtHΣ

ex̂

t (A− BLt)
T

Σx̂e

t+δ = (A− BLt)Σ
x̂e

t (A−KtH)T

(A.5)

with Σe

0 = Σ0, Σ
x̂

0 = x̂0x̂
T
0 , and Σx̂e

0 = On×n. See Todorov (2005) for the iterative

solution to Eq. A.4 and Eq. A.5.

B Optimal control with terminal constraints: Formal

Here, we briefly recall some textbook notions on optimal control problems with ter-

minal constraints in the general nonlinear case (Bryson 1999) and nonlinear state

estimation (Goodwin and Sin 1984).
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Formulation of the problem

We consider a dynamical system

ẋ(t) = f [x(t),u(t)] (B.1)

where x ∈ R
n is the state of the system and u ∈ R

m a control vector. An optimal

control problem for this system is to find the control vector u(t) for t ∈ [t0; tf ] to

minimize a performance index

J = φ [x(tf )] +

∫ tf

t0

L [x(t),u(t)] dt (B.2)

subject to Eq. B.1, with boundary conditions

x(t0) = x0 ψ [x(tf )] = 0. (B.3)

We consider the optimal control problem defined by Eq. B.1, Eq. B.2 and Eq. B.3.

We consider the supplementary state variable z defined by

ż(t) = L [x(t),u(t)]

and z(t0) = 0. Thus z(tf) is the second part of the performance index (Eq. B.2). We

define the new state variable

x̃(t) =







z(t)

x(t)






.

We can reformulate the optimal control problem in the following way: find the control

vector u(t) to minimize

J̃ = φ̄ [x̃(tf )] =







z(tf )

φ [x(tf )]







(B.4)
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subject to

˙̃x(t) = f̃ [x̃(t),u(t)] =







L [x(t),u(t)]

f [x(t),u(t)]







(B.5)

and

x̃(t0) = x̃0 =







0

x0







ψ̃ [x̃(tf )] =







0

ψ [x(tf )]







= 0. (B.6)

Thus we can remove the integral term in the performance index. This formulation

(Mayer formulation) is simpler for numerical methods.

Solution

Here, we consider the optimal control problem defined by Eq. B.4, Eq. B.5 and Eq. B.6.

For simplicity, we remove the tilde sign. We adjoin the constraints to the performance

index with Lagrange multipliers ν and λ(t)

J̄ = φ+ νTψ +

∫ tf

t0

λT (t) {f [x(t),u(t)] − ẋ(t)} dt.

The Hamiltonian function is

H [x(t),u(t),λ(t)] = H(t) = λT (t)f [x(t),u(t)].

The generalized performance index can be written

J̄ = Φ[x(tf )] − λT (tf )x(tf ) + λT (t0)x(t0) +

∫ tf

t0

{

H(t) + λ̇
T
(t)x(t)

}

dt

following integration of the λT ẋ by parts, where Φ = φ+ νTψ.

A variation of J̄ writes

δJ̄ =
[
(Φx − λT )δx

]

t=tf
+

[
λT δx

]

t=t0
+

∫ tf

t0

[(

Hx + λ̇
T
)

δx+ Huδu
]

dt
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for variations δx(t) and δu(t). The Lagrange mutlipliers are chosen so that the coef-

ficients of δx(t) and δx(tf ) vanish

λ̇
T

= −Hx = −λT fx, (B.7)

with boundary conditions

λT (tf ) = φx(tf ) + νTψx(tf ). (B.8)

For a stationary solution, δJ̄ = 0 for arbitrary δu(t), which implies

Hu = λT fu = 0 t0 ≤ t ≤ tf . (B.9)

The problem defined by Eq. B.1, Eq. B.7, Eq. B.8 and Eq. B.9 is a two-point

boundary value problem which can be solved by classical integration methods (Bryson

1999).

Terminal feedback control and Extended Kalman filter

In the stochastic case, equation B.1 becomes

ẋ(t) = f [x(t),u(t), ξ(t), ε(t)] (B.10)

and observation follows from

y(t) = h [x(t),ω(t), ǫ(t)] , (B.11)

To obtain a state estimator for Eq. B.10 and Eq. B.11, we need an extended Kalman

filter (EKF), which is an extension of the Kalman filtering principle for optimal non-

linear estimation. The EKF retains the linear calculation of the covariance and gain

matrices of the Kalman filter, and updates the state estimate using a linear function
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of a filter residual. State propagation is done using the original nonlinear equation.

Evolution of the covariance matrix P (t) (n× n) is governed by

Ṗ (t) = F (t)P (t) + P (t)F (t)T + Ωξ +GΩεGT −K(t)HP (t) P (t0) = P0 (B.12)

where

F (t) =
∂f [x(t),u(t), ξ(t), ε(t)]

∂x
,

G(t) =
∂f [x(t),u(t), ξ(t), ε(t)]

∂ε
=



















...

...

[Ciu(t)]
T

...

...



















.

and K(t) is the Kalman gain

K(t) = P (t)HT
[
Ωω + J(t)ΩǫJ(t)T

]
−1,

with

J(t) =
∂h [x(t),ω(t), ǫ(t)]

∂ǫ
=



















...

...

[Dix̂(t)]
T

...

...



















.

State propagation was governed by

˙̂x(t) = f [x̂(t),u(t)] +K(t) [y(t) −Hx̂(t)]

with

˙̂x(t0) = x̂0.

H
A

L author m
anuscript    inserm

-00212327, version 1



28 Emmanuel Guigon et al.

C Optimal control with terminal constraints: Practical

In the linear case, the problem defined by Eq. B.7, Eq. B.8 and Eq. B.9 is a first-order

linear dynamical system which can be solved explicitly. The solution consists in a

2n× 2n matrix Γ (t) such that






x(t)

λ(t)







= Γ (t)C (C.1)

is the solution at time t, where C ∈ R
2n is a vector determined by the boundary

conditions (Eq. B.3). To simplify we use ψ [x(tf )] = x(tf ) − xf , but more complex

boundary conditions can be handled as well. To obtain C, we write






x0

λ(t0)







= Γ (t0)C =







Γ11(t0) Γ12(t0)

Γ21(t0) Γ22(t0)













C1

C2







and 





xf

λ(tf )







= Γ (tf )C =







Γ11(tf ) Γ12(tf )

Γ21(tf ) Γ22(tf )













C1

C2






.

Thus 





Γ11(t0) Γ12(t0)

Γ11(tf ) Γ12(tf )













C1

C2







=







x0

xf






,

which gives

C =







Γ11(t0) Γ12(t0)

Γ11(tf ) Γ12(tf )







−1 





x0

xf






. (C.2)

A discretized version of the EKF was used with

Kt = FtPtH
T (HPtH

T +Ωω + JtΩ
ǫJT

t )−1, (C.3)

and

Pt+1 = FtPtF
T
t +Ωξ +GtΩ

εGT
t −Kt(HPtH

T )KT
t . (C.4)
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B

C D

A

E F

Fig. 1 Illustration of the Bernstein problem. A. Planar reaching movement with a redun-

dant arm (3 DOF). B. A successful movement reaches the target region (central gray circle).

C. Two successful movements with different final postures. D. Several successful movements

with different spatiotemporal characteristics. Inset: velocity profiles. E. Movement with vi-

sual feedback (from the target and the moving arm) and proprioceptive feedback (from the

muscles). F. Movement without visual feedback from the moving arm.
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Fig. 2 Mean normalized velocity profiles for 10 cm, 300 ms movements simulated with

SOFC. Mean was calculated over 500 trials (σSDNm = 0.1). Parameters were r = 1, wv = 4,

wf = 4 (1st profile) , r = 1, wv = 0.04, wf = 0.04 (2nd profile), r = 10, wv = 0.4, wf = 0.04

(3rd profile).
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Fig. 3 Conditions for the formation of an uncontrolled manifold in SOFC. A. Variation in

the aspect ratio of the terminal variability ellipse as a function of σSDNm. The task was a

line-pointing task. Movement duration was T = 500 ms and distance to the line was 30 cm.

The aspect ratio was calculated as the ratio between major and minor axis length of the

95% equal frequency ellipse calculated over 5,000 trials. Symbols: circle (SDNm known in

the controller and estimator, SINm unknown); square (SDNm known in the estimator only,

SINm unknown); diamond (SDNm unknown, SINm unknown); up triangle (SDNm unknown,

SINm known). In each case, SINs was present (σSINs = 0.3) and known. B. Example of

an uncontrolled manifold (circle in A; σSDNm = 0.4). The 95% equal frequency ellipse, 50

endpoints and 10 trajectories are shown. Inset: sample trajectory and velocity profile (black

solid: actual; gray dashed: estimated by the Kalman filter). C. Absence of UM (diamond in

A; σSDNm = 0.4).
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Fig. 4 Structure of variability in a via-point task. A. The task was to go from P0 = (0, 0) to

P4 = (a, 0) going through 3 points: P1 = (a/4, b), P2 = (a/2, 0), P3 = (3a/4, b). The passage

times are (0, t1, t2, t3, T ). Parameters were: a = 20 cm, b = 5 cm, T = 1.6 s, t1 = T /4,

t2 = T /2, t1 = 3T /4. B. Plain line (SDNm known in the controller and estimator); dashed

line (SDNm known in the estimator only); dotted line (SDNm known in the controller only).

In each case, σSDNm = 0.4, SINs was present (σSINs = 0.1) and known, and SINm was known.

The gray line shows the absence of structured variability when both SDNm and SINm were

unknown (σSDNm = 0.02). Variability has arbitrary units.
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Fig. 5 A. Variation in the aspect ratio of the terminal variability ellipse as a function of

σSDNm in the line-pointing task with TOFC. B. Example of an uncontrolled manifold (same

movement as in Fig. 3B). σSDNm = 0.4, σSINs = 0.8 (known). C. Same as in Fig. 4 for TOFC

(σSDNm = 0.4, σSINs = 0.4). The task was solved in the following way. We decided that a

via-point was reached when the estimate position of the system enters a 5 mm-radius circle

around the via-point. Starting from P0 at t = 0, we computed the optimal trajectory which

goes through P1 at t1 and through P2 at t2. The trajectory evolved and approached P1. Once

P1 was reached (according to the preceding criterion), we computed the optimal trajectory

which goes through P2 at t2 and through P3 at t3. The procedure was repeated until P4 was

reached.
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Fig. 6 Movements and on-line movement corrections at constant effort in TOFC. A. Move-

ment effort as a function of movement duration for different amplitudes (from bottom to

top: 30, 40, 50, 60 cm). The horizontal gray line indicates the effort level used in B, and

C. B. Velocity profiles of a normal (gray) and a perturbed (black) movement. Amplitude

was 30 cm and direction was 45◦. At t = 50 ms, the target was displaced by 4 cm in the

direction of movement. C. Variations in movement duration with amplitude for normal (◦)

and perturbed (square) movements (an arrow indicates the direction of the perturbation).

Movements of 30, 40, 50 cm were simulated (45◦). Same perturbation as in B.
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Fig. 7 Open final time TOFC in the presence of noise (σSDNm = 0.5, σSINs = 0.15,

σSDNs = 0.5). A. Amplitude/mean duration scaling for constant effort (circle) and noncon-

stant effort (open and closed square) conditions. Inset: amplitude/effort for the 3 conditions.

B. Amplitude/mean peak velocity scaling for the data in A. C. Changes in terminal accu-

racy (measured as the square root of the surface of the variability ellipse) with peak velocity

for the data in A. D. Pattern of variability for unperturbed movements in Fig. 6C in dif-

ferent noise conditions (black: σSDNm = 0.2, σSINs = 0.5, σSDNs = 1; gray: σSDNm = 0.2,

σSINs = 0.05, σSDNs = 1).
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