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Abstract (170 words) 

 

Transforming growth factor- (TGF-) is a cytokine that plays various functions in the 

control of Trypanosoma cruzi infectivity and in the progression of Chagas disease. When we 

immunostained Trypanosoma cruzi-infected cardiomyocytes (following either in vivo or in 

vitro infections) for TGF-, we observed stronger immunoreactivity in parasites than in host 

cells. TGF- immunoreactivity evolved during parasite cycle progression: intense staining in 

amastigotes versus very faint staining in trypomastigotes. TGF- was present on the surface 

of amastigotes, in the flagellar pocket and in intraparasitic vesicles as revealed by electron 

microscopy. However, no ortholog TGF- gene could be identified in the genome of 

Trypanosoma cruzi by in silico analysis or by extensive PCR and RT-PCR studies. 

Immunoreactive TGF- was most probably taken up by the parasite from the host cell 

cytoplasm since such an internalization process of biotinylated TGF-could be observed in 

axenic amastigotes in vitro. These observations represent the first example of a novel 

mechanism by which a primitive unicellular protozoan can use host cell TGF-to control its 

own intracellular cycle.  
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Introduction 

Chagas disease is a human disease caused by infection with the flagellate parasite 

Trypanosoma cruzi (T. cruzi) which affects about 15 million people in Latin America 
1
. 

Infective non-replicative trypomastigote forms of the parasites circulate periodically in the 

blood of chronic patients whereas proliferative intracellular amastigotes persist in tissues 
2
. 

Heart damage and dysfunction are important features in patients with chronic Chagas disease 

and numerous studies are conducted to elucidate the physiopathology of this disease 
3
. A role 

for parasite antigens has been proposed to explain the development of extensive fibrosis that 

is characteristic of the cardiac form of Chagas disease 
4
. We previously reported that 

circulating levels of Transforming Growth Factor-1 (TGF-1) are increased in patients with 

the cardiac form of Chagas disease 
5
. In addition, we observed a contrasting pattern of 

fibronectin and phosphorylated Smad 2 (an intracellular signal-transducing protein 

phosphorylated by activated TGF- receptors) immunoreactivity in the hearts of patients with 

Chagasic cardiopathy 
5
, indicating that the TGF- signaling pathway is highly active in these 

patients. All these observations point to a functional link between TGF-1 and the parasite T. 

cruzi in the etiology of Chagasic myocardiopathy.  

TGF- is the prototypic member of a family of polypeptidic growth and 

differentiation factors which play a great variety of biological functions in such diverse 

processes as inflammation, fibrosis, immunosuppression, cell proliferation, cell differentiation 

and cell death 
6-8

. Virtually all cells synthesize and secrete TGF- as a biologically inactive 

protein complex termed latent TGF-, which is stored in the pericellular environment. Latent 

TGF- activation results from different enzymatic and non-enzymatic mechanisms 
9
 and only 

the active form of TGF- can interact with the specific transmembrane TGF- receptors at the 

cell surface, inducing cell signaling and biological responses. TGF-has already been 

implicated in three important processes associated with Chagas disease: (a) stimulation of 
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fibrosis 
5,10

; (b) parasitic cell invasion 
11,12

; (c) down-regulation of cellular and immune 

mechanisms of parasite control 
13,14

. During the course of our studies on the regulation of 

fibrosis during T. cruzi infection 
10

, an interesting observation was made: immunolabeling of 

infected cardiomyocytes using a polyclonal antiserum against human TGF- revealed 

immunoreactivity in the intracellular amastigote forms of T. cruzi. In the present work, we 

further documented this observation and addressed the question of the origin of this intra-

parasitic TGF-. Did it result from synthesis by the parasite or was it taken up from the host 

cell cytoplasm? Our results indicated that the parasite is able to internalize host cell TGF-, to 

accumulate it during its intracellular proliferation phase and suggested that it may use it as a 

signaling mediator to trigger differentiation into trypomastigote. So, like for various other 

species, TGF-appears as a regulator of the developmental events driving T. cruzi life cycle.  

 

Materials and Methods 

In situ immunohistochemical staining: Paraffin-embedded myocardial sections (5 m) 

were obtained from T. cruzi-infected mice as described elsewhere 
10

. Sections were incubated 

in 10mM citrate buffer and microwaved for 2 x 10 minutes, followed by saturation for 1 hour 

at room temperature with 5% normal goat serum in TBS-BSA (Tris-buffered saline/ 1% 

bovine serum albumin). Sections were double stained with anti-human TGF- antibody (AB-

100-NA, R&D Systems, Oxon, UK) 1:50 and 4,6-diamidino-2-phenylindole (DAPI, Sigma, 

St Louis, MO) 1:5000. After 3 washes with TBS-BSA, secondary FITC-conjugated goat anti-

rabbit IgGs (Jackson Laboratories, West Grove, PA) were added at 1:100 for 1 hour at room 

temperature.  

In vitro T. cruzi-heart cell infection: Mouse embryo cardiomyocytes were obtained and 

grown in primary culture as previously described 
15

. Briefly, cells were seeded in 24-well 

plates, incubated for 24 hours at 37°C in a 5% CO2 atmosphere, and cultured in Eagle’s 
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medium supplemented with 0.1% fetal calf serum, 1mM glutamine and 2.5 mM CaCl2. To 

analyze T. cruzi proliferation and differentiation in cardiomyocytes, sub-confluent 

monolayers were incubated at 37°C with T. cruzi trypomastigotes (Y strain) in a parasite/host 

cell ratio of 10:1, washed out after 24 hours and monitored for different periods of time (24-

96 hours). At each time point, the cultures were washed twice in PBS, fixed in 4% 

paraformaldehyde for 20 minutes at 4°C and processed for immunocytochemistry.   

Immunocytochemical staining: Cell monolayers were incubated with PBS-BSA (Phosphate 

buffered saline/Bovine Serum Albumin 2%) for 3 x 10 minutes and then incubated overnight 

at 4°C with rabbit anti-human TGF- antibodies (AB-100-NA, R&D Systems) or with non-

immune rabbit serum diluted 1:100 in PBS. The monolayers were further incubated for 1 hour 

at room temperature with the secondary antibody (goat-anti-rabbit IgG-FITC diluted 1:100; 

Jackson Laboratories), incubated for 30 minutes at room temperature with phalloidin-TRITC 

(1:500) in order to stain actin fibers and then with DAPI (1:5000) to stain DNA. The slides 

were then mounted in CytoFluor AF1 (Agar Scientific, Stansted, UK) and observed under a 

confocal laser microscope (Leica Microsystems, Wetzlar, Germany). Image processing was 

performed using Zeiss KS-400 software. 

Electron microscopy analysis: Cells were fixed for 60 minutes at 4°C in a solution 

containing 0.2% glutaraldehyde, 4% freshly prepared formaldehyde, 0.8% picric acid in 0.1 

M cacodylate buffer, pH 7.2. Following a post-fixation in 1% OsO4 containing 1.5% 

potassium ferrocyanide for 30 minutes at 4C, the samples were dehydrated in graded ethanol 

series, embedded in lowicryl and collected on nickel grids coated with formvar and carbon. 

For immunolabeling, sections were washed in phosphate-buffered saline-3% albumin, 

quenched in 50 mM NH4Cl for 30 minutes, incubated for 1hour at 37°C in the presence of 

rabbit anti-TGF- antibodies (R&D Systems, diluted 1:50), washed three times, and incubated 

with 5 nm gold particles linked to goat anti-rabbit IgGs (1:100 dilution) for 1 hour. Sections 
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were thinly embedded in a 9:1 mixture of 3% polyvinyl alcohol and uranyl acetate and 

observed with a transmission electron microscope (EM10C, Zeiss, Oberkochen, Germany) 

operated at 80 kV. Controls were carried out using normal rabbit IgGs or omitting the primary 

antibody.  

Amastigogenesis in vitro: The infective trypomastigote forms of T. cruzi Y strain were 

obtained from the blood of infected mice at the peak of parasitaemia. In all assays, the living 

parasites were incubated in serum-free medium.  The multiplicative amastigote forms were 

obtained 24 and 48 hours after acid induction as previously described 
16

, and counted in a 

Neubauer chamber.  

In vitro proliferation of amastigotes: After 4hours of acid induction, amastigotes (10
6
/ml) 

were incubated with 10 ng/ml of recombinant TGF-1 (Promega). 24 hours and 48 hours 

later, the live parasites were counted in each sample in a Neubauer hematimeter.  

TGF-binding to amastigotes in vitro: The multiplicative amastigote forms were obtained 

48 hours after acid induction as previously described 
16

. 0.5 x 10
6
 axenic amastigotes were 

incubated for 60 minutes at 4
o
C with 20ng biotinylated human TGF- (R&D Systems) in 

45l PBS. 10l of streptavidin-FITC (10 g/ml) were then added and incubation was pursued 

in the dark for 30 minutes at 4
o
C. The parasites were washed twice, suspended in 0.2 ml of 

washing buffer (RDF1, R&D Systems) and analyzed as living organisms in a flow cytometer 

(FACSCalibur, BD Biosciences, San Jose, CA). For confocal fluorescence microscopy 

observation, the parasites were sequentially incubated with biotinylated TGF- and 

streptavidin-FITC as described above and eventually further incubated for 2 hours at 37°C to 

allow internalization of the TGF- biotin-avidin-FITC complexes. The labeled parasites were 

then fixed with 4% paraformaldehyde and seeded onto polylysine-coated slides. Negative 

controls were incubated with biotin instead of TGF--biotin or with streptavidin-FITC alone.  
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Search for TGF- genes in T. cruzi genome: Genomic DNA was prepared from the T. cruzi 

II CL-Brenner and T. cruzi I Dm28c strains using standard procedures. Search for TGF--like 

sequences in the T. cruzi genome were performed by BLAST alignments of the TGF- 

sequences from various species including Homo sapiens, Mus musculus, Drosophila 

melanogaster, Brugia malayi and Caennorhabditis elegans on the T. cruzi genome resource 

(TcruziDB, release 2.2, http://tcruzidb.org/). The same sequences were aligned between them 

using Mac Vector Align software and several sets of degenerate oligonucleotide primers were 

selected from the most conserved protein sequence domains using the CODEHOP software 

on the Infobiogen website (http://www.infobiogen.fr/). These were used for PCR 

amplification of T. cruzi genomic DNA. The sequences of the obtained amplicons were 

determined by Genome Express (Meylan, France).  Control RT-PCR amplification of 

mammalian TGF-genes was performed using RNAs from human placenta or mouse adrenal 

glands. Control of  T. cruzi DNA quality was achieved by amplifying the parasite actin gene.  

 

Results 

Presence of TGF- immunoreactivity in intracellular amastigotes:  

We previously reported that the TGF- signaling pathway is activated in the infected hearts 

of human patients with Chagasic cardiomyopathy 
5
. In order to better understand this 

mechanism, we wondered whether TGF- was detectable in the hearts of T. cruzi-infected 

mice. The analysis was performed on day 22 post-infection, when the parasites have infected 

various tissues including the heart 
10

. To our surprise, using a pan-specific polyclonal anti-

TGF- antibody that recognizes mammalian TGF-1 and TGF-2 as well as Xenopus TGF-

we observed that TGF- immunoreactivity was more intense on intracellular parasites 

(essentially amastigotes) than in the cytoplasm of cardiomyocytes (Fig. 1B). To confirm this 

observation, we performed an in vitro infection of cultured mouse embryo cardiomyocytes 

http://tcruzidb.org/
http://www.infobiogen.fr/
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with T. cruzi trypomastigotes and stained the infected cells on day 2 post-infection with the 

same anti-TGF- antibody. The immunostaining was similar to that observed in infected 

heart with a stronger staining of the intracellular forms of the parasite (again amastigotes) 

than of the host cell cytoplasm (Fig. 1F, G). Control staining with non-immune IgGs only 

displayed a weak background reactivity (Figure 1D) in regions where DAPI staining (Fig. 

1C) showed the presence of the parasites. Careful analysis of the pictures clearly indicated 

that TGF- immunoreactivity (Fig. 1B, F) was present in every parasite as assessed by DAPI 

staining of their nuclei and kinetoplast (Fig. 1A, E). Using a monoclonal anti-TGF-1 

antibody (Genzyme), we obtained a similar although slightly less intense immunostaining 

(data not shown).  

Piled up confocal images showed that TGF- staining was present in the parasite 

cytoplasm (Fig. 1F, G), but absent in the nucleus and kinetoplast, since DAPI staining of 

these DNA-containing structures (Fig. 1E, arrows) did not overlap with TGF- 

immunoreactivity. An enlarged view of amastigotes disclosed a patchy staining (Fig. 1G) and 

serial confocal sections of amastigotes revealed the presence of large fluorescent spots in the 

parasite cytoplasm that could correspond to internalization or externalization vesicles (Figs. 2 

A, B, C). In these latter images, which corresponded to three out of nine inner sections in 

parasites that measure about 3-5 m in diameter, the labeling was localized in granules (Figs. 

2 B, C, arrows) and in the area of the flagellar pocket, as seen in longitudinal (Figs. 2 B, C, 

closed arrowhead) or sagittal (Figs. 2 B, C, open arrowhead) section planes. To further 

characterize the intraparasitic TGF- immunostaining, we deconvoluted the confocal images 

taken on infected cardiomyocytes along the z axis (Fig 2D). This allowed us to confirm that 

the stained vesicular structures were inside the parasite rather than on its surface.  

To better explore these aspects, electron microscope immunolabeling was performed 

on lowicryl-embedded sections of parasitized cardiomyocytes using immunogold particles 



 

 10 

and anti-TGF- antibodies (Fig. 3 A, B). In all 38 EM images that were generated, gold 

particles could be seen on the surface, in the flagellar pocket (fp), and in granules (g) of 

amastigotes. TGF- thus appeared to be localized in the endocytic/exocytic parasite 

machinery.  

Absence of a TGF- ortholog gene in the T. cruzi genome:  

 These intriguing observations suggested two possibilities concerning the origin of 

TGF- immunoreactivity. Either a TGF--like molecule is synthesized by the parasite and its 

sequence is sufficiently conserved to be recognized by both polyclonal and monoclonal anti-

vertebrate TGF- antibodies, or mammalian TGF- is taken up by the intracellular parasites 

from the host cells.  

 We first tried to address the question of the possible existence of a TGF- gene in 

the T. cruzi genome. Members of the TGF- superfamily of growth and differentiation factors 

have been identified in a wide variety of organisms, ranging from invertebrates to mammals 

6,17-19
, and the existence of molecular mimicry between T. cruzi and mammalian hosts 

20
 

suggested that a TGF- ortholog might exist in the T. cruzi genome. Conserved peptide motifs 

throughout TGF- proteins, spanning species from nematodes to human, were identified. We 

chose to study four such motifs from the N-terminal part, and four motifs from the C-terminal 

part, corresponding to the least amount of degenerate codon possibilities. Next, using a T. 

cruzi specific codon table, non-degenerate primers were designed corresponding to the 

selected sequences. In this way, 4 forward primers and 4 reverse primers were synthesized 

and used in different combinations so as to amplify potential TGF- gene fragments by PCR 

on T. cruzi genomic DNA, since the T. cruzi genes are intronless (Table 1). Under stringent 

PCR conditions, no amplification was obtained whereas, under less stringent conditions, 

several bands could be obtained with some combinations of primers. However, after 

sequencing of the amplification products, none of these fragments proved to have any 
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homology with TGF-. We then designed conserved and/or degenerate primers from the 

alignment of human, bovine, murine and C. elegans TGF-and performed RT-PCR 

analyses on RNAs from human placenta and murine adrenal glands and PCR analyses on 

T.cruzi DNA (Table 1). Although correct amplification could be obtained with mammalian 

tissues, no amplification of a TGF--related gene was obtained from T. cruzi cDNA or 

genomic DNA. 

 We then performed extensive in silico BLAST searches (BlastP against all putative 

T. cruzi ORFs larger than 50 amino acids, or tBlastN with TGF-1 protein sequences against 

all T. cruzi sequences translated in 6 frames) at the T. cruzi genome database 

(http://tcruzidb.org or http://www.genedb.org). Blast servers using the July 2004 sequence 

data release for the T. cruzi genome, representing an excess of 16x coverage of the genome 

were performed without success: none of the potential ORFs presented any significant 

homology with the known sequence of mature TGF-1 (C-terminal end of the gene product) 

from different species. The T. cruzi genome is expressed through poly-cystronic transcription, 

followed by RNA processing involving simultaneous trans-splicing and polyadenylation. So 

far, only one single example of cis-splicing has been detected in T. cruzi involving the 

poly(A) polymerase (PAP) gene that contains a single intron 
21

.  We can therefore be very 

confident that potential cis-splicing cannot be invoked to explain the lack of TGF- 

homologous sequences in T. cruzi through either Blast searches or PCR analyses. We 

therefore concluded that T. cruzi genome was very unlikely to contain any TGF--like gene 

and that the intense TGF- immunoreactivity observed in amastigotes should derive from host 

uptake and accumulation inside the amastigotes.   

 T. cruzi can take up exogenous TGF-:  

We then tried to check whether T. cruzi amastigotes could bind and internalize 

exogenous TGF- An experimental model allowing to produce T. cruzi amastigotes under 

http://www.genedb.org/
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host cell-free conditions has been described: acidic pH treatment of trypomastigotes collected 

either from the supernatant of infected mammalian cells or from the blood of infected mice 

induces amastigogenesis and yields viable and proliferating amastigotes 
16,22

. Blood 

trypomastigotes were acid-induced in vitro to differentiate into amastigotes and these were 

incubated with biotinylated TGF-for 1 hour at 4°C. After extensive washes, the parasites 

were incubated with streptavidin-FITC and analyzed by flow cytometry. In parallel, some 

preparations were eventually further incubated at 37°C to allow internalization, then fixed, 

spread on a glass slide and observed under a confocal microscope. Flow cytometry analysis of 

amastigotes permitted the design of an unambiguous window containing parasites (polygon in 

Fig. 4A), and the fluorescence analysis inside this window revealed that about 25% of the 

parasites had bound biotinylated TGF- (Fig. 4B). Images of the parasites incubated at 4°C 

with biotinylated TGF- revealed patches of fluorescence in the region of the cytostome (Fig. 

4C, D). If the parasites that had bound biotinylated-TGF- at 4
o
C were then submitted to a 

further incubation for 120 min at 37
o
C, microscopic observation of the parasites revealed 

homogeneous fluorescent labeling of the whole cytoplasm (Fig. 4E). Confocal deconvolution 

of the images confirmed that the fluorescence was intracellular but, due to the extreme 

flatness of the fixed axenic amastigotes, it was impossible to discern intraparasitic structures. 

No staining was observed when the parasites were incubated with biotin instead of 

biotinylated TGF- (Fig. 4For with streptavidin-FITC alone (Fig. 4G). This prompted us to 

conclude that axenic amastigotes are able to bind and internalize exogenous TGF-.  

T. cruzi TGF- immunoreactivity is modulated during the intracellular parasite cycle:  

We then wondered whether T. cruzi parasites were constantly immunoreactive for 

TGF- during the intracellular parasitic cycle. Cultures of infected cardiomyocytes were fixed 

at various periods of time post-infection and TGF- immunoreactivity (stained with anti-

TGF--FITC) was imaged by piling up confocal microscopy images. The cells were stained 
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for actin using phalloidin-TRITC in order to visualize the host cell architecture in red. Image 

processing using a threshold value for eliminating background FITC fluorescence confirmed 

the localization in the parasite cytoplasm and the specificity of the TGF- staining (shown in 

light blue Fig. 5C,F,I). At 24 hours and 48 hours, the parasites were mainly amastigotes as 

characterized by DAPI staining (Fig. 5A,D) and were intensely stained for TGF-(Fig. 

5B,C,E,F. As shown in the insert of Fig. 5E, the pattern of staining appeared cytoplasmic 

with the location of the nucleus appearing as a “black hole” (as already noted in Figs 1F,G). 

At 72 hours, TGF- staining was still strong, but more heterogeneous (Fig. 5H,I), indicating a 

progressive decrease of TGF- immunoreactivity. This decrease was much more pronounced 

at 96 hours, when differentiation to trypomastigote was complete as shown by DAPI staining 

(Fig. 5J, arrows) and only a faint staining remained detectable (Fig. 5K,L, arrows). Specificity 

of the TGF- labeling was confirmed by absence of staining in negative controls that were 

treated with non-immune serum and FITC-labeled secondary antibodies (data not shown). 

Image processing of the original immunofluorescence micrographies allowed a better view of 

the changes in TGF-reactivity in the parasites during the intracellular cycle (Fig. 5C,F,I,L) 

and confirmed the dramatic decrease in TGF-immunoreactivity during the transition of 

amastigotes toward trypomastigotes. 

To further illustrate this transition, we analyzed intraparasitic immunoreactivity in 

cardiomyocytes that were infected for 72 hours and contained parasites at different stages of 

development. The cell shown in Fig. 6A (shown in higher magnification in Fig. 6C,E,G,I) 

contained parasites that were heterogeneously immunoreactive for TGF-. DAPI staining of 

parasite DNA (Fig. 6B, shown at higher magnification in Fig. 6D,F,H,J) allowed to recognize 

amastigotes (yellow circles, Fig. 6C,D,E,F) from transitional forms (orange ellipses, Fig. 

6C,D,G,H) and trypomastigotes (purple ellipses, Fig. 6C,D,I,J). TGF-immunoreactivity was 

strong in all amastigotes, weak in all trypomastigotes and either strong, mild or weak in the 
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transitional forms. As all these forms co-existed in the same cardiomyocyte, it can be 

concluded that the loss of TGF- immunoreactivity is not dependent on changes in the host 

cell cytoplasm but is rather an intrinsic response of the parasite associated with cycle 

progression from amastigote to trypomastigote. 

 TGF induces amastigote growth inhibition:  

The progressive decrease of TGF-immunoreactivity observed during the amastigote-

trypomastigote transition is concomitant with the arrest of intracellular parasite proliferation. 

As TGF-is a well established growth inhibitor for a number of mammalian cell types 
23

, 

we wondered whether it could have a similar effect on T. cruzi amastigotes. We measured the 

proliferation of axenic amastigotes for 24 and 48h, in the presence or absence of recombinant 

TGF-1 (Table 2). The results from three different experiments showed that, under control 

conditions, the parasite population doubled between 24 hours and 48 hours (ratio 48/24h = 1.9 

± 0.2), whereas in the presence of 10 ng/ml TGF-1, the growth was markedly reduced (ratio 

48/24h = 1.3 ± 0.1). This difference was statistically significant (p=0.05) and was emphasized 

(p=0.007) by the effect of neutralizing the cytokine with anti-TGF-. This halt in proliferation 

was not due to parasite cell death, since parasite motility was sustained and vital labeling with 

propidium iodide did not show any important modification (data not shown).  

 

Discussion:  

The present results strongly suggest that the protozoan Trypanosoma cruzi takes up 

TGF- from its mammalian host cell, captures it through its cytostome in the flagellar pocket 

and concentrates it in intracellular vesicles during specific stages of its intracellular cycle. 

Maximal accumulation occurs at the amastigote stage and a sudden decay of this storage is 

observed during the transition from amastigote to trypomastigote. The observation of an anti-

proliferative effect of exogenous TGF- in axenic amastigotes and the fact that TGF- is 
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captured and accumulated by the parasites during the period of multiplication (amastigote 

stage) may indicate that the capture of cellular TGF- might reflect an essential need of the 

parasite for a host cell molecule that can be used to regulate its own intracellular cycle.   

How can the parasite pick up TGF- inside its host cell?  This is an intriguing 

question as TGF-being a secreted protein, possesses a signal peptide and is therefore 

synthesized in the lumen of the endoplasmic reticulum, glycosylated in the lumen of the Golgi 

apparatus and constitutively secreted without being released in the cytoplasm. Also, TGF-

is synthesized under a latent form consisting of a non-covalent association between the 

dimeric precursor part of the TGF-gene product (LAP: Latency-Associated Peptide) and 

the dimeric mature protein (C-terminal peptide). This maturation occurs along the secretion 

pathway. The antibody that we used for TGF-immunolocalization has been raised against 

the mature isoforms TGF-1, TGF-2 and TGF-5 and does not recognize the C-terminal 

peptide when it is engaged in a latent complex. However, it has been widely shown that the 

fixation steps necessary for immunofluorescence analyses can activate latent TGF- and 

render the C-terminal peptide accessible to the antibody. In other terms, under our 

experimental conditions, the antibody recognizes both mature and latent TGF-, and the 

observed immunoreactivity may correspond to either of these two forms. Three properties of 

the parasite may explain how it can gain access to cellular TGF-. First, the parasite has been 

shown to be in close contact with endoplasmic reticulum membranes of the infected cell 

(Meirelles, MNL, personal communication); second, it has the capacity to engulf membrane 

vesicles 
24

; third, as shown in this study, it has the capacity to bind and internalize 

recombinant TGF-. Our hypothesis is that amastigotes could take up TGF--rich secretory 

vesicles through their flagellar pocket. In agreement with this hypothesis, electron microscopy 

showed that TGF- was present in the flagellar pocket, a major exchange vesicle, as well as in 

other intracellular granules. Multifunctional endocytic receptors that interact with TGF- or 
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with other proteins associated with TGF- could be potential candidates, e.g. the LRP 

(LDL-receptor related protein)/A2M-R(2-macroglobulin receptor) that we previously 

described in T. cruzi 
25

. It was recently shown that the type-V TGF- receptor, which plays an 

important role in growth inhibition by TGF- in responsive cells, is identical to the LRP-

1/2-M receptor 
26

.  

The absence of a TGF--like gene in the genome of T. cruzi was somehow 

unexpected since such orthologs (homologous genes in different organisms) have been found 

in the genomes of nematodes, ascidians and insects. However, T. cruzi belongs together with 

other kinetoplastids and with euglenoids to the phylum of Euglenozoa 
27

. It must be noted that 

this phylum is more ancestral than those of Craniates, Arthropods and Nematods in which 

TGF-orthologs have been characterized. 

The rapid decrease of TGF- immunoreactivity during the transition from 

amastigote to trypomastigote also opens a number of questions. This decrease may result 

either from secretion into the host cell cytoplasm of TGF- that was accumulated inside the 

parasite, or from a degradation or modification of the stored TGF-in a way that masks its 

immunoreactivity. If this is the result from secretion, then TGF-would flow into the cell 

cytoplasm and probably induce parasite proliferation arrest, which is what occurs at this 

specific stage of the parasite cycle. Then, active TGF-released during host cell disruption 

could directly induce extracellular matrix protein synthesis by other infected and/or non-

infected cardiomyocytes, thus promoting heart fibrosis by itself, as shown previously 
4,5,10,13

.    

Moreover, the present results also suggest the presence of TGF-receptor(s) on T. 

cruzi cell surface, as well as the existence of a downstream signaling pathway which would 

trigger the anti-proliferative effect of TGF-Orthologs of the canonical serine-threonine 

kinase TGF-receptors (TI and TRII) and Smad proteins have been identified in the 
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helminth parasite Schistosoma mansoni 
28-30

 but could not be found after in silico analysis of 

the T. cruzi genome. However, several non-Smad signaling pathways are now known to be 

activated or modulated by TGF-in eucaryotic cells. These include the Jun-kinase, p38MAP-

kinase, Ras/MEK/ERK, Rho-A/p160ROCK and PP2A/S6kinase 
31

. Interestingly, homologs 

of Ras 
32

, Rho 
33

 and ERK 
34,35

 have been characterized in Trypanosoma cruzi and 

Trypanosma brucei, suggesting that at least some of these alternative TGF- pathways might 

be functional in these parasites. A more detailed molecular analysis of T. cruzi TGF-

binding proteins and downstream signaling molecules is under current investigation in our 

laboratories. It should be remarked that other mammalian growth factors (namely EGF and 

TGF-) have been shown to induce signal transduction events and cellular proliferation in T. 

cruzi amastigotes through binding to specific receptors 
36,37

.  

The novel role of host cell TGF- described herein, adds complexity to T. cruzi 

biology and discloses additional functions for this cytokine in Chagas disease. TGF-thus 

appears : (i) to be generated at the host cell surface via parasite-mediated activation of latent 

TGF-
 38

, (ii) to induce downstream signaling along the host cell TGF- receptor pathway 

thereby favoring cell invasion 
11,12

, (iii) to be taken up intracellularly by the parasites and to 

control differentiation from amastigotes into trypomastigotes (present study), and (iv) to 

trigger fibrosis in Chagas cardiomyopathy 
4,5,10,13,14

.  
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Table 1: PCR primers used in the attempts of amplification of a putative TGF--

related gene from T. cruzi DNA. 

Forward primers Reverse primers RT-PCR/ 

human 

tissue 

RT-PCR/ 

mouse 

tissue 

PCR/T.cruzi 

Primers designed from conserved TGFß sequences across species using the T. cruzi-specific genetic code  : 

F1:ACGTGCAAGACAATCGACAT

GGA 

R2:CCGTGCTGTGTGCCTCAGGC  

 

Not tested 

 

 

Not tested 

YES (F1R2; F1R3; 

F2R2;  F2R3; F2R4; 

F3R2; F3R3; F3R4; 

F3R5; F4R2; F4R4 and 

F4R5) but not relevant 

NO (other combinations) 

F2:CAGGGCGAAGTGCCCCCAG

GTCC 

R3:TACAACCAGCACAATCCAGCA

GC 

F3:CCCGAGCCGGAAGCCGACT

ATTACGCGAAGGAG 

R4: GGACCCTGCCCGTACATTTGG 

F4:TTTGACGTGACAGGAGTGGT R5:GGCTGGAAATGGATTCATGAG

CCAAAGGGTT 

 

Primers designed from human, bovine or murine TGFß1 sequences : 

F9:ATTGACTTCCGCAAGGACC 

Homo sapiens TGFß1  

(M38449) nt 64-82 

R9:TCCAGGCTCCAAATGTAGGG 

Homo sapiens TGFß1  

(M38449) nt 164-145 

 

YES 

 

NO 

 

NO 

F10: CCCTGCCCTTACATCTG 

Bos taurus TGFß1  

(M36271) nt 750-766 

R10: CAACTGCTCCACCTTGG 

Bos taurus TGFß1  

(M36271) nt 914-898 

 

YES 

 

NO 

 

NO 

F11:TAGGAAGGACCTGGGTTG

GAAGTG 

Mus musculus TGFß1  

(M13177) nt 1258-1281 

R11:CGGGTTGTGTTGGTTGTAGAG

G 

Mus musculus TGFß1  

(M13177) nt 1396-1375 

 

YES 

 

YES 

 

YES but not relevant 

 

Degenerate primers designed from aligned human, murine and C. elegans TGFß1 sequences:  

F12:CCCCGAGTGGATCGAACTT

YGAYGTNAC 

(NM000660) nt 1442-1469 

R12:CCAGTTGTCCTTGCCGAARTC

NAYRTA 

(NM000660) nt 1797-1771 

 

YES 

 

YES 

 

YES but not relevant 

F13:CCCGAGTGGATCGACTTYG

AYGTNACNG 

(NM000660) nt 1443-1470 

R13:GCCCTGGCAGAAGTAGGCRT

SRTANCC 

(NM000660) nt 1843-1817 

 

YES 
 

YES 

 

NO 
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Table 2: Effect of TGF- and anti-TGF-n in vitro proliferation of axenic amastigotes. 

Experiment Condition 

Number of amastigotes (x 

10
4
) 

 Proliferation ratio 

(over 24 h) 

  24h 48h  

exp#1 PBS 75.0 155.0 2.07 

exp#1 TGF-
*
 245.0 295.0 1.20 

exp#1 anti- TGF-
**

 42.5 100.0 2.35 

exp#2 PBS 22.5 41.5 1.84 

exp#2 TGF-
*
 34.5 45.7 1.32 

exp#2 anti- TGF-
**

 14.0 35.0 2.50 

exp#3 PBS 68.5 117.0 1.71 

exp#3 TGF-
*
 61.0 80.3 1.32 

Mean ±sd PBS     1.9±0.2 

Mean ±sd TGF-
*
     1.3±0.1 

Mean ±sd anti- TGF-
**

     2.4±0.1 

p (PBS vs anti-

TGF-)
 
       0.23 

p (PBS vs TGF-)       0.05 

p (anti-TGF- vs 

TGF-)       0.007 

* 
TGF = recombinant TGF-1 10 ng/mL; 

**
anti-TGF (R&D, 10 ng/mL) 
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Legends to the Figures 

 

Figure 1: Presence of TGF- immunoreactivity in intracellular forms of Trypanosoma 

cruzi.  

(A-B) Double immunofluorescent staining for DNA (A) and TGF-B) in sections from 

heart tissue of T. cruzi-infected mice (collected 22 days post-infection). Note that TGF-

staining is localized in the cytoplasm of parasites. 

(C-G) Double immunofluorescent staining for DNA (C, E) and TGF- (F, G) in cultures 

of mouse cardiomyocytes, fixed 48 hours post-T. cruzi infection. In (D), control staining 

was performed with non-immune rabbit IgGs instead of anti-TGF- antibodies. The 

localization of intracellular parasites in (F) was revealed by DAPI staining of the infected 

cells immunolabeled for TGF-in (E). Specific TGF- immunoreactivity is observed in 

the intracellular forms of the parasites. Fig. 1F corresponds to the stack of serial confocal 

sections whereas a larger magnification of one single-plane section is shown in Fig. 1G. 

Note the patchy pattern of staining in parasites in which black holes corresponding to 

nuclei may be seen (arrows). (Bar = 20 m in A-F, Bar = 10 m in G) 

 

Figure 2: Confocal microscopy observations of intraparasitic TGF- immunoreactivity  

Figures A-C: correspond to three out of nine successive confocal sections taken around 

the middle of the z axis. Staining is observed in cytoplasmic granules (arrows) and in the 

flagellar pocket (arrowheads) both in longitudinal (close arrowheads) or in sagittal (open 

arrowheads) sections of the parasites.  D: Large magnification of a confocal single-plane 

image of TGF-detection in intracellular T. cruzi. The analysis was performed along the 

x-y axes (central panel), the x-z axes (lower panel) and the y-z axes (right panel). The 
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white lines indicate the axes along which the deconvolution was performed. Note the 

fluorescent internal vesicles clearly visible along the z axis. (Bar = 10 m in Fig A-C) 

 

 

Figure 3: Detailed observation of intraparasitic TGF- immunoreactivity by electron 

microscopy.  

A-B: Electron microscopy observations of TGF-immunogold labeling in intracellular 

parasites. In (A), three contiguous intracellular amastigotes whose nuclei are labeled A1, 

A2 and A3, show TGF-labeling (arrowheads) in granules (g), in the flagellar pocket (fp) 

and at their surface (s, thin arrows). Note the typical structure of the kinetoplast (k) in 

amastigotes. In (B), a larger magnification allows to clearly recognize the presence of 

immunogold particles in the flagellar pocket and granules of the observed amastigote. (Bar 

= 1 m) 

 

Figure 4: Uptake of exogenous TGF- by Trypanosoma cruzi amastigotes.  

Axenic amastigotes were obtained in vitro by acidic pH-induced differentiation of 

trypomastigotes as described in Material and Methods. (A, B) Axenic amastigotes were 

sequentially incubated at 4°C for 1 hour with biotinylated TGF- (or with biotin as a 

negative control) and for 30 minutes with avidin-FITC and subsequently analyzed by 

FACS. (A) Plotting of particle size (forward scatter, FSC) versus granulosity (side scatter, 

SSC) allowed to define a window (polygon) corresponding to axenic amastigotes. (B) The 

intensity of fluorescence of the parasites within this window was analyzed in both 

preparations. About 25% of the amastigote population incubated with biotinylated TGF- 

presented fluorescence levels higher than those of the control (incubated with biotin) 

population. (C-G) Epifluorescence microscopy of T. cruzi amastigotes after binding with 
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biotinylated TGF-. Axenic amastigotes were sequentially incubated for 1 hour at 4°C 

with either biotinylated TGF- (C,D,E) or biotin (F) and for 30 minutes at 4°C with 

avidin-FITC (C-G). The parasites were then incubated for 120 minutes at 37°C, 

subsequently fixed and observed under an epifluorescence microscope (E). In C-D, 

immunofluorescent staining for TGF- appeared patchy at the parasite surface in the 

region of the cytostome. In (E), the staining was inside the parasite. 

 

Figure 5: Parasite life cycle-dependent immunostaining of TGF- in intracellular forms 

of Trypanosoma cruzi.  

Cultured cardiomyocytes were infected by T. cruzi trypomastigotes and the localization of 

TGF- immunoreactivity was analyzed after 24 hours (A-C), 48 hours (D-F), 72 hours (G-

I) or 96 hours (J-L) of infection by triple labeling of DNA with DAPI (A, D, G, J), TGF-

with anti-TGF--FITC complexes and actin fibers with phalloïdin-TRITC (green and 

red, respectively in B, E, H, K). Figures C, F, I and L correspond to image-processed views 

from the original confocal images shown in B, E, H and K, to stress (in light blue) the 

localization and the progressive decay of TGF-immunoreactivity in the parasites. The 

insert in panel E shows a larger magnification of the parasites pointed out by the large 

arrow. In panels J, K, L, the arrows show two cells containing a large amount of 

trypomastigotes that are clearly poorly immunoreactive for TGF-(Bar = 20 m unless 

otherwise indicated).  

 

Figure 6: Detailed analysis of TGF- immunoreactivity in the distinct maturation forms 

of T. cruzi parasites from a unique infected cell.  

(A, B) A cardiomyocyte containing T. cruzi parasites at different stages of maturation was 

double stained for TGF-immunoreactivity (green fluorescence, A) and with DAPI (blue 
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fluorescence, B). The areas delineated in panel A were enlarged in panels C, E, G, I. (Bar = 

20 m) 

(C-J) On the basis of the shape of their DAPI-stained DNA material, amastigotes (rod 

kinetoplast plus spherical nucleus), trypomastigotes (spherical kinetoplast and elongated 

nucleus) and transition forms (crescent-like kinetoplast and spherical or elongated nucleus) 

were identified as shown in the graphic legend (F,H,J), and circled in yellow, purple and 

orange respectively. Magnified picturesof DAPI staining (F,H,J) and  immunofluorescent 

TGF-staining (E,G,I) of these different forms are shown in E-J. (Bar = 20 m in panels 

C, D; Bar = 5 m in panels E-J). 
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