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Abstract

We study the practical identifiability of parameters, i.e the accuracy of
the estimation that can be hoped, in a model of HIV dynamics based on a
system of non-linear Ordinary Differential Equations (ODE). This depends
on the available information such as the schedule of the measurements, the
observed components, and the measurement precision. The number of pa-
tients is another way to increase it by introducing an appropriate statistical
“population” framework. The impact of each improvement of the experimen-
tal condition is not known in advance but it can be evaluated via the Fisher
Information Matrix (FIM). If the non-linearity of the biological model, as
well as the complex statistical framework makes computation of the FIM
challenging, we show that the particular structure of these models enables
to compute it as precisely as wanted. In the HIV model, measuring HIV
viral load and total CD4+ count were not enough to achieve identifiability
of all the parameters involved. However, we show that an appropriate sta-

tistical approach together with the availability of additional markers such as
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infected cells or activated cells should considerably improve the identifiability
and thus the usefulness of dynamical models of HIV.
Key Words: HIV dynamics, Non-linear differential equations, Parameter es-

timation, Practical identifiability, Fisher information matriz, Design.
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1. Introduction: general

Since the early 1990s, the introduction of non-linear systems of Ordinary
Differential Equations (ODE) to model the interaction between the Human
Immunodeficiency Virus (HIV) and the immune system have brought critical
insights on the disease (Ho et al., 1995; Perelson et al., 1996; Perelson, 2002;
Wu, 2005). Nevertheless, these works have been often limited by the difficulty
to handle models defined by non-linear ODE in which the identifiability of
the involved parameters is difficult to assess.

The concept of identifiability encompasses two notions: the theoretical
identifiability and the practical identifiability. The theoretical identifiability
is a precisely defined concept of binary concept (see section 2.4); the practical
identifiability is less clearcut and may be defined as the ability to estimate a
given set of parameters with an accuracy considered as satisfactory according
to the context of the study. A very clear explanation of the difference between
these concepts is given in Petersen et al. (2001): “the theoretical identifia-
bility is based on the model structure and the available measured outputs,
and gives an indication of the maximum amount of information that can be
obtained from a theoretical experiment. The practical identifiability on the
contrary not only depends on the model structure, but is also related to the
experimental conditions”. Consequently even if theoretical identifiability is
assessed, the practical identifiability is not granted. It can be noted that
the theoretical identifiability in non-linear systems of ODE has been deeply
studied (Pohjanpalo, 1978; Holmberg, 1982; Julien et al., 1997; Audoly et al.,
2001; Xia and Moog, 2003) and this issue is out of the scope of this paper.

To improve the practical identifiability, one can increase the available
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information via the number of measurements, the number of observed com-
ponents or the precision of the measurements instruments. One of the main
interest is to quantify the supply of each type of information in the improve-
ment of the accuracy of the parameter estimation.

(Classically, once data are collected, they are analyzed using simple sta-
tistical methods, such as non-linear regression made separately patient-by-
patient (Perelson et al., 1996; Stafford et al., 2000; Ribeiro et al., 2002). As
noted in Wu (2005) in the framework of the HIV dynamics models and more
generally in Davidian and Giltinian (1995) and Pinheiro and Bates (2000),
a major improvement for the practical identifiability is to take advantage of
the whole available information, in particular the between-subject variation:
the parameters may vary from one subject to another while being considered
as realisations from the same distribution (Putter et al., 2002, Banks et al.,
2005; Huang and Wu, 2006; Huang et al., 2006; Bortz and Nelson, 2006;
Guedj et al., 2007). Such models are in the framework of Non-Linear Mixed
Effect models (NLME). The number of patients included in the statistical
analysis is consequently another potential way to increase information.

Whatever the approach (patient-by-patient or population), the use of
the Fisher Information Matrix (FIM) to check and to measure the practical
identifiability of parameters estimated by Maximum Likelihood Estimation
(MLE) is natural, since the MLE are asymptotically efficient with an asymp-
totic variance given by the inverse of the FIM. In a population and non-linear
framework, the FIM has no closed-form and its computation involves multidi-
mensional integrals, becoming a challenging issue. That is why some authors

have suggested in other contexts to make simplifications of it but this can
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lead to a lack of precision (Retout et al., 2001), especially in the particularly
complex context of ODE models. Thus, we propose a way to compute the
FIM as precisely as wanted through the ”exact” computation of the scores,
thanks to the use of the Louis’ formula as well as to the introduction of the
sensitivity equations. The methods is then applied to check the practical
identifiability of parameters of an ODE system of HIV infection according to
different observational designs.

The paper is organized as follows: in section 2, we develop the rationale of
using the information matrix for studying practical identifiability. We show
how it can be computed with good accuracy. In section 3, we describe an
HIV dynamics model based on five equations. In section 4, we investigate
the identifiability of the system for different existing observational designs
varying according to the schedules of measurements, the components that

can be measured and the population or the patient-by-patient approach.

2. Statistical matrix and Fisher Information Matrix
2.1 General model for the system

Let us consider a model of ODE for a population of n subjects. For
subject ¢ with ¢ = 1, ...n, this can be written:
dx® i i
B = (X)) (1)
x0(0) = n(£")
where X9 (t) = (Xl(i) (1), ...,X}? (t)) is the vector of the K state variables.
We write X (¢,£€%) = X9(t) to underline that &% completely determines
the trajectories X @ (t) where £9 = ( f), o 1@)’ (" for transpose) is a vector
of p individual biological parameters which appear in the ODE system.

It is current to reparametrize the original system by a set of one-to-one
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transformations ¥;, [ = 1...p, to take into account the constraints that may
exist for the parameters; namely the positivity of the biological parameters
and that of an in vivo treatment effect comprised between 0 (total inefficacy)
and 1 (perfect efficacy). Moreover we take into account the between-subject
variation and thus we consider the €?’s as the realization of random effects.
In this approach, called in the following the “population approach”, each
patient has a different value for the biological parameters, but the variation
from one subject to one other belongs to a general statistical framework:

Fi) _ (4)
{fl _\I]l(gl )7 ) (2)

éli) = ¢+ auul(i , I <p

We assume that only a subset of ¢ (with ¢ < p) parameters will have a
non-null variance and thus we may restrict to consider an independent q-
dimensional vector u(® ~ AN(0, I,). This assumption could be relaxed with-
out difficulty for introducing correlations between the random effects.
2.2 Model for the observations

The M observed HIV markers are not directly the components of the bio-
logical system (1), but rather observation of combinations of the components
of the original system. We ensure a Gaussian framework and homoskedas-
ticity of the error measurements by working on transformed observations.
In summary, let Yj;,, denote the jth measurements of the mth observable

component in subject ¢ at time ¢,,:

(2) .
Yiim = gm(X tjm, & ) +€ijm j=1,..npm, m=1..,M (3)

where the €, are independent Gaussian measurement errors with zero mean

and variances 02, and functions ¢,,(-), m =1,..., M of RX to R are assumed
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to be twice differentiable: the g,,(-) will be called the observable components.
Notice that the sets of the measurement times (the schedule) S = {¢;,,} and
of the observable components G = {g,,(-)} constitutes the design Dg .

Moreover, the possibility of censored measurements may be easily taken
into account; this is particularly relevant for HIV-RNA whose assays used to
quantify it are limited by a detection threshold that may lead to undetectable
values when the true viral load is below this threshold.

It can be noted that the above population model defines a framework
where the patients are independent and identically distributed (i.i.d). This
assumption could be relaxed when introducing explanatory variables in the
regression model (2) or considering variable design between patients in the
model for the observations (3).

2.3 Log-Likelihood and introduction of the FIM

The set of parameters of interest is @ = ((¢1)1<p, A = (au)i<q, & = (00)1<1)-
Let F; denote the full information given by both the possibly censored ob-
servation of Y; and u(® (in probabilist terms, the sigma-field generated by
the possibly censored observation of Y; and u(?). We denote by Efi|u(i) (0)
(noted only £72‘|’U:(i) in the following) the full individual likelihood given the
random effects in a population model (Commenges et al., 2006). In the case
where there are no left-censored data, the i.i.d Gaussian terms for the error

measurements lead to a straightforward expression for Ef-\u(i):

~(’L) 2
1 L[ Yijm — gm(X (tjm, € 7))
E i) — ex — = J S

Filu® ]1;[ OV 2T P 2 ( Om

We use a solver for stiff systems of ODE developed in Radhakrishnan and

Hindmarsh (1993) for computing the X (¢,,,,)’s; the required relative precision

7
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is equal to 107!, The code is written in Fortran. The likelihood for the case
with left-censored observations due to detection limits is given explicitly in
Thiébaut et al. (2006). Let us denote by O; the information brought by the
observation of Y; (possibly censored). We denote by Lo, (6) (noted only Lo,)

the observed individual likelihood. It is obtained from £f~|u(i) as:

Lo, :/]R L, y@ya)du

where ¢ is the multivariate normal density of N(0,1,). We will denote by

L = log L y and Lo, = log L, the full (given random effects)

Fiiu® Fiul

and observed individual log-likelihoods, respectively. The global observed
log-likelihood is Ly (0) = > Lo, by independence between patients.
The elementary FIM for the patient ¢ is given as

#o0))

T0:(0)=Eg (_ 90907

and we can define the FIM for the whole sample of n patients:

0* L, (0))

2.4 Fisher Information Matriz and theoretical local identifiability

Let us consider the problem of (local) identifiability for the parameters
as defined notably in Rothenberg (1971). Let Y be a random vector with
a probability density function (p.d.f.) ¢(y,6), and let A = V(6y) be an
open neighborhood of 8y. A parameter point @ is said to be locally iden-
tifiable if there is no other point @ € A which is observationally equivalent,
that is for which ¥ (y,0) = (y,0y) for all y. Under weak assumptions,

Rothenberg (1971) shown that a necessary and sufficient condition for local
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identifiability in 6y is that Zp ,,(0) is invertible for all @ € A. This property is
not straightforward to assess in non-linear systems. It can be noted however
that Zp ,(6) invertible is a necessary but not a sufficient condition for local
identifiability.

If Zp,(6p) is not invertible, one may analyze the lowest eigenvalues of
Ipn(Bp). The elements of the associated eigenvectors may suggest simpli-
fications or reparametrizations of the initial statistical model as explained
in details in Vajda et al. (1989); the other possibility, that we apply in the
following, is to fix one of the concerned parameters according to values found
in the literature.

2.5 Information matriz and practical identifiability

Theoretical identifiability is not sufficient for the practical use of these
models. We wish to know whether we can estimate the set 6 of parameters
of interest of the model with sufficient accuracy with a given design at a point
value @ = 6. For this aim, the information matrix is of crucial importance.
From the Cramer-Rao bound (see for instance Knight, 2001) we know that
the inverse of the FIM is the lower bound of the variance-covariance matrix of
any unbiased estimator. Moreover, the study of the asymptotic distribution
of the Maximum Likelihood Estimator (MLE) 6 allows considering that, if
there is sufficient information (n large enough in the population approach
or n;, in the patient-by-patient approach, see below), the variance of 0 is
approximately 157171(0). So the accuracy attainable with design D can be
measured by Ig}n(o) and for a given parameter 6;, we can contemplate the

~

standard deviation of its estimator sep, ;(0) = IE}TLJ].(O) (where 7se”

stands for standard error) or, for strictly positive parameters, the relative
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error rep ;(0) = 1571%]-3-(0) /0;. This relative error is sometimes called the
coefficient of variation.

As discussed in section 2.1., it is advantageous to reparametrize the bio-
logical parameters, often in term of é(i) = log(¢"). First it enables to take
the constraint of positivity into account; moreover the log-transform allows
to obtain a model which has an intrinsic information matrix, in the sense
that it does not depend on the measurements units. Moreover, by use of the
0-method, the standard error of the estimator of the log-transformed param-
eter qgl is asymptotically equal to the relative error of the parameter in its
natural scale.

Thus, when computing Zp ,,(6) at a point value 6 = 6, one can directly
interpret the standard errors of the estimators of the log-transformed biologi-
cal parameters: for instance a standard error of 0.1 means that we know only
one significant number and the parameter is poorly identifiable; a standard
error larger than 1 for one biological parameter tells us that we only know
the order of magnitude of the original parameter and we consider that 0 is
not practically identifiable for the value 8 = 6. In this case, one can still
study the eigenvalues and the eigenvectors of the FIM as discussed above to
determine the origin of the practical non-identifiability. Let us note that the
log-transformation is particularly adapted in these models where difficulties

often come from combinations such as & and &i&j.
J

3
2.6 Criteria for comparing different designs
Several real-valued criteria have been introduced to facilitate comparison

of designs. A general class of criteria is defined in Kiefer (1974). One of

the most widely used is the D-criteria defined as det(Zp,,(0)) or as its loga-

10



1duosnuew Joyine vH

=
0
1]
=
2
(]
o
N
o
S
N
~
w
<
1]
=
@,
o
=
[EEY

rithm ¢, (D) =In(det(Zp,,(0))). The bigger ¢, (D) (noted only ¢(D) in the
following) is, the better it is since it means that we reduce the volume of
the confidence ellipsoid to obtain more global accurate coefficients (Box and
Draper, 1959). This criterion has many advantages like its simplicity and its
invariance by non degenerated transformations on the parameters (Fedorov,
1972).

A traditional measure for comparing the D-efficiency of two designs D

and D’ with ¢(D) < ¢(D') is the standardized ratio:

Enoral0) = exp { i 0(D) - 0(D)] (@)
Epp n(0) (noted only Epp in the following) measures the expected (geo-
metric) mean factor diminution of the standard deviation when using D’
compared to D. Then 100 * (1 — Ep pr) expresses the variation as a percent-
age. In the same idea, one can introduce £p = exp {m [—¢(D)]}: Ep
would be equal to the geometric mean value of the expected standard devi-
ations of the estimators of 8 according to a design D if the estimator were
independent.
To compare two nested structures or to focus on a particular subset of
parameters, one can use the Dg-efficiency. Let us partition 8 into (61, 05)

with dim(6;) = s and the FIM into

7(0)= Tu T with Z;; a matrix of dimension (s, s)
Tiz Iy

One can study as upper ¢;(D) zln(det(Ig))) with Ig) = (T1, — 11275, T1).

Note that it is necessary that Zs, is invertible.

11
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2.7 Computation of the information matriz in population models defined by
a system of ODE

Let us define the individual scores

OL . @ (0)

00

and U, (0) = 2Lo(0)

0) = 96

U u®f
respectively the score given the random effects and the observed score. We
have shown in Guedj et al. (2007) that a semi-analytic expression for Ufilu(i)
could be obtained when using the particular structure of these models. The
reader can refer to the Appendix to obtain more details about the method-

ology. Using the Louis’ formula (Louis, 1982), one can link the score given

the random effects and the observed score :

Uoi = (‘Coz‘)_l L

L U, o We(u)du. (5)
The integrals can be computed by adaptive Gaussian quadrature using a
routine developed in Genz and Keister (1996) and U, can be computed as
precise as wanted (for ¢ = 3 we found that 100 nodes was sufficient to achieve

an absolute precision of 1073). The elementary FIM for the patient i can be

then deduced from its individual score:
Ipi(0) =Eg [Uo,(0)Uo,(6)"]

Here, we have considered a model in which the n patients are independent
and identically distributed (see section 2.2.); the elementary FIM is the same

for all the patients and we can define the generic elementary FIM:
Ip(0) = Eg [Uo,(0)Uo,(0)"] (6)

The FIM for the whole sample is deduced from the generic individual FIM
and Ip,(0) = nZp(0). However, Zp(0) defined by (6) has no analytical

12
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where Uy, = j:g;,NUoj (@) . If N is large enough, then C follows a X?iim 0
distribution. So if C takes a value compatible with a X?iim 6 it is an indi-
cation that N has been chosen sufficiently large to do the approximation (7).
In our study we found that N = 1000 was sufficient in all our computations
to achieve a p value of 10%.

It can be noted that the expression (6) could be easily extended to include
variable designs between patients as well as explanatory variables.
2.8 The FIM in the patient-by-patient approach

Another paradigm for analyzing data is to consider each patient 7, and
thus each vector of individual parameter E(i) as a separate entity: this ap-
proach is named in the following the patient-by-patient approach. More
formally, the model for the system is defined only by expression (1), there
are no random effects (u; = 0), and the statistical model is defined for only
one patient. The set of parameters can be reduced to @ = ((¢1)i<p, (1)i1<m);

since there are no random effects and only one patient, the full log-likelihood

13
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and the full score are Lp = L u® and Up = U

Fil u® respectively. Con-

il
cerning the FIM, we can write Zp,(0) = Ip,;(0) = Zp(@); moreover, by
independence of the measurements errors, we have an analytical expression

for the FIM, diagonal per block:

7 0
7o) = (% 1),

with
L 90 (X1 &) 00X €7D
Loo (1, V) = 3 o =g S
J?m
Loo(l,1) = 2% and L,,(1,1') = 0,1 #1
1
8 < é(i)

where the W 's are computed using the systems of sensitivity equa-

tions (see Appendix).

In our work, we consider that the patient-by-patient approach is the study
of patients, independently one from each other, considering that there is
no link from one patient to each other. When data for several patients
are available, results are often summarized by providing empirical mean,
median, or variance of the n estimations, implying a common framework
between the patients. These intuitive empiric estimators “summarize” the
individual estimates (Davidian and Giltinian, 1995) and are another way to
take the between-subject variability. However the asymptotic properties of
these estimators, not issued from a maximum likelihood inference (since the
“true” model is the population model as defined in the precedent sections)
is not known and would require a simulation study. Moreover, this approach
requires a practical identifiability for each patient, which is more difficult
to get than that required in the population approach where the sample is

considered as a whole. That is why it is current in such analyzes to exclude

14
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several patients (where estimation was not feasible), leading to potential
biases in the parameter estimation. Consequently this approach, which is
between the patient-by-patient and the population approach, is not studied
here and in the following we consider that the patient-by-patient approach

implies no link between the patients: it is the study of only one patient.

3. Presentation of the HIV dynamic model
3.1 A mathematical model for HIV dynamics

Usual models for HIV dynamics involve uninfected lymphocytes T-CD4
cells (CD4), infected CD4 (7*) and virions (V). This last compartment can
be split in two parts: infectious (V7) and non infectious (Vyy) virus. A pro-
portion w of non-infectious virions is generated during the natural history
(Chun et al., 1997); the use of a class of antiretroviral, namely the protease
inhibitors (Perelson et al., 1996), leads to an increase of w. One may also
include the effect of reverse transcriptase inhibitors which limits cell infec-
tion by inhibiting reverse transcription of HIV RNA (through 7). Because
the activated T-CD4 cells are the main targets of the virus, we distinguish
between activated (T) and quiescent cells (Q). Furthermore, there is a strong
rationale for incorporating such information in the model as the activation
process is probably one of the major cause of CD4 depletion during HIV in-

fection (Grossman et al., 2000). Therefore, we propose the following system

15
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of non-linear differential equations:

(99 = N+ pT — aQ — 11Q
I =aQ — (1=nTV; = pT — prT

8 = (1 =)y TVi — g T (8)
CL = wpr-nT* — 'Vy
dVNI

" dt (1 —w)pp-mT* — py Vnr

where parameters are detailed in Table 1. We make the assumption that
before initiation of antiretroviral treatment the values of the state variables
are that of steady state of the system of ODE with n = 0. This assumption
implies that the treatment is initiated far from primo-infection. The steady
state assumption leads to the following initial conditions (where ¢t = 0 refers

to treatment initiation):

Plo.
7(0) = w“iﬂ
% Pl (ptpT) o
] T (O> T (a—i—uQ <)\ + w'y7r) wymT )
Vi(0) = oem (A 4 fte)  otur
| Vvi(0) = (lu—f)w(ﬁ()\ + ) - —“vgj:T)>

This model belongs to the typical class of non-linear systems of ODE intro-
duced in the literature (Wei et al., 1995; Ribeiro et al., 2002).
3.2 Values for the parameters

Parameters were estimated in a previous work (Guedj et al., 2007) us-
ing data from an HIV clinical trial (ALBI ANRS 070) comparing different
regimen of nucleosides reverse transcriptase inhibitors. Three random effects
were retained; the design of this study, not adapted to dynamics models, did
not make possible to estimate the p biological parameters and some of them
were fixed according to values found in the literature. The value 6, for the

parameters are summarized in Table 1.

16
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[Table 1 about here.]

The resulting trajectory for the observed components with no random effects
and no measurements errors is presented on Figure 1. Figure 2 displays a
simulation of a whole sample with n = 100, taking into account variability
due to the random effects and to the measurements errors. Moreover, data
under 50 copies.ml~! were censored and represented as equal to 50 in the
figures. This illustrates the main advantage of the population approach which
enables to consider at the same time a sample of patients sharing common

but variables features.

[Figure 1 about here.]

[Figure 2 about here.]

4. Study of practical identifiability according to observational de-
signs and parameters of interest

The practical identifiability of different set of parameters is studied ac-
cording to different observational designs. First we study it for the given set
of parameters estimated elsewhere. Then we discuss the minimum informa-
tion required to add the other parameters in the previous set. The results are
presented with constant values for the error measurements given in Table 2.
Notice that Zp,,(0) is directly linked to the value for the vector o if only one
component was observed (M = 1), Zp ,(0) would be directly proportional to
o2.

To compare the practical identifiability between the patient-by-patient
and the population approach (illustrated in the following for n = 100 pa-

tients) regarding the practical identifiability of the biological parameters ¢,
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we compute for the population model the restricted efficiency ¢4(D) on the
restricted set 8y = {0 — {a; }1=1,. 4}, since there are no random effects in the
patient-by-patient approach.

Last it can be noted that all the results depend on the value 8 = 6,
chosen for the parameters. We explore to what extent the presented results
are robust in a plausible neighborhood of 6.

4.1 Potential designs

Observed components: As explained in section 2.2, we ensure a Gaus-

sian framework of the error measurements by working on transformed obser-
vations, namely a log-transformation for HIV-RNA concentration, and the
fourth root for the related-CD4 compartments (Thiébaut et al., 2003). We
analyze successively five combinations of observable components correspond-
ing to an increase of the available information (see Table 2). The values for
the related standard deviations (STD) are either estimation from a previous
work or fixed according to biological considerations: we consider that ocpager

0-25) has the same value as for

(error measurement made on 7% or (T + T*)
the total CD4 count (i.e. 0cpaaet = 0.18). For infected CD4 (T %), we take
into account their low number comparing to other CD4. We consider that
the relative error measurements for a T*-cells concentration of 1mm =3 should
be equivalent to that for a total CD4 count at a median value of 400mm 3.
This leads to ocpainy = 0.04. When distinguishing between infectious Virus
V; and non-infectious Virus Vy;, we take the same error measurements than
when total virus load V' is observed.

Schedules: We compare two different schedules: the schedule SO is similar

to what was used for parameter estimation: measurements are done every

18



1duosnuew Joyine yH

=
0
1]
=
2
(]
o
N
o
N
N
~
w
<
1]
=
7]
o
=
[EEY

4 weeks until 24 weeks. The second schedule S1 is particularly adapted to
HIV dynamics analysis. As noted in Perelson (2002), those studies require
more intensive measures at the initiation of the therapy, when there is a
maximum amount of information on the involved dynamics, particularly the
virus load: for S1, measurements are done every 2 hours until the sixth hour,
every 6 hours until day 2 and every day until day 7 like studies focusing on
life-span of virions and-or infected cells (Wei et al., 1995; Ho et al., 1995,
Perelson et al., 1996; Perelson, 2002). After the first week, the schedule of

measurements is the same as in SO.

[Table 2 about here.|
4.2 Identifiability of @ = (&, \, fir., 7, jir, 7], Ga, a5, ;. )

For M =1 (only total virus load is observed), the lowest eigenvalue was
less than 1071 in the two approaches, leading to very large expected standard
deviations, in particular for 7 and X. This case is a limit case of theoretical
identifiability and the analysis of the corresponding eigenvector suggests to
introduce the macroparameter @ 4+ A (or A equivalently).

For M > 1, the results are displayed on Table 3. Using the patient-
by-patient approach with Dg g =(S0,'V| Q|T' + T*’) and more intensive
schedule D, ¢ =(S1,'V| Q|T'+T*"), the global accuracy on the 8 parameters
is improved as expected (¢(D') = 36.6 vs ¢(D) = 27.5) and the gain of
precision is Ep pr = 77% (see expression (4)).

Whatever the chosen approach (patient-by-patient or population), the
number of observed components strongly increases the accuracy of the esti-
mation. The improvement is less important when increasing the number of

measurements, that is using the intensive schedule S1 rather than S0O. For
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instance let us focus on the population model with D¢ s =(S0,’V| Q|T+1*").
If the schedule of measurements were more intensive (S1), the global accuracy
is increased (¢(D’) = 110.0 vs ¢(D) = 99.7 ). If we keep schedule SO but if
we add the observation of infected cells (S0,’V| @ |T'|T™*") the global accuracy
is still better (¢(D”) = 125.7). With a standard deviation ocpains of 0.0014,

1duosnuew Joyine yH

the analysis of the correlation matrix shows that the estimator of ocpainy has
a very low correlation with other parameters estimators. Consequently, if we
note s = {0 —{ocpains}}, then ¢4(D") ~ ¢(D") —In(0.00147%) = 112.5. The
global increase of precision on the 12 remaining parameters is consequently
Ep pr = exp[(112.5 — 110.0)/2 x 12] = 1.11, i.e. an accuracy improvement of
about 11%.
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The comparison between the patient-by-patient and the population ap-
proach leads to very clear results. For the baseline model and D¢ ¢ =(S0,’V| QT+
T*’) and when focusing on the fixed effect, the global standard errors are re-
duced by approximately 7.3 fold (exp[(59.3—27.5)/2%8] = 7.3). This explains

why we only focus in the following on the population approach.

[Table 3 about here.]

4.3 Practical identifiability of all parameters

A further step is to look at the designs that allow the estimation of
all biological parameters included in the model (8). We add progressively
parameters to the initial model according to the increase of the information.
Results are presented in Table 4, omitting the expected standard deviations
of the random effects and of the measurement errors.

The focus on £ = (&, N, fire, T, 11, s T 4) with M = 2 illustrates the dif-

ference between practical and theoretical identifiability. Expected standard
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deviation for 4 and 7) are very close to one for S=S0, meaning that even
if there is theoretical identifiability (due to the steady state assumption at
t = 0), these two parameters cannot be in practice simultaneously estimated.
An analysis of the eigenvalues confirms that only the product (1 — 7)) could
be identifiable. To make these two parameters simultaneously identifiable,
one has to use S1 instead of SO. It can be noted that the steady state
condition before initiation of therapy is necessary to have a theoretical iden-
tifiability between the two parameters. Moreover, the dramatic drop of the
virus load in the first days is highly correlated with n and that is why only
intensive measurements can measure the specific effect of treatment. How-
ever, it can be noted that a classic schedule SO becomes sufficient if M = 3.
No other parameter can be added to the estimation if M = 2.

For making other parameters practically identifiable, other components
should be observed. To simultaneously estimate 7 and gy, four or more
(M > 4) components should be observed through an intensive schedule S1.

With an adequate design, all the parameters are identifiable except jig,
the transformed death rate of the CD4 quiescent cells (o(fig) > 3 for all
tested designs). This dynamic is low, compared to other involved mecha-
nisms, and a follow-up longer than 24 weeks would be necessary to estimate

this parameter.

[Table 4 about here.]
4.4 Practical identifiability around values chosen for the parameters
The computation of Zp(0) for @ = 6, implies that 6 is known, whereas
the study aims precisely at determining if the estimation of 6 is feasible.

This paradox can be overcome in part when studying the variation of Zp ,,(0)
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in a plausible region around 8. A natural way is to study the distribution of
@(D) for @ ~ N(0p;Z5'(0y)). A similar approach is used when looking for
optimal sequential designs as an alternative to the local planification (Walter
and Pronzato, 1997): one can consider an a priori distribution in a Bayesian

standing for 6 and looking for Dx maximizing E(¢(D)).
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Instead of ¢(D), Figure 3 displays the empirical distribution of Ep ob-
tained with 500 simulations, giving a better idea in term of marginal expected
standard deviations. The set of parameters of interest is 8 = (&, A\, fore, T, i, 1], A, G5, G, )
and D=(S0,’V| Q4+ T +T*’) (see Table 3 for results with central values 6y).

As it could be hoped, the distribution of £p is centered around the value

=
0
1]
=
2
(]
o
N
o
N
N
~
w
<
1]
=
7]
o
=
[EEY

found in 6y (Ep(6y) = 0.0233) . Moreover, the standard deviation is not large
and the values remain of the same order of magnitude than in 6y, meaning
that the results given in Table 3 and Table 4 are robust in the domain of the
plausible values for 8. Moreover, this could constitute asymptotically a way

for assessing the local identifiability as defined in section 2.4.

[Figure 3 about here.|

5. Conclusions

In summary, one the main interest of the proposed methodology lies in its
ability to compute the FIM as exactly as wanted, which is critical in com-
plex models such as those defined by non-linear ODE, treated in a population
context. We have proposed a method to compute the FIM giving the op-
portunity to evaluate the practical identifiability and to compare it through
different observational designs. Although the conclusion might depend partly
on the biological model, the application of the method has provided inter-

esting results, such as outlining the benefit of increasing the number of com-
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ponents measured. Therefore, the availability of assays able to distinguish
infected and non infected cells (Patterson et al., 1998) as well as infectious
and non infectious viruses (Rusert et al., 2004) may substantially improve
the identifiability of model parameters and thus the usefulness of HIV dy-
namics model to analyze real data. Of note, the impact of increasing the
measurements schedule intensity depends also on the parameters of interest.
For instance, if we wish to estimate simultaneously the free virion clearance
and the number of virus produced by an infected cell, the design should be
adapted to the rapid dynamics of these components, i.e. schedules with more
frequent measurements should be favored. All the same, an intensive sched-
ule is necessary to distinguish the infectivity of the virus and the in vivo
treatment efficacy.

We have quantified the improvement of the population approach com-
pared to the patient-to-patient approach. Although it may seem obvious to
some that there is a large improvement in the population approach, the com-
putationally simpler patient-by patient approach is still widely used; however
for estimating a reasonable number of parameters, intensive measurements
schedules are necessary. Most often, ethics and cost considerations make
such intensive measurements schedules difficult to obtain, so the population
approach is the method of choice.

As noted by one of the referees, a Bayesian inference, taking advantage
of the MCMC techniques, have been widely used in complex models (Aura-
nen et al., 2000; Cauchemez et al., 2006) and can be used in particular for
population models based on ODE systems (Putter, 2002). The maximum

likelihood method, when feasible, may retain some advantages however in
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term of computation time and reliability of convergence criteria. A compar-
ison of the two approaches is difficult, in particular because of the use of
a priort information in the Bayesian approach: it may be considered as an
advantage, especially if such information really exists and comes for instance
from expert knowledge, but may also be considered a drawback because of
its subjective nature and the risk of influencing too much the final result
by inappropriate choice of the prior. These differences also have concrete
implications: in the Bayesian approach, the study of the practical identifi-
ability requires to evaluate by simulation the expectation of the posterior
variance-covariance matrix of the parameters of interest (Han and Chaloner,
2004) and different criteria have been proposed to compare designs (Walter
and Pronzato, 1997). Another extension of the present work would be to
find optimal designs (Atkinson and Donev, 1992; Mentré et al., 1997) tak-
ing into account or not the cost issue due to the increase of the number of
measurements or due to the use of new type of quantification.

Our methodology is introduced by defining an i.i.d framework for the
patients. For sake of clarity, we did not take into account the possibility to
include explanatory variables like treatment group (Guedj et al., 2007) or
pharmacokinetics data (Huang and Wu, 2006) but the computation of the
FIM would remain very close to what was presented here.

In conclusion, our primary interest is to propose a methodology to check
the practical identifiability when designing a study aiming at estimating pa-
rameters of a dynamical model. In addition, we provide in this work an
order of magnitude for the relative errors that can be hoped in typical HIV

dynamics models according to usual designs.
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APPENDIX A

Computation of the individual score in a system of ODE

For simplicity, we assume in this section that there is no censored data.
Three types of parameters can be distinguished: biological parameters él,

terms ay (see equation (2)) and standard deviation of the measurement
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errors o; as defined in equation (3). Consequently, one can get three different

T
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For computing the scores we thus have to compute:

Ogm(X(1,E")) = 0gm(X (1, €")) 0X® (1, €")
agli) - ];( O X (k) aé(i) !

the computation of the full score requires to solve numerically the p systems
)
P

solved with the same routine (Radhakrishnan and Hindmarsh, 1993) than

10!
of sensitivity equations X g((t;) ). The systems of sensitivity equations are
l

what was used for the original system (see section 2.3).
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Figure 1. Simulated trajectories for the virus load (left) and the total CD4
counts (right) after antiretroviral treatment initiation when the random ef-
fects and the error measurements are set to be null. Values for the parameters
are those given in Table 1.
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Figure 2. 100 simulated trajectories for the virus load (left) and the total
CD4 counts (right) The trajectories for the biomarkers share common fea-
tures but may vary between the (simulated) patients since each individual
value of a, A and pup, are the realization of random variables (with variances
as, a3, Gy, ). Moreover we add to the simulated trajectories fluctuations due
to the error measurements (with variances ocy and ocps) and we censure
data of virus load lower than the level of detection (1.7logio/ml); the design

of the observation is SO.
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Figure 3. Empirical distribution of Ep(#). The dot line corresponds to the
result obtained for the central parameter value 6y given in Table 3. The
smoothness of the empirical distribution is a good indicator that the results
provided for a particular value 8 = 6, would remain stable in a reasonable
neighborhood around 6.
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Parameter Meaning Value Reference
o' Activation rate of Q cells (day 1) 0.042 Guedj et al. (2007)
A Rate of Q cells production (uzlday_l) 13.73 “ou
T Death rate of T* cells (day~") 0.67 @
s Number of virions per T* cell 104.00 “
wr Death rate of T cells (day™!) 0.12 “u
n Efficiency of treatment (proportion) 0.96 “
ag Standard deviation (STD) of the random effect associated to & = log(«) 0.31 “
as STD of the random effect associated to A = log(\) 0.043 “
i, STD of the random effect associated to firs« = log(prs) 0.25 “
v Infection rate of T cells per virion (mm3.day™!) 0.050 “
HQ Death rate of Q cells (day ') 0.00014 Mclean and Michie (1995)
y Clearance of free virions (day ") 30.00 Ramratnam et al. (1999)
p Rate of reversion to the quiescent state (day~!) 0.017 Ribeiro et al. (2002)
w ot Proportion of non-infectious virions (proportion) 0.20 Piatak et al. (1993)
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Table 2: Observed components considered regarding the number of available markers M

T ’Observed components’ Transformations used on the original state variables (STD of the measurement error)

> 91(:)(a1) 92(-)(02) g3(-)(a3) 94(-)(04) 95(-)(95)

g v (M=1) log1o(Vr + Vinr)(0.42%)

3 VIQ+T+T* (M=2) logio(Vr + Vr)(0.42%)  (Q + T+ T%)%2°(0.18%)

3 VIQ| T+ T (M=3) logo(V7 + Vnr)(0.42%) Q"%5(0.18) (T + T%)%25(0.18)

§ VI Q| T) T (M=4) log1o(Vr + Vnr)(0.42%) Q"%#(0.18) T%-25(0.18) T*0-25(0.04)

8 Vi Q| T| T* |Vnr’ (M=5) log,(V7)(0.42%) Q"%5(0.18) T0-25(0.18) T*025(0.04) logyo(Vnr)(0.42)
= * these values come from estimation performed in Guedj et al. (2007)
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Design Ds ¢ Expected standard deviation ¢s(D) ¢(D) &Ep

a A WTs T Hr 7 ag as i,

patient-by-patient approach
S0,V Q+T+T* 125 1.04 085 1.04 0.74 0.76 — — — — 275 0.18
S1,’ViQ+T+T* 0.7 067 035 062 038 033 — — — — 36.6 0.10
S0,V QI T+T* 058 063 079 041 0.69 0.59 — — — — 394 0.11
siviQT+71* 020 021 027 011 027 018 — — — — 50.4  0.06
S1,’v| Q| T| T 0.070 0.063 0.040 0.084 0.065 0.088 — — — — 67.0 0.035
Population approach

S0,V Q+T+T* 013 0.11 0.094 0.11 0.080 0.083 0.023 0.0052 0.036 59.3 82.7  0.023
S1,’V| Q+T+T* 0.079 0.064 0.042 0.059 0.038 0.038 0.022 0.0047 0.025 66.2 92.2  0.015
S0,’V| Q| T+T*  0.068 0.067 0.085 0.042 0.059 0.073 0.024 0.0054 0.039 74.6 99.7  0.015
S1,’V| Q| T+T* 0.038 0.024 0.036 0.012 0.028 0.021 0.021 0.0043 0.024 83.7 110.0 0.010

0.024 0.014 0.027 0.017 0.012 0.019 0.014 0.0028 0.018 97.1 125.7  0.0079

S0, VQ)| T| T*
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Design Dg ¢ Expected standard deviation o(D) &p
o A KT+ 7~T 1 pr r ¥ py  w

S0V Q+T+1T% 0.34 0.23 0.23 0.14 096 0.22 055 099 - - 83.9  0.040
S1,V| Q+T+1T* 0.29  0.20 0.19 0.066 0.74 0.099 038 071 - - 95.7  0.025
S0, V| Q| T+T* 0.13 0.11 0.098 0.12 0.099 0.12 025 017 - - 106.8 0.022
S1,’V| Q| T +1T* 0.035 0.035 0.039 0.043 0.044 0.038 0.11 0.068 - - 1272 0.011
S1,’V| Q| T| T 0.031 0.012 0.020 0.82 0.016 0.015 0.061 0.027 0.81 0.0048 146.6 0.013
S1,°Vi| Q| T| T*| V> 0.025 0.0066 0.0091 0.48 0.011 0.0081 0.032 0.024 0.47 0.0043 169.4 0.0090
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