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1. Web Appendix A: Computation of
∫
u∈Rq LFi|u(i)(u)φ(u)du

We want to compute a function such as: I =
∫
u∈Rq fi(u)φ(u)du. Some

authors (Liu and Pierce, 1994; Pinheiro and Bates, 2000) underlined the

impact of a transformation of the integrand leading to

I =
exp

(
−û′û

2

)
det(K)

∫
u∈Rq

fi(K
−1u + û) exp[−(K−1u)′û] exp

{
u′[I − (KK ′)−1]u

2

}
φ(u)du

where

û = argmax
u∈Rq

fi(u)φ(u), K ′K = −∂2log(fi(u)φ(u))

∂u∂u′ |u=û

where K is an upper triangular matrix with positive diagonal elements. Using

the notations of the manuscript, we rewrite û as:
û = argmax

u∈Rq

{ ∑
m≤M, j≤nim

1
σ2

m

[
(Yijm − gm(X(tijm, ξ̃

(i)
(u)

]2

+ u′u

}
ξ̃

(i)
l (u) = φl + z

(i)
l

′
βl +

∑
l′≤q

∑
l′′≥l′

ul′w
(i)
ll′′al′′l′

Some problems can occur when looking for û. The maximization over the

multidimensional and infinite region Rq is potentially time consuming and
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difficult to reach when the starting values of maximization algorithm are far

from the modal value. So, it is necessary to determine a threshold beyond

which a maximum is not considered as the global maximum. By considering

that the distribution of fi(û)
ni

is close to a chi-square distribution with one

degree of freedom near the maximum likelihood, we consider in the whole

procedure that if fi(û)
ni

> 3, the maximization procedure should be restarted

with different starting values to find the global maximum. We propose a

systematic procedure, which turns out to be efficient to find good starting

points u0. We propose to maximize fi(u)φ(u) = L
Fi|u(i)(u)φ(u) along

each random effect separately, which enable to reduce a multidimensional

optimization to an optimization of dimension 1, that is to find û
(r)
i for r =

1, ..., q:


û

(i)
r = argmax

u∈R

{ ∑
m≤M, j≤nim

1
σ2

m

[
(Yijm − gm(X(tijm, ξ̃

(i)

r (u)
]2

+ u2

}
ξ̃

(i)
l,r (u) = φl + z

(i)
l

′
βl + u

∑
l′′≥r

w
(i)
ll′′al′′r

(1)

u
(i)
0 = (u

(i)
10 , ..., u

(i)
q0 ) turns out to be a good starting point for maximization

with: u
(i)
r0 = û

(i)
r ∗f(û

(i)
r )∗φ(û

(i)
r )∑

l=1,..,q

[
f(û

(i)
l )∗φ(û

(i)
l )

]2 .

Maximization was then achieved by Marquardt algorithm (Marquardt, 1963)

and K ′K was computed by numerical derivative.

Note that if the values used for the set (φl, βl, A,σ) in equation (1) are equal

to the final estimated values (see Table 2), then û is also the posterior mode

û(i) as introduced in section 3.3 for computing the individual predictions.
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2. Web Appendix B: Systems of sensitivity equations

In this appendix, we show an example for the semi-analytical computation

of the
∂gm(X(t,ξ(i)

))

∂ξ(i) , m ≤ M by using the systems of sensitivity equations.

The system of ODE used in section 4.2 is:



dQ
dt

= λ + ρT − αQ− µQQ
dT
dt

= αQ− (1− η)γTVI − ρT − µT T
dT ∗

dt
= (1− η)γTVI − µT ∗T ∗

dVI

dt
= ωµT ∗πT ∗ − µvVI

dVNI

dt
= (1− ω)µT ∗πT ∗ − µvVNI

We take as an example (for sake of clarity, we omit the index i):{
ξ1 = η (the effect of treatment)

g1(X(t, ξ)) = log10(VI(t, ξ) + VNI(t, ξ)), (the total quantity of free virions)

We have:
∂g1(X(t, ξ))

∂ξ1

=
1

log(10)

VI,ξ1(t, ξ) + VNI,ξ1(t, ξ)

VI(t, ξ) + VNI(t, ξ)
,

where VI,ξ1(t, ξ) and VNI,ξ1(t, ξ) are obtained by simultaneously solving

the original system and the system obtained by differentiating the original

system with respect to ξ1 = η. That it, we have to solve the following ODE

system:

dQ
dt

= λ + ρT − αQ− µQQ
dT
dt

= αQ− (1− η)γTVI − ρT − µT T
dT ∗

dt
= (1− η)γTVI − µT ∗T ∗

dVI

dt
= ωµT ∗πT ∗ − µvVI

dVNI

dt
= (1− ω)µT ∗πT ∗ − µvVNI

dQξ1

dt
= ρTξ1 − αQξ1 − µQQξ1

dTξ1

dt
= αQξ1 + γTVI − (1− η)γTξ1VI − (1− η)γTVI,ξ1 − ρTξ1 − µT Tξ1

dTξ1
∗

dt
= −γTVI + (1− η)γTξ1VI + (1− η)γTVI,ξ1 − µT ∗T ∗

ξ1
dVI,ξ1

dt
= ωµT ∗πT ∗

ξ1
− µvVI,ξ1

dVNI,ξ1

dt
= (1− ω)µT ∗πT ∗

ξ1
− µvVNI,ξ1
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The initial conditions of this system are given by deriving the initial con-

ditions of the original system with respect to ξ1; here t = 0 is the initiation of

therapy, so all the components are equal to zero Qξ1(0) = Tξ1(0) = T ∗
ξ1

(0) =

VI,ξ1(0) = VNI,ξ1(0) = 0.

The expressions for the corresponding
∂gm(X(t,

˜ξ
(i)

))

∂
˜ξ

(i) are obtained by the rela-

tion:
∂gm(X(t, ξ̃

(i)
))

∂ξ̃
(i)

=
∂gm(X(t, ξ̃

(i)
))

∂ξ(i)

∂ξ(i)

∂ξ̃
(i)

3. Web Appendix C: Implementation

Solver for ODE

The computation of L
Fi|u(i) and U

Fi|u(i) requires to solve numerically

the original system of ODE (1) and its systems of sensitivity equations. Here

we use a backward difference formula (BDF) method (Gear type method).

We implemented the Livermore solver DLSODE, specially adapted for stiff

systems (Radhakrishnan and Hindmarsh, 1993). Both relative and absolute

precision were set at 10−11.

Computation of the observed likelihood

The “exact” computation of LOi
can be split into: i) finding the maximum

of the integrand L
Fi|u(i)(u)φ(u) and deducing the Hessian of the log of

the integrand at the maximum (see Web Appendix A); ii) transforming the

integrand and applying a program developed by Genz and Keister (1996);

this routine enables to reach more precision than basic adaptive Gaussian

quadrature based on Gauss-Hermite nodes. For q=3 (the case encountered in

the application), the transformations used here make it possible to compute

the observed log-likelihood LOi
with an absolute precision of 10−3 in less

than 100 evaluations of the integrand. Moreover it can be noted that the

4



time requested for adapting the integrals is completely negligible compared

to the gain in the number of evaluations required.

Maximization

Concerning starting points, we suggest to use (when feasible) order of

magnitude provided by empirical means and variances of individual fits.

However, when few data per patients are available, the individual estima-

tion procedure may fail. In this case, we suggest to estimate an approximated

population model, in which all the patients have the same parameters, avoid-

ing in a first approximation the multidimensional integrals. This enables to

provide a reasonable order of magnitude.

The speed of convergence is then dependent from these values. For three

random effects, it can be up to four hours on a Bi-Xeon 3.06 GHz 1024

MB RAM (program written in FORTRAN). We encourage to try different

starting values to avoid local maximum. Nevertheless, the use of popula-

tion model increases the practical identifiability and in our case we did not

encounter problems of local extrema. The stopping value (convergence crite-

rion) used here was 0.01∗dim(θ) for real data study analysis and 0.05∗dim(θ)

for simulations (see Commenges et al. (2006) for the statistical meaning of

the choice value)
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