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Abstract. Diffusion tensor imaging (DT-MRI) is very sensitive to cor-
rupting noise due to the non linear relationship between the diffusion-
weighted image intensities (DW-MRI) and the resulting diffusion tensor.
Denoising is a crucial step to increase the quality of the estimated tensor
field. This enhanced quality allows for a better quantification and a bet-
ter image interpretation. The methods proposed in this paper are based
on the Non-Local (NL) means algorithm. This approach uses the natural
redundancy of information in images to remove the noise. We introduce
three variations of the NL-means algorithms adapted to DW-MRI and to
DT-MRI. Experiments were carried out on a set of 12 diffusion-weighted
images (DW-MRI) of the same subject. The results show that the in-
tensity based NL-means approaches give better results in the context
of DT-MRI than other classical denoising methods, such as Gaussian
Smoothing, Anisotropic Diffusion and Total Variation.

1 Introduction

Image processing procedures needed for fully automated and quantitative analy-
sis (registration, segmentation, visualisation) require images with the best signal-
to-noise ratio and the least artifacts in order to improve their performances. Most
of the time, the hardware introduces artifacts during the acquisition (noise, in-
tensity non-uniformities, geometrical deformations). Therefore, one critical issue
is to remove the noise while keeping relevant image information. This is par-
ticularly true for diffusion-weighted MRI (DW-MRI) especially when they are
acquired with high diffusion (b-value) coefficient. This paper focuses on denois-
ing using variants of the non-local means (NL-means) method modified to deal
with DT-MRI (NLMt) and DW-MRI, either gradient-by-gradient (NLM) or as
a multi-spectral (NLMv) image. The NL-means variants are compared with the
simple Gaussian Filter (GF), the Anisotropic Diffusion (AD) [13] and the Total
Variation (TV) [15]. In particular the AD filter is frequently used for diffusion
image denoising [4, 9] or tensor field regularisation [16].

The original publication is available at www.springerlink.com

H
A

L author m
anuscript    inserm

-00193788, version 1

HAL author manuscript
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 2007;4792:344-51



2 Methods

2.1 The non-local means algorithm

First introduced by Buades et al. in [3], the NL-means algorithm is based on the
natural redundancy of information in images to remove noise. In the theoretical
formulation of the NL-means algorithm, the restored intensity of the voxel xi,
NL(v)(xi), is a weighted average of all voxels intensities in the image I. Let us
denote:

NL(v)(xi) =
∑
xj∈I

w(xi, xj)v(xj), (1)

where v is the intensity function and thus v(xj) is the intensity of voxel xj and
w(xi, xj) the weight assigned to v(xj) in the restoration of v(xi). More precisely,
the weight quantifies the similarity of voxels xi and xj under the assumptions
that w(xi, xj) ∈ [0, 1] and

∑
xj∈I w(xi, xj) = 1.

Fig. 1. Two-
dimensional illustra-
tion of the NL-means
principle. The restored
value of voxel xi is a
weighted average of all
intensities of voxels xj

in the search volume Vi.
The weight w(xi, xj) is
based on the similarity
of the intensities in cubic
neighborhoods Ni and Nj

around xi and xj .

In practice, voxels similar to i are only searched over a neighborhood Vi,
so Eq. 1 is: NL(v)(xi) =

∑
xj∈Vi

w(xi, xj)v(xj). For each voxel xj in Vi, the
weight w(xi, xj) is related to the distance d(v(Ni), v(Nj)), Ni and Nj being
neighborhoods around xi and xj , following:

w(xi, xj) =
1

Z(i)
e
−

d(v(Ni),v(Nj))
(hσ̂)2 (2)

where Z(i) is a normalization constant with Z(i) =
∑

j w(xi, xj), σ̂ is the
estimation of the standard deviation of the noise using the pseudo-residuals
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method [8] and h acts as a filtering parameter (for more details see [6] and
Fig. 1). The distance d is expressed in general terms as: d(v(Ni), v(Nj)) =√

1
N

∑N
k ∆(v(yk), v(zk)) where N = cardNi = cardNj and yk and zk are

the k-th voxels in the neighborhoods Ni and Nj . For a grey-level image, ∆
is ∆(v(yk), v(zk)) = ‖v(yk)− v(zk)‖2.

2.2 DW- and DT-MRI adaptations

This section introduces the NL-means as a method to remove noise from either
the whole DW-MR dataset (with n directions, n ≥ 6, plus the B0 image) or the
resulting DT-MR image. Three variants are proposed here, two acting on the
DW-MRI and one on the DT-MRI:

1. NLM: each DW-MRI is denoised individually as described in Section 2.1
and the DT-MRI is estimated from these denoised DW-MRI,

2. NLMv: the whole set of DW-MRI is considered as a multi-spectral image,
each voxel being a (n + 1)-dimensional vector. The ∆ is defined as:

∆(v(yk), v(zk)) =
n+1∑
i=1

‖vi(yk)− vi(zk)‖2, (3)

vi(.) being the i-th component of the vector v(.).
3. NLMt: the DT-MRI is computed from the raw DW-MRI and then denoised.

The weighted average of the MRI intensities (grey levels) Eq. 1 is replaced
by a Log-Euclidean weighted average [1, 12]: of the image diffusion tensors.
∆ is defined as:

∆(v(yk), v(zk)) = ‖ log(v(yk)−
1
2 v(zk)v(yk)−

1
2 )‖2, (4)

v(yk) and v(zk) being the tensors at voxels yk and zk.

The Log-Euclidean framework could have been replaced by other methods [7,
12,17].

2.3 Implementation details

The NLM method uses a cubic neighborhood (cardNi = 27). For NLMv and
NLMt, considering that both vectors and tensors convey enough information for
denoising, card Ni is set to 1. In these cases, having larger neighborhoods Ni

makes it difficult to find similar blocks in the search area Vi and thus limits
the denoising capacities of the algorithms. The search area Vi is chosen to be
identical for all the NL-means variants (cardVi = 113 voxels).
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2.4 Comparison measure

A comparison measure is needed to validate the denoising methods with respect
to a ground truth. We define the distance between two DT-MRI as:

RMS =

√
1

cardΩ

∑
card Ω

d
(
Î , Id

)2

, (5)

with Ω the masked diffusion tensor image grid, Î the reference DT-MRI, Id the
denoised DT-MRI, and d a distance over tensors. The Log-Euclidean distance
is selected as it is specifically designed for tensors as described in Sec. 2.2. The
comparison is restricted to cerebral tissues, where the estimation of a diffusion
tensor is relevant.

3 Validation and results

3.1 Dataset

In order to evaluate the performances of the different algorithms on DT-MRI
multiple tests are performed on a reference data set. The reference data set is
constructed by averaging multiple acquisitions of the same subject. The acquisi-
tion protocol is a single-shot spin echo EPI sequence on a Siemens 1.5T scanner,
with diffusion encoding (10 directions, b = 1000 s/mm2, voxels=1.875×1.875×5
mm3, 24 slices, 24 cm FOV). The acquisition is repeated 12 times with identical
slice locations and each acquisition has a run time of 8 minutes. Each diffusion-
weighted acquisition is corrected for distortions [18].

Numerous methods exist for the estimation of the tensor [10,16]. We simply
choose to estimate the tensor by classical linear regression.

3.2 Leave-one-out comparison

To assess the validity of the proposed denoising methods, a leave-one-out ap-
proach is devised. For each DW acquisition Ii

noisy the 11 other DW-MRI are
averaged gradient-by-gradient, giving Ii

average (cf Fig. 2, left). A DT-MRI is
estimated from Ii

average and serves as a comparison basis. The selected image,
Ii
noisy (or its corresponding DT-MRI), is then denoised with the 6 denoising

techniques, and the resulting denoised DT-MRI is estimated. The error between
this denoised image and the ground truth data built from Ii

average is computed
using the measure defined in Section 2.4. The process is then iterated, yielding
12 RMS errors, which are finally averaged to give a global RMS error. These
error measures are displayed on Fig. 2 (right) for the 6 denoising methods. This
leave-one-out method helps avoiding the introduction of bias.

The denoising using the NLMt techniques yields very poor results, probably
due to the poor redundancy of tensor information in the image. Computing the
weights for each voxel shows that on average only 8 significantly similar tensors
are found, whereas for grey level or vector images the number of significantly
similar blocks is generally higher than 100.
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Fig. 2. Left: Scheme of the first step of the leave-one-out validation. An acqui-
sition is selected (I1

noisy), and the others are averaged, giving I1
average. The DW-MRI

(or DT-MRI) corresponding to I1
noisy are denoised with each of the 6 algorithm; the

associated DT-MRI is computed and quantitatively compared with the DT-MRI com-
puted from I1

average, giving an error measure ε1. The process is then repeated with
i = 2, ..., 12 and the global error measure is computed as 1

12

P
i εi. Right: Error plot

of the RMS for each method. The bar length indicates the min and max error over
the 12 experiments; the middle mark indicates the mean value. The acronyms are as
follows: GF: Gaussian Filter, AD: Anisotropic Diffusion, TV: Total Variation, NLMv:
NL-means vector, NLM: NL-means gradient-by-gradient, NLMt: NL-means tensor. The
NLMt method is not plotted due to poor results: average RMS is 1.2.

3.3 Comparison with different noise levels

In this section, the average of the 12 images Iavg is used as a reference. A new
image In is built by adding Rician noise with different levels. In Collins et al. [5],
the noise percentage p is related to the standard deviation of the Gaussian noise
σ and the mean value ν of the brightest tissue following p = 100σ/ν. The same
idea is used here with Rician noise. The mean intensity of the CSF in the non-
diffusion-weighted image (S0) is used for the ν value. The RMS error is computed
between each denoised DT-MRI and the ground truth DT-MRI computed from
Iaverage.

Results are shown in Fig. 3. At low levels of noise (below 4%), TV and AD
perform better than the NL-means filters. That could be partially explained by
the fact that the estimation of the noise by pseudo-residuals used in the NL-
means variants is known to be overestimated for these low levels of noise. At
higher levels (in the range 5-10%), usually met in real DW-MRI, the NL-means
filters outperform all the other filters, NLM being constantly better than NLMv.

3.4 Choice of the filters parameters

Each proposed method needs specific parameters for denoising. For a fair com-
parisons of all the methods, those parameters are selected with an optimisation
procedure so that each method gives its best result for a given experiment. In
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Fig. 3. Plot of different noise levels and RMS. Noise is added to the reference image.
The image is then denoised and compared to the original.

practice, according to the 12 different RMS errors computed in the leave-one-out
experiment, the noise level is between 6 and 7 percents. All the parameters are
optimised for this level of noise added to the Iaverage DW-MRI.

This optimisation is performed with the Nelder-Mead’s downhill simplex al-
gorithm [14]. The cost function for this optimiser is the measure described in
Sec. 2.4. Initial guesses for the parameters are empirically chosen after a few
manual tests, and are used to initialise the downhill simplex. The unknown pa-
rameters are: number of iterations and regularisation strength (TV and AD),
kernel size (GF), and filtering parameter h (NL-means variants).

3.5 Visual assessment

In Figure 4, we display axial slices at the level of the ventricles for the ground
truth data (DT-MRI computed from Iaverage), the raw DT-MRI computed from
one of the acquisitions Ii

noisy, and the 6 denoised images. The color encodes the
principal direction of diffusion (colinear to the eigenvector of the tensor with
maximal eigenvalue), weighted by the fractional anisotropy [11]. The reference
image has smooth color transitions but also sharp edges. The GF filtered image
efficiently removes the noise but suppresses the edges and lowers the anisotropy
of tensors. The standard NL-means seems to be the best filter, followed by TV,
NLMv, AD and NLMt, which confirms the quantitative values in Fig. 3.
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Noisy GF NLM NLMv

Reference AD NLMt TV

Fig. 4. Visual Comparison of the different algorithms. The color encodes the
principal direction of diffusion (colinear to the eigenvector of the tensor with maximal
eigenvalue), weighted by the fractional anisotropy [11].

4 Conclusion and further works

This paper presents new variants of the Non-Local (NL) means algorithm, ap-
plied to diffusion-weighted and diffusion tensor images. The validations per-
formed on a reference dataset underline how the NL-means denoising outper-
forms well-established other methods, such as Anisotropic Diffusion [13] and
Total Variation [15]. The results are obtained from the denoising of either the
diffusion images or the diffusion tensor. Our comparison does not take into ac-
count the Rician nature of the noise, and comparison with more specific denoising
methods [2] will be performed in the future. The direct denoising of the DT-MRI
with our proposed NL-means variant does not achieve good performances. This
relates to the fact that the number of similar tensors inside the search region is
quite low (≈ 8). The lower quality of the direct denoising of DT-MRI compared
to denoising on DW-MRI is in line with the literature [2].

The effect of such denoising techniques needs to be investigated in patho-
logical cases. For instance Multiple Sclerosis clearly shows changes in diffusion
coefficients (such as fractional anisotropy and mean diffusivity). The effect of de-
noising must be studied in lesion areas to make sure these are well preserved in
terms of their diffusion characteristics. Moreover, the impact of this NL-means
denoising variants on the performances of post-processing algorithms, such as
segmentation and fiber tracking has to be further investigated.
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