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Abstract  

In this paper, we introduce a set of discrete orthogonal functions known as dual Hahn polynomials. The 

Tchebichef and Krawtchouk polynomials are special cases of dual Hahn polynomials. The dual Hahn 

polynomials are scaled to ensure the numerical stability, thus creating a set of weighted orthonormal dual 

Hahn polynomials. They are allowed to define a new type of discrete orthogonal moments. The discrete 

orthogonality of the proposed dual Hahn moments not only ensures the minimal information redundancy, 

but also eliminates the need for numerical approximations. The paper also discusses the computational 

aspects of dual Hahn moments, including the recurrence relation and symmetry properties. Experimental 

results show that the dual Hahn moments perform better than the Legendre moments, Tchebichef 

moments, and Krawtchouk moments in terms of image reconstruction capability in both noise-free and 

noisy conditions. The dual Hahn moment invariants are derived using a linear combination of geometric 

moments. An example of using the dual Hahn moment invariants as pattern features for a pattern 

classification application is given. 

 

Keywords: Discrete orthogonal moments; Dual Hahn polynomials; Image reconstruction; Pattern 

classification 
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1. Introduction 

Since Hu (1962) introduced moment invariants, moments and functions of moments due to their ability to 

represent global features of an image have found wide applications in the fields of image processing and 

pattern recognition such as noisy signal and image reconstruction (Yin et al., 2002; Mukundan et al., 

2001b), image indexing (Mandal et al., 1996), robust line fitting (Kiryati et al., 2000), and image 

recognition (Qing et al., 2004). Among the different types of moments, the Cartesian geometric moments 

are most extensively used. However, the geometric moments are not orthogonal. The lack of 

orthogonality leads to a certain degree of information redundancy and causes the recovery of an image 

from its geometric moments strongly ill-posed. Indeed, the fundamental reason for the ill-posedness of the 

inverse moment problem is the serious lack of orthogonality of the moment sequence (Talenti, 1987). To 

surmount this shortcoming, Teague (1980) suggested the use of the continuous orthogonal moments 

defined in terms of Legendre and Zernike polynomials. Since the Legendre polynomials are orthogonal 

over the interval [-1, 1], and Zernike polynomials are defined inside the unit circle, the computation of 

these moments requires a suitable transformation of the image coordinate space and an appropriate 

approximation of the integrals (Shu et al., 2000; Chong et al., 2003). 

The study of classical special functions and in particular the discrete orthogonal polynomials has 

recently received an increasing interest (Mukundan et al., 2001a; Arvesú et al., 2003; Foupouagnigni and 

Ronveaux, 2003; Ronveaux et al., 2000). The use of discrete orthogonal polynomials in image analysis 

was first introduced by Mukundan et al. (2001b) who proposed a set of discrete orthogonal moment 

functions based on the discrete Tchebichef polynomials. An efficient method for computing the discrete 

Tchebichef moments was also developed (Mukundan, 2004). Another new set of discrete orthogonal 

moment functions based on the discrete Krawtchouk polynomials was presented by Yap et al. (2003). It 

was shown (Mukundan et al., 2001b, Yap et al. 2003) that the discrete orthogonal moments perform better 

than the conventional continuous orthogonal moments in terms of image representation capability. 

The classical orthogonal polynomials can be characterized by the existence of a differential equation. 

In fact, the classical continuous polynomials (e.g., Hermite, Laguerre, Jacobi, Bessel) satisfy a differential 

equation of the form (Nikiforov and Uvarov, 1988): 
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where )(~ xσ  and )(~ xτ  are polynomials of at most second and first degree, and λ is an appropriate 

constant. It is possible to expand polynomial solutions of partial differential equations in any basis of 

classical orthogonal polynomials. 

When the differential equation (1) is replaced by a difference equation, we can find the main properties 

of classical orthogonal polynomials of a discrete variable. Consider the simplest case, when (1) is 

replaced by the following difference equation 
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which approximates (1) on a lattice of constant mesh Δx = h. The classical discrete polynomials such as 

Charlier, Meixner, Tchebichef, Krawtchouk, and Hahn polynomials are all the polynomial solutions of 

(2). 

After a change of independent variable x = x(s) in (2), we can obtain a further generalization when (1) 

is replaced by a difference equation on a class of lattices with variable mesh Δx = x(s+h) – x(s) (Nikiforov 

and Uvarov, 1988). The discrete orthogonal polynomials on the non-uniform lattice are of great 

importance for applications in quantum integral systems, quantum field theory and statistical physics 

(Vega, 1989). In recent years, much attention has been paid to the study of this class of polynomials 

(Koepf and Schmersau, 2001; Kupershmidt, 2003; Álvarez-Nodarse, 2001a,b; Álvarez-Nodarse and 

Smirnov, 1996; Temme and López, 2000). However, to the best of our knowledge, until now, no discrete 

orthogonal polynomials defined on a non-uniform lattice have been used in the field of image analysis. In 

this paper, we address this problem by introducing a new set of discrete orthogonal polynomials, namely 

the dual Hahn polynomials, which are orthogonal on a non-uniform lattice (quadratic lattices x(s) = s(s + 

1)). The dual Hahn polynomials are scaled, to ensure that all the computed moments have equal weights, 

and are used to define a new type of discrete orthogonal moments known as dual Hahn moments. Similar 

to Tchebichef and Krawtchouk moments, there is no need for spatial normalization; hence, the error in the 

computed dual Hahn moments due to discretization does not exist. However, our new moments are more 
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general because both the Tchebichef and Krawtchouk polynomials are special cases of the dual Hahn 

polynomials (Nikiforov and Uvarov, 1988). Since the dual Hahn moments contain more parameters (due 

to the fact that the dual Hahn polynomials are defined on the non-uniform lattice) than the discrete 

Tchebichef and Krawtchouk moments, these extra parameters give more flexibility in describing the 

image, the improvement in performance could thus be expected. 

It is worth mentioning that although the dual Hahn polynomials are orthogonal on a non-uniform lattice, 

the discrete dual Hahn moments defined in this paper are still applied to uniform pixel grid image. The 

difference between the dual Hahn moments and the discrete moments based on the polynomials that are 

orthogonal on uniform lattice (e.g., discrete Tchebichef moments and Krawtchouk moments) is that the 

latter is directly defined on the image grid but, for the former, we should introduce an intermediate, 

non-uniform lattice, . )1()( += sssx

The rest of the paper is organized as follows. In section 2, we introduce the dual Hahn polynomials of a 

discrete variable. This section also provides the derivation of weighted dual Hahn polynomials and the 

dual Hahn moments. Section 3 discusses the computational aspects of dual Hahn moments. It is shown 

how the recurrence formulae and symmetry property of the dual Hahn polynomials can be used to 

facilitate the moment computation. The dual Hahn moment invariants are also derived in this section. The 

experimental results are provided and discussed in Section 4. Section 5 concludes the paper. 

 

2. Dual Hahn Moments 

2.1. Discrete orthogonal polynomials on the non-uniform lattice 

Let us first review some general properties of orthogonal polynomials of a discrete variable on a 

non-uniform lattice (Nikiforov and Uvarov, 1988; Álvarez-Nodarse and Smirnov, 1996). As previously 

indicated, the discrete orthogonal polynomials on the non-uniform lattice can be constructed using a 

variable mesh in (1) when it is replaced by a difference equation. Let 
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be the second order difference equation of hypergeometric type for some lattice function x(s), where 
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)1()()( −−=∇ sgsgsg , )()1()( sgsgsg −+=Δ                      (4) 

denote respectively the backward and forward finite difference quotients. )(~ xσ  and )(~ xτ  are 

polynomials in x(s) of degree at most two and one, respectively, and λ is a constant. It is convenient to 

rewrite (3) in the following equivalent form (Nikiforov and Uvarov, 1988; Álvarez-Nodarse and Smirnov, 

1996) 
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 ))((~)( sxs ττ =                                        (7) 

The polynomial solutions of equation (5), denoted by )())(( sPsxy nn ≡ , are uniquely determined, up to 

a normalizing factor Bn, by the difference analogue of the Rodrigues formula (Nikiforov and Uvarov, 

1988) 
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It is known that for some special kind of lattices, solutions of (5) are orthogonal polynomials of a discrete 

variable, i.e., they satisfy the following orthogonality property (Nikiforov and Uvarov, 1988) 
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where  denotes the square of the norm of the corresponding orthogonal polynomials, and ρ(s) is a 

nonnegative function (weighting function), i.e., 

2
nd

             0)]
2
1()[( >−Δ sxsρ ,    a ≤ s ≤ b – 1                           (11) 
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supported in a countable set of the real line (a, b) and such that 

)()()]()([
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Δ
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Some important discrete orthogonal polynomials on the non-uniform lattice are listed in Table 1. 

Among them, the dual Hahn polynomials and Racah polynomials are relatively simple in terms of the 

lattice form and weighting function, moreover, both polynomials have a finite domain of definition that is 

suited for square images of size N×N pixels. We choose here the dual Hahn polynomials to define a new 

type of moments. The Racah polynomials have already been used by the authors in another paper (Zhu et 

al, 2007). A comparison of these two moments is given in Table 2. 

 

2.2. Dual Hahn polynomials 

The classical dual Hahn polynomials , n = 0, 1, …, N–1, defined on a non-uniform lattice x(s) 

= s(s+1), are solutions of (5) corresponding to (Nikiforov and Uvarov, 1988) 
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and the weighting function ρ(s) is given by 
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where the parameters a, b and c are restricted to 

Nabacba +=+<<<− ,1,2/1                         (15) 

Note that if the uniform lattice, i.e., x(s) = s, is used in (5), and the parameters a, b, and c are defined as 

2/)( βα +=a , b = a + N, 2/)( αβ −=c , the dual Hahn polynomials become the Hahn polynomials 

(Nikiforov and Uvarov, 1988). Setting α = 0 and β = 0, the Hahn polynomials reduce to the 

Tchebichef polynomials. If we take β = pt and α = (1–p)t in the Hahn polynomials and let t → ∞, we 

obtain the Krawtchouk polynomials Kn(x; p, N) (Koekoek and Swarttouw, 1998). 

),(),( Nxhn
βα

The n-th order dual Hahn polynomials are defined as (Álvarez-Nodarse and Smirnov, 1996) 
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The dual Hahn polynomials satisfy the following orthogonality property 
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where the weighting function ρ(s) is given by (14) and 
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The set of dual Hahn polynomials is not suitable for defining the moments because the range of values 

of the polynomials expands rapidly with the order. To surmount this shortcoming, we introduce the 

weighted dual Hahn polynomials in the following subsection. 

 

2.3. Weighted dual Hahn polynomials 

To avoid numerical instability in polynomial computation, the dual Hahn polynomials are scaled by 

utilizing the square norm and the weighting function. The set of the weighted dual Hahn polynomials is 

defined as 
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In this case, the orthogonality condition given by (19) becomes 
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The values of the weighted dual Hahn polynomials are thus confined within the range of [-1, 1]. Fig. 1 

shows the plots for the first few orders of the weighted dual Hahn polynomials with the parameters a = c 

= 0 and b = N = 40. 

 

2.4. Dual Hahn moments 

The dual Hahn moments are a set of moments formed by using the weighted dual Hahn polynomials. 

Given a uniform pixel lattices image f(s, t) with size N × N, the (n + m)-th order dual Hahn moment is 

defined as 
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The orthogonality property of the dual Hahn polynomials helps in expressing the image intensity 

function f(s, t) in terms of its dual Hahn moments. The reconstructed image can be obtained by using the 

following inverse moment transform. 
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In (24), s and t represent horizontal and vertical directions of reconstructed image with uniform pixel grid. 

If only the dual Hahn moments of order up to M are used, (24) is approximated by 
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3. Computational Aspects of Dual Hahn Moments 

In this section, we discuss the computational aspects of dual Hahn moments. We present some properties 

of dual Hahn polynomials and show how they can be used to facilitate the computation of moments. 

 

3.1. Recurrence relation with respect to n 

In order to decrease the computational cost in the calculation of moments, the recurrence relation can 

be used to avoid the overflowing for mathematical functions like the hypergeometric and gamma 

 9

H
A

L author m
anuscript    inserm

-00189813, version 1



functions. The weighted dual Hahn polynomials obey the following recurrence relation (the derivation of 

the relation is given in Appendix A) 
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Equation (26) is used to compute the values of the weighted dual Hahn polynomials. The algorithm for 

computing the dual Hahn polynomial values  is shown in Fig. 2. Fig. 3 shows the 

reconstruction algorithm based on equation (24). 
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n

 

3.2. Recurrence relation with respect to s 

The recurrence relation of discrete dual Hahn polynomials with respect to s is as follows (The detailed 

derivation is given in Appendix B): 
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To obtain the values for s = 0 and s = 1, we derive defined by (8) for dual Hahn polynomials 

as follows (Álvarez-Nodarse, 2001a) 
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we deduce from (8), (33) and (34) that 
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Similarly, we can obtain the recurrence relation for the weighted dual Hahn polynomials with respect to s 
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n = 0, 1, …, N – 1, s = 2, 3, …, b – 1                        (38) 

with 
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Equations (38), (39) and (40) can be used to effectively calculate the weighted dual Hahn polynomial 

values. 

 

3.3. Symmetry property 

The symmetry property can be used to reduce the time required for computing the dual Hahn moments. 

The weighted dual Hahn polynomials have the symmetry property with respect to n 
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The above relation shows that only the values of the dual Hahn polynomials up to order n = N/2 – 1 need 

to be calculated, thus the computational cost can be reduced. 

The symmetry property is also useful in minimizing the memory requirements for storing the dual 

Hahn polynomial values. In fact, equation (23) can be rewritten as 
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Using (41), the inverse transformation (24) can be modified as 
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where f(s, t) represents image intensity with uniform pixel grid. Such decomposition permits decreasing 

the computational complexity in the reconstruction process. In fact, the number of multiplication required 

in (43) is N2/4 assuming that all the polynomial values have been already calculated, and the number of 

addition in (43) is 3N2/4. On the other hand, the multiplication number and addition number in (24) are 

both N2. 

 

3.4. Invariant pattern recognition using geometric moments 

  To obtain the translation, scale and rotation invariants of dual Hahn moments, we adopt the same 

strategy used by Yap et al. (2003) for Krawtchouk moments. That is, we derive the dual Hahn moment 

invariants through the geometric moments. If the geometric moments of an image f(s, t) are expressed 

using the discrete sum approximation as 

∑∑
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1
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pq tsftsm                                         (44) 

then the set of geometric moment invariants, which are independent to rotation, scaling and translation 

can be written as (Hu, 1962) 
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where 
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2

+
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=
qpγ                                   (46) 

00
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m
ms = ,

00

01

m
mt =                                 (47) 

0220

111 2tan5.0
u−

= −

μ
μθ                              (48) 

and pqμ are the central moments defined by 
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The dual Hahn moments of  can be written according to 

the geometric moments as 
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For simplicity, we only consider the case of a = 0, b = a + N, and c = 0. In this case, equation (50) can be 

rewritten as 

∑∑
−

=

−

=

−=
1

0

1

0

)0()0(1 ),(),0,(),0,()(
N

s

N

t
mnmnnm tsfNtwNswddD                  (51) 

Equation (51) shows that the dual Hahn moments can be expanded as a linear combination of the 

geometric moments. The explicit expressions of the dual Hahn moments in terms of geometric moments 

up to the second order are as follows: 
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The new set of moments can be formed by replacing the regular geometric moment by their 

invariant counterparts . Thus, we have 
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Note that the new set of moments defined by equations (58)-(63) is rotation, scale and translation 

invariant. 

 

4. Experimental Results and Discussion 

To demonstrate the effectiveness of the proposed method, we apply it to a set of binary and gray-level 

images and compare the results with other discrete orthogonal moments. 

 

4.1. Effect of parameter c in image reconstruction 

We first illustrate the influence of the parameter c on image reconstruction. A constant value is assigned to 

the parameter a, we arbitrarily set a = 8 for this example. Five cases have been tested in terms of the 
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constraints give by Eq. (15): (a) c = –8; (b) c = –4; (c) c = 0; (d) c = 4; (e) c = 8. Fig. 4 depicts the plots of 

dual Hahn polynomials with different values of c with N = 40. We can observe from Fig. 4 that the dual 

Hahn polynomials shift from left to right as c increases. We use a binary English character whose size is 

40×40 pixels as original image to test the influence of the parameter c on the reconstruction results. The 

following mean square error ε is used to measure the performance of the reconstruction. 

                      ∑∑
−

=

−

=

−=
1 1

2
2 )],(),([1 b

as

b

at

tsftsf
N

ε                          (64) 

where f(s, t) and ),( tsf denote the original image and the reconstructed image, respectively. The 

reconstructed results and corresponding errors are shown in Table 3 and Fig. 5. It can be seen that the fifth 

choice (a = c = 8, b = 48) gives the best reconstructed results among all the test cases. We believe this is 

because the weighted dual Hahn polynomials, with this choice of parameters, are approximately situated 

at the middle of the region of definition (see Fig. 4 (e)), so that the emphasis of the moments will be at the 

center of the image. 

  In the following experiment, we will discuss the influence of parameter a on the reconstruction results. 

According to the above results and the constraints imposed on these parameters given in (15), we have 

systematically set a = c and b = a + N in all experiments. Fig. 6 shows several plots of dual Hahn 

polynomials with increasing values of a where it can be observed that the dual Hahn polynomial moves 

from left to right. We then select a Chinese character whose size is 60 × 60 pixels as the original image. 

Three cases have been tested: (a) a = c = 0, and b = 60; (b) a = c = 7, and b = 67; (c) a = c = 18, and b = 

78. Table 4 depicts the original image and the reconstructed patterns with a moment order going from 10 

to 50. The plot of corresponding reconstruction errors is tabulated in Fig. 7. From Table 4 and Fig. 7, we 

can observe that the reconstructed images with a = c = 7, and b = 67, are better. For this parameter setting, 

the weighted dual Hahn polynomials are approximately situated at the middle of the region of definition 

(see Fig. 6(b)). It can be also seen that when the first choice is used, the reconstruction starts from top left 

corner, and with the third one, the reconstruction begins from bottom right corner. Therefore, the dual 

Hahn moments can be used to extract the feature of an image by adjusting the parameters. For dual Hahn 

moments, so far as a = c, the smaller of the value of a and c, the emphasis of the region-of-interest (ROI) 
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on the top left corner will be. Conversely, the ROI of the image shift to the bottom right corner when they 

take greater value. Note that the other selections (a = 6, a = 8, a = 9, and a = 10) have also been tested for 

this example, but the reconstruction results are very similar to those obtained with a = 7. From these 

results, we found if the parameters are set a = c and b = a + N, where N × N is the image size, a ≈ N/10 

provides the best reconstruction. 

 

4.2. Image reconstruction capability for binary image 

We use a noise-free binary Chinese character image to compare the performance of the proposed method 

with Legendre, Tchebichef and Krawtchouk moments. The image size is 60 × 60 pixels. Fig. 8 shows the 

reconstruction results. Note that the parameters are set to a = c = 7, and b = 67 for the proposed moments, 

and p1 = p2 = 0.5 is used in the Krawtchouk moments. 

Fig. 9 displays the detailed plot of the mean square errors using four different orthogonal moments with 

maximum order up to 50. As it can be seen from Fig. 8 and Fig. 9, the reconstructed images using 

Krawtchouk and dual Hahn moments perform better than the other moments. When the moment order is 

high (M ≥ 25), the reconstruction error with dual Hahn moments is the smallest one. 

 

4.3. Image reconstruction capability for gray-level image 

For this experiment, a gray-level standard image Lena of size 256 × 256 pixels is used to compare the 

performance the proposed dual Hahn moments with the other moments. Moments up to maximum order 

of 255 are computed from the original image, and the reconstruction results are illustrated in Fig. 10. A 

detailed comparison of the variation of reconstruction errors is shown in Fig. 11. It can be observed that 

these data confirm, both qualitatively and quantitatively, the good behavior highlighted above. 

 

4.4. Robustness to different kind of noises 

It is well known that the reconstruction quality can be severely affected by image noise. Generally 

speaking, moments of higher orders are more sensitive to image noise (Mukundan et al., 2001a). To 

further test the robustness of dual Hahn moments regarding to different kind of noises, we first add in this 
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example a zero mean Gaussian noise with variance 0.1 to the three original gray-level images shown in 

the first row of Fig. 12. Fig. 12 depicts the reconstructed images using Legendre, Tchebichef, Krawtchouk, 

and dual Hahn moments. The reconstruction errors are shown in Fig. 13 (a) which again indicates the 

better performance of dual Hahn moments. 

The effect of salt-and-pepper noise (5%) is also analyzed. The reconstructed images with the maximum 

order of moments up to 50 are shown in Fig. 12 and the mean square errors are reported in Fig. 13 (b). It 

can be seen that the dual Hahn moments is more robust to noise with respect to Legendre and Tchebichef 

moments, and that the Krawtchouk ones provide similar performances. 

 

4.5. Invariant pattern recognition 

  This subsection provides the experimental study on the classification accuracy of dual Hahn moments 

in both noise-free and noisy conditions. In our classification task, we use the following feature vector. 

]~ ,~ ,~ ,~ ,~ ,~[ 022011011000 DDDDDDV =                        (65) 

where nmD~ are the dual Hahn moment invariants defined in Section 3.4. The objective of a classifier is to 

identify the class of the unknown input character. During classification, features of the unknown character 

are compared against the training information being assigned a particular class. The Euclidean distance 

measure is commonly used for classification purpose and is given by: 

∑
=

−=
T

j
tjsj

k
ts vvVVd

1

2)( )(),(                             (66) 

where is the T-dimensional feature vector of unknown sample, and is the training vector of class 

k. In this experiment, the classification accuracy 

sV )(k
tV

η is defined as 

%100
 testin the used images ofnumber   totalThe

images classifiedcorrectly  ofNumber 
×=η              (67) 

Fig. 14 shows a set of similar binary English characters used as the training set. The reason for choosing 

such a character set is that the elements in subset {I, L}, {D, O}, and {H, T, Y} can be easily misclassified 

due to the similarity. Seven testing sets are used, which are generated by adding different densities of 

salt-and-pepper noise add to the rotational version of each character. Each testing set is composed of 168 
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images, which are generated by rotating the training images every 45 degrees in the range [0, 360) and 

then by adding different densities of noises. Fig. 15 shows some of the testing images contaminated by 

2% salt-and-pepper noise. The feature vector based on dual Hahn moment invariants are used to classify 

these images and its recognition accuracy is compared with that of Hu’s moment invariants (Hu, 1962). 

Table 5 shows the classification results using a full set of features. One can see from this table that 100% 

recognition results are obtained in noise-free case. Note that the recognition accuracy decreases when the 

noise is high. The second testing set is generated by rotating and scaling the training set with rotating 

angles, , , ,…, and scaling factors, S = 0.9, 1.0, 1,1; forming a testing set of 168 images. 

This is followed by the addition of salt-and-pepper noise similar to that of the first testing set. The 

classification results of the image with rotation and scaling transformation are depicted in Table 6. Table 6 

shows that the better results are obtained with the dual Hahn invariant vector. Experimental results 

demonstrated that the dual Hahn moments perform better than the traditional Hu’s moments in terms of 

invariant pattern recognition accuracy in both noise-free and noisy conditions. Therefore, the dual Hahn 

moments could be useful as new image descriptors. 

00=φ 045 090 0315

 

5. Conclusion 

The hypergeometric polynomials of continuous or discrete variable, whose canonical forms are the 

so-called classical orthogonal polynomial systems, play a crucial role in many scientific research fields. 

Recently, some sets of discrete orthogonal moment functions have been introduced in image processing. 

The discrete orthogonal moments based on discrete orthogonal polynomials, such as Tchebichef and 

Krawtchouk polynomials, have better image representation capability than the continuous orthogonal 

moments. These discrete orthogonal polynomials are the polynomial solutions of the difference equation 

on the uniform lattice. 

In this paper, we have proposed the use of a new type of discrete orthogonal polynomials (so-called 

dual Hahn polynomials) on a non-uniform lattice to define the moments. It is noted that the reconstructed 

images still have uniform pixel lattices. The discrete Krawtchouk polynomials, discrete Tchebichef 

polynomials are special cases of dual Hahn polynomials. All of them are orthogonal in certain range. The 
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computational aspects and symmetry property of dual Hahn moments have been discussed in detail. In 

experimental studies, we have compared the dual Hahn moments with other orthogonal moments such as 

Legendre, Tchebichef and Krawtchouk moments in terms of the reconstruction capability with and 

without noise. The reconstruction results and detailed error analysis have shown that the dual Hahn 

moments perform better than other moment’s methods. Pattern classification experiments also 

demonstrated that the dual Hahn moments perform better than the Hu’s moment invariants in terms of 

invariant pattern recognition accuracy in both noise-free and noisy conditions. To conclude, the discrete 

dual Hahn moments are potentially useful as feature descriptors for image analysis, and the method 

described in this paper can be easily extended to the construction of moment functions from other discrete 

orthogonal polynomials on the non-uniform lattice. 
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Appendix A 

In this appendix, we give a detailed derivation of the recurrence relation with respect to n 

According to Nikiforov and Uvarov (1988), we can construct the recursive relation for dual Hahn 

orthogonal polynomials as follows 

)()()()( 11 xyxyxyxxy nnnnnnn −+ ++= γβα                         (A1) 
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               1+= nnα                                       (A2) 
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Using equations (A1)-(A4), we have 
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For dual Hahn orthogonal polynomial,  in (A5) is defined as . From equations (21) 

and (A5), we can obtain the weighted dual Hahn polynomials in recursive form as 
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The initial value of and (see equations (29) and (30)) can be obtained from (8) as ),,()(
0 basw c ),,()(

1 basw c
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Finally, the original values and can be obtained from (21). ),,(ˆ )(
0 basw c ),,(ˆ )(

1 basw c

 

Appendix B 

In this appendix we derive the recurrence relation (38) of discrete dual Hahn polynomials. By using 

equation (5) and x(s) = s (s + 1), we can be rewritten the first term of (5) as 
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Similarly, the second term of (5) can also be rewritten as 
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From (5), (B1), and (B2), we have 
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where  denotes the dual Hahn polynomials . )(sy ),,()( basw c
n

Equation (38) can thus be derived from (B3) and (21). To obtain the initial value of , we ),,()( basw c
n
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use the Rodrigues formula (8). 
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Using equations (21), (B5) and (B6), we can obtain the weighted initial values of dual Hahn polynomials 

shown in (39) and (40). 
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Table 1 

Some important discrete orthogonal polynomials on the non-uniform lattice (p, q, a, b, c, γ, μ, α, β, and ω 

are parameters attached to the respective polynomials, n denoting the order) 

Name Notation Lattice smin smax ρ(s) 

dual Hahn ),,()( basw c
n  x(s) = s(s + 1) a b )1()1()()1(
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Table 2 

Comparison of dual Hahn moments and Racah moments. 

 
Moment Polynomials Symmetry Number of 

Parameters 
Reconstruction 

Capability 
Compression 

Capability 
 

dual Hahn 
 

Relatively 

Simple:  32 F

Orthogonal About n Three:(a, b, c) Very Good Good 
 

Racah More  

Complex:  43 F

Orthogonal About n + a 
and s only if 

a = α = β 

Four:(a, b, α, 
β) 

Good 
 

Very Good 

 

 26

H
A

L author m
anuscript    inserm

-00189813, version 1



Table 3  

Image reconstruction of the letter “F” of size (40×40) without noises, a = 8, b = 48 

Original Image (40×40) 

 
Reconstructed Image 

Iterative Number c =  8− c = 4−  c = 0 c = 4 c = 8 

1 
     

5 
     

15 
     

39 
     

Table 4  

Image reconstruction of the Chinese character of size 60 × 60 without noises 

Original Image (60 × 60) 

 

Reconstructed Image 

Iterative number a = c = 0, b = 60 a = c = 7, b = 67 a = c = 18, b = 78 

10 

   

20 

   

30 

   

50 
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Table 5 
Classification results of the image with rotation transformation 

Salt-and-pepper Noise  Noise-free 
1% 2% 3% 4% 

Hu 100% 96.62% 87.047% 75.76% 70.83% 
Dual Hahn 100% 98.22% 92.88% 81.57% 78.67% 
 
 
Table 6 
Classification results of the image with Rotation and Scaling transformation. Scale: 0.9, 1, 1.1 
Rotation: 00, 450, 900,…….  

Salt-and-pepper Noise  Noise-free 
1% 2% 3% 4% 

Hu 98.70% 89.02% 78.01% 72.16% 65.81% 
Dual Hahn 98.75% 92.53% 82.48% 79.31% 75.74% 
 

5 10 15 20 25 30 35 40
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

s

w

n=0
n=1
n=2
n=3
n=4

 

Fig.1. Plot of scaled of dual Hahn polynomials for N = 40 with a = c = 0,  ),,(ˆ )( basww c
n=

and b = 40. 
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/* Given the values of the parameters a, b, and c */ 

for i = 0 to N – 1 

   s = a + i 

   w0( i ) = ( )(sρ × (2 × s + 1) / )1/2 2
0d

w1( i )= [( )()1( 11 ss ρρ −− )/ ))12()(( +×× ssρ ] × ( )(sρ × (2 × s + 1) / )1/2 2
1d

for n = 2 to NMAX – 1 

      A = (1 / n ) × [s × ( s + 1) – a × b + a × c – b × c - ( b – a – c - 1) × (2× n-1)+2 × (n- 1)2] ; 

      B = (- 1/ n ) × ( a + c +n - 1) × ( b – a – n +1) × ( b – c – n+ 1) ; 

      D = ( n / (( a + c + n ) × ( b – a – n ) × ( b – c – n ))) 1/2 ; 

      F = ( n × ( n– 1 )/(( a + c + n ) × ( a + c + n- 1) × (b – a – n + 1) × (b – a –n )  

× ( b – c –n + 1) × ( b – c – n ) ) )1/2 ;   

      wn( i ) = ( A × wn-1( i ) ) × D + (B ×wn-2( i )) × F ; 

end 

end 

Fig. 2. Algorithm for computing the weighted dual Hahn polynomial values 

 

/* First step: Computation of the dual Hahn Moments up to order NMAX */ 

for m = 0 to NMAX 

  for n = 0 to NMAX 

    sum1 = 0 

    for s = a to b – 1 

      for t = a to b – 1 

         sum1 = sum1+ wm(s–a) ×wn(t–b) ×f (s, t) 

end 

    end 

λmn = sum1 

end 
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end 

/* Second step: Image reconstruction using dual Hahn moments */ 

for s = a to b–1 

  for t = a to b–1 

    sum2 = 0 

    for n = 0 to NMAX – 1 

     for m = 0 to NMAX – 1 

       sum2 = sum2 + λmn × wm(s–a) ×wn(t–b) 

end 

    end 

    recon_image(s, t) = sum2 

end 

end 

Fig. 3. Algorithm for reconstruction of the original image using equation (24) 
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 30

H
A

L author m
anuscript    inserm

-00189813, version 1



5 10 15 20 25 30 35 40 45 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

s

w

n=0
n=1
n=2
n=3
n=4

0.4

5 10 15 20 25 30 35 40 45 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

w

n=0
n=1
n=2
n=3
n=4

 s

(c)                               (d) 

5 10 15 20 25 30 35 40 45 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

s

w

n=0
n=1
n=2
n=3
n=4

 

(e) 

Fig. 4. The influence of parameter c on the weighted dual Hahn polynomials , a = 8, b = 

48. (a) c = , (b) c =

),,(ˆ )( basww c
n=

8− 4− , (c) c = 0, (d) c = 4. (e) c = 8 
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Fig. 5. Comparative analysis of reconstruction error of dual Hahn moment with different coefficients c. 
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Fig. 6. Plot of weighted dual Hahn polynomials for different choices parameters. (a) a = 

c = 0, and b = 60; (b) a = c = 7, and b = 67;  (c) a = c = 18, and b = 78. 
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Fig. 7. Comparisons of reconstruction errors with different choices of parameters 
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Original image of size 60 × 60 

       

Reconstructed images using Legendre moments 

       

Reconstructed images using Tchebichef moments 

       

Reconstructed images using Krawtchouk moments with (p1 = p2 = 0.5) 

       

Reconstructed images using dual Hahn moments with a = c = 7, and b = 67 

Fig. 8. Columns 1 to 5 show the reconstructed gray-level images with maximum order up to 8, 16, 24, 32, 

and 50, respectively. The last column is the binary image corresponding to the results of the fifth column. 
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Fig. 9. Comparative analysis of reconstruction error of Legendre, Tchebichef, Krawtchouk, and dual Hahn 

moment.  

 

Original gray-level image of size 256×256 

 

Reconstructed images using Legendre moments 

 

Reconstructed images using Tchebichef moments 
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Reconstructed images using Krawtchouk moments (p1 = p2 = 0.5), 

 

Reconstructed images using dual Hahn moments (a = 0, b = 256, and c = 0) 

Fig. 10. Image reconstruction of a gray-level image without noise, The orders from left to right are 50, 

100, 150, 200, and 255, respectively. 
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Fig. 11. Comparative analysis of reconstruction errors for Lena image. 

 

Original gray-level image (Flower, Water, Bridge) of size 60×60 
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Gaussian noisy images (mean: 0, variance: 0.1)       Salt-and-pepper noisy images (5%) 

   

Reconstructed images using Legendre moments 

   

Reconstructed images using Tchebichef moments 

   

Reconstructed images using Krawtchouk moments (p1 = p2 = 0.5), 

   

Reconstructed images using dual Hahn moments (a = c = 7, and b = 67) 

Fig. 12. The first three columns are reconstructed images using Gaussian noise-contaminated images. The 

last three columns are reconstructed images using salt-and-pepper noise-contaminated images. The 

maximum order used is 50 for each algorithm. 
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(b) 

Fig. 13. Comparative analysis of reconstruction errors using Legendre, Tchebichef, Krawtchouk (p1 = p2 

= 0.5), and dual Hahn moment (a = c = 7, and b = 67) with different noise. (a)Gaussian noise with 

(mean 0, variance: 0.1) (b) 5% salt-and-pepper noise 

 

       
 

Fig.14. Binary images as training set for invariant character recognition in the experiment 
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Part of the images in the testing set 

       

       

       

       

       
 

Fig. 15. Part of the images of the testing set in the experiment 
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