
HAL Id: inserm-00188489
https://inserm.hal.science/inserm-00188489

Submitted on 19 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based measurement of epileptic tissue excitability.
Paul Frogerais, Jean-Jacques Bellanger, Fabrice Wendling

To cite this version:
Paul Frogerais, Jean-Jacques Bellanger, Fabrice Wendling. Model-based measurement of epileptic
tissue excitability.. Conference proceedings : .. Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual
Conference, 2007, 1, pp.1578-1581. �10.1109/IEMBS.2007.4352606�. �inserm-00188489�

https://inserm.hal.science/inserm-00188489
https://hal.archives-ouvertes.fr


 
 
 
 
 

 

H
A

L author m
anuscript    inserm

-00188489, version 1

HAL author manuscript
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007;1:1578-1581



 
 

  

Abstract— In the context of pre-surgical evaluation of 
epileptic patients, depth-EEG signals constitute a valuable 
source of information to characterize the spatiotemporal 
organization of paroxysmal interictal and ictal activities, prior 
to surgery. However, interpretation of these very complex data 
remains a formidable task. Indeed, interpretation is currently 
mostly qualitative and efforts are still to be produced in order 
to quantitatively assess pathophysiological information 
conveyed by signals. The proposed EEG model-based approach 
is a contribution to this effort. It introduces both a 
physiological parameter set which represents excitation and 
inhibition levels in recorded neuronal tissue and a methodology 
to estimate this set of parameters. It includes Sequential Monte 
Carlo nonlinear filtering to estimate hidden state trajectory 
from EEG and Particle Swarm Optimization to maximize a 
likelihood function deduced from Monte Carlo computations. 
Simulation results illustrate what it can be expected from this 
methodology. 

I. INTRODUCTION 

During, pre-surgical examination of epileptic 
patients, diagnostic is mainly based on merging information 
from anatomo-functional imaging, semiology and from 
electrophysiological signals recorded from scalp-electrodes 
(EEG signals) or depth-electrodes (SEEG signals). The latter 
capture important information about dynamical electrical 
activities arising from neuronal populations close to 
electrode contacts (2 mm long, 0.8 mm diameter for 
intracerebral electrodes). Interpretation of recorded signals is 
a crucial issue that is addressed, in this paper through 
modeling. The goal is to relate various temporal patterns 
observed in depth-EEG signals during interictal/ictal to 
modifications of model parameter values. These parameters 
can be interpreted in the model as pathological modifications 
of excitation and inhibition efficiencies. In order to establish 
such a relationship, parameters must be estimated from real 
observations. After description of the model (section II), we 
present a new identification methodology (section III) which 
is essentially based on likelihood computations through 
Monte Carlo (MC) sequential Bayesian filtering. In section 
IV simulation results are given and discussed before 
conclusion. 

II. MODEL DESCRIPTION 
The model we introduce here belongs to the class of 

lumped-parameter models [1] introduced in the 70s to 
describe background activity or evoked potential responses. 
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Here, it was adapted to hippocampus activity in epilepsy [6]. 
In the cortical tissue, distinct neuronal subpopulations types 
can be distinguished. The interactions between these 
subpopulations are either inhibitory or excitatory. The 
electrical activity they develop can be modeled as illustrated 
on fig. 1. Three subpopulations of neurons are considered: 
excitatory pyramidal neurons (Pe1 and Pe2) and two types 
of interneuron providing either slow dendritic inhibition 
(Psi) or fast somatic inhibition (Pfi). Coefficients Ci 
correspond to (mean) numbers of synaptic contacts between 
subpopulations and are supposed known and time invariant.  
Each subpopulation module includes one (or more) linear 
filtering operator(s) whose output(s) is (are) applied to a 
nonlinear no memory operator S(.). This operator mimics 
threshold and saturation effects occurring at the soma. Input 
of filters and outputs of nonlinear operators represent the 
mean firing rate of action potentials. Outputs of filters 
represent excitatory or inhibitory (when weighted by -1) post 
synaptic membrane potentials resulting from time averaging 
in dendrites of impulse synaptic currents induced by afferent 
population(s). Biophysically, the EEG signal (field potential) 
recorded with an depth-EEG contact depends primarily on 
postsynaptic potential variations in Pe1 and Pe2 pyramidal 
cells. In such signal the influence of Psi and Pfi electrical 
activities can be neglected. Only three distinct transfer 
functions denoted he, hsi and hfi are introduced here. Their 
generic Laplace transfer function is  

2
1( )

( )k
h s

sτ
=

+
 where eτ τ= , siτ τ=  or fi siτ τ τ= <  

are time constants whose respective values are fixed in 
accordance with those reported in literature [6].  Each 
transfer function introduces two scalar state variables. The 
influence of cortical neighborhood random activity on the 
four local subpopulations is resumed by a positive-mean 
time continuous Gaussian white noise W(t) applied on he 
input of Pe1 in addition to Pe2 output activity.  The three 
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Fig. 1. The SEEG model. 
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positive parameters A, B and G are interpreted as positive 
synaptic excitation gain, synaptic slow inhibition gain and 
synaptic fast inhibition gain, respectively.  These quantities 
are those we want to measure as they are supposed to vary 
during the transition to seizures. Therefore, the 3D parameter 

3( , , )A B Gθ = ∈  must be estimated from real signals in 
order to 'observe' these modifications. Finally 
instrumentation high pass filter and additive observation 
Gaussian noise are included in the model before sampling 
operator and the overall system can be written: 
 ( ) ( ) tdX f X dt G dθ θ β= , +  (1) 

 k k kY HX v= +  (2) 

where (1) is a vector ( 14X ∈ ) stochastic differential 
equation (SDE) with a linear diffusion term ( ) tG dθ β  and a 
drift term ( )f X dtθ, . The Brownian motion increment 

td β is the centered version of ( )W t dt . Vector X regroups 
state variables of subpopulation input filters plus two 
variables for the output high-pass filter. The function f 
accounts for i) nonlinearities (sigmoid S(.) functions),  ii) 
transfer functions and iii) parameter θ. The output Yk is a 
linear form of sampled state vector Xk. In fig. 2  four real 
depth EEG segments recorded before and during onset of a 
seizure (left) may be visually compared with model 
simulations (right) obtained with empirically adjusted values 
of (A,B,G). 

III. IDENTIFICATION METHOD 

A. Discrete scheme for the state equation.  
To simulate time continuous SDE system (1) with discrete 

time observation (2),  the SDE can be discretized by a 
second order Runge-Kutta method. In our particular model, 
we showed that this discrete approximation leads to: 
 2 1 2( ) ( ) (0 )k rk k rk k k kf X G W W NX θ θ σ−= , , ∆ + ∆, ,∼  (3) 
The two identification methods presented below and 
illustrated on fig. 3 use discretization  (3) and equation (2).  

B. First method: estimated moment method. 
The first method involves only boxes b)  and c) in figure 

3). It consists in comparing  estimated values θ̂  with the 
observed sampled signal y1:N (modeled as an outcome of the 
random vector Y1:N=[Y1,…,YN]) through a feature F(θ) define 
as  a functional of the probability law 

1:NYPθ  . According to 

the moment parameter estimation method [8] an estimation 
θ̂  can then be defined as 1:

ˆ ˆarg min ( ) ( )NF y Fθθ θ= −  

where 1:
ˆ ( )NF Y  is an estimation of F(θ) computed on 

observation and .  a quadratic norm. Here we retain 
F=[F1,F2,F3] where the Fi,,i=1,2,3 are normalized expected 
powers of four filtered versions of observation 1:NY  
obtained by band-pass filtering through three frequency 
bands: delta (0-4Hz), theta and alpha (4-12Hz), beta and 
gamma (12-64Hz). As F(θ) can not be calculated 
analytically, we estimate it as function  1:

ˆ ( ( , ))
SS S nF y Wθ of 

an outcome of model output (2) (nS time samples) simulated 
with parameter value θ and input noise sequence W in (3). 
Because the function 1:

ˆ ˆarg min ( ) ( )NF y Fθθ θ θ→ = −  

may have several local minima a Particle Swarm 
Optimization Algorithm (PSOA) [7] is then utilized to 
compute θ̂ (box c) fig.3). 

 A PSOA is a global optimization procedure that 

propagates a set of K candidate θ values , 1..k
j k Kθ =  

during iterations 1..j J=  before stopping. At iteration j and   
for each particle k, its performance is valuated by computing 

 
Fig. 2. (left) segmented signals recording during an epileptic seizure. 
(right) simulated signals by the model (Fig. 1) with different values  
of the parameters (A,B,G). 
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Fig. 3. The identification method.

 
Fig. 4. The function -h(θ,wk) calculated in the A-B plane (G=50) on a 
realization of the second model (A=5, B=20,G=50). 
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1: 1:
ˆ ˆ( , ) ( ) ( ( , )

r
k k
j N S S n jh W F y F y Wθ θ= −

 
which is 

random since it depends on noise outcome W (Fig. 4 
illustrates the effect of this randomness which entails 
difficulties to find an reliable optimum). For each j value the 
PSOA compute a small displacement for each particle as a 
function of its current position, of its position at preceding 
iteration and of best encountered positions in the past for 
itself and for a currently and randomly defined set of some 
other particles in the swarm (named advisors). The algorithm 
hence combines different randomly selected candidate 
values to produce new values in the same manner as 
evolutionary algorithms. It is stopped when h values became 
stable. 

C. Second method: Maximum likelihood method. 
This method involves mainly boxes a) and c) in fig.3). It 
necessitates an estimation 1:

ˆ( , )NL y θ  of the likelihood 
L(y1:N,θ) which cannot be computed analytically. This 
approach was proposed in [1] for neural mass models 
simpler than our model (only three subpopulations) and in a 
non-pathological context: it consists in implementing a 
nonlinear Bayesian filter for state point estimation (a form of 
improved extended Kalman filter [9]) and to compute 
likelihood as a function of innovations (prediction errors of 
the observation) for each θ  value. Here we propose to 
utilize a particle filter [2] which provide information 
concerning state conditional probability distribution given 
observations. Hence we compute the likelihood by mean of a 
particle filter included in  a) fig.3) and values of θ  that lead 
to large likelihood values are, as for the first method, 
obtained with a PSOA algorithm (c) fig. 3)). In order to limit 
the particle filter computational time, the parameter space 
research is reduced by forbidding θ  values (action of  b) on 
c) fig.3))  which do not respect the constraint -h(θ,W)>α 
where α is set to an empirical value (α= - 0.2). This 
constraint is faster to calculate than the particle filter.  

Non-linear Bayesian filtering methods [9] are used to 

estimate the hidden state trajectory X(t) of a non-linear 
Markov system observed through a noisy no memory 
function ( ) ( ( ), )y t g X t noise= of this state. In case of 
discrete time state evolution, these methods consist in 
estimating the probability density 

1:|k kX Yp  of the state Xk at 

discrete time tk given discrete observations Y1:k . Generally it 
is a difficult problem, which necessitate approximate 
numerical resolutions, as doing by particular filters. 
Particular filtering [3] is an application of a MC method 
called sequential importance sampling with re-sampling 
(SISR) algorithm. This recent and popular method sample at 

each time k a set ˆ i

kx , i=1,…,Ns, from an auxiliary density, 
the instrumental density q, and compute associated weights 

i

kw . These weights may be chosen such that the expectation 

1:[ ( ) | ]k kE f X Y  can be approximated by 

1: 1
ˆ[ ( ) | ] ( )sN i i

k k k ki
E f X Y f xω

=
=∑  for arbitrary f(.) when Ns is 

large [2]. Hence, when Ns is large the information provided 

by the set ( ˆ i

kx , i

kw ), i=1,…Ns,  is equivalent to the 

1:|k kX Yp knowledge. A natural and classical choice for the 

instrumental law is 
1|k kX Xq p

−
=  which correspond to the 

so-called bootstrap filter [3]. But for reasonable (not too 
large) Ns value degeneracy phenomena appear: after several 
steps, only a very little subset of particles give valuable 
information on 

1:|k kX Yp . So, we used here a more 

sophisticated importance law called optimal instrumental 
density [2].  Particle filtering with optimal importance 
density was applied to discretized version (3) of system (1).  

Furthermore it can be shown [4] that the likelihood can be 
approximated by: 

 1 1

1 1

ˆ ( ) log
sNN

i

N k

k i

L y wθ
:

= =

, = ∑ ∑  (4) 

To illustrate, fig. 5 shows estimated values of the log-
likelihood as a function of (A,B) and with Ns=20 on a  signal 
simulated with θ =(5,20,50). G was set to its real value 
(G=50). We can notice several local maxima and the global 
maximum argument (the ML estimation) proximal to the real 
value (A=5,B=20). 

IV. RESULTS ON SIMULATED DATA 
We focused on four different models corresponding to 

four different activities shown in fig. 2 (right). For each 
model, ten realizations were simulated. Then the second 
parameter estimation method, presented in the previous 
section, was applied on these 40=10x4 signals, with Ns=20. 
A 40 particles swarm with 3 advisors for each particle was 
used in the PSOA. Estimated parameter values are plotted in 
the parameter space, fig. 6. Different symbols are used to 
mark different models. Each set of links represents ten 
estimations obtained with ten output outcomes of a given 
model. We can note that, despite the estimation dispersion, 

 
Fig. 5. The log-likelihood calculated on a realization of the first model 
A=5, B=20, G=50.  
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four sets can be easily distinguished. This shows the 

relevance of the estimation procedure.  
The experimental means and standard deviations of the 

four sets of parameter estimations are reported in table I. 
Except for the second model, the estimation of parameter G 
presents high variations. In the first model, B and G 
estimates have also a high variance.  

In order to compare the two identification methods 
described in section III, parameters were estimated ten times 
for each model and for each of the two methods. For each 
model, this process was performed on the same simulated 
observation. The obtained experimental means and standard 
deviations are reported in table II. Globally the first 

estimator shows more dispersion than the second one. This 
dispersion is due to the  dependency on W of the feature 
vector estimate. It could be reduced by taking nS larger than 
observation duration but it can be shown that this would also 
introduce bias. 

For the second method, the MC sampling is the essential 
cause of dispersion. It can be reduced by increasing Ns and, 
therefore, proportionally increasing the computational time. 
In order to numerically evaluate how a small variation ∆θ on 
parameters has an effect on the EEG output, we simulated, 
with two models: M1=M(θ) and M2=M(θ +∆θ) and for a 
same realization W of  input noise,  two  signals ys1:ns(θW) 

and ys1:ns(θ+∆θ,W). An measure of the sensitivity is obtained 
by calculating the mean square error between these signals: 
 2

1: 1:( ) ( , ) ( , )i s ns r s ns i rS y n y nθ θ θ θ= − + ∆  (5) 

for i=1,2,3 with ∆θ1=(0.2,0,0), ∆θ2=(0,0.2,0), 
∆θ3=(0,0,0.2). An evaluation of this quantity for a 
realization of each simulated model (fig. 2) is reported in 
Table I. Note that identifiability of the model increases when 
this parameter increases. 

V. CONCLUSION 
Results obtained on simulated signals show that 

estimation of synaptic gains is not easily achieved in some 
regions of the parameter space. Nevertheless, the ML 
method with MC approximation and particle swarm 
optimization we presented here makes this estimation 
feasible. The main difficulty before being able to apply it on 
larger databases is to address the problem of required 
computer time, more especially in case where model outputs 
are less sensitive to parameter vector values. 

REFERENCES 
[1] P.A. Valdes, J.C. Jimenez, J. Riera, R. Biscay, T. Ozaki “Nonlinear 

EEG analysis based on a neural mass model” Biol. Cybern. 81, 415-
424 (1999) 

[2]  Olivier Cappé, Eric Moulines, and Tobias Ryden. Inference in Hidden 
Markov Models (Springer Series in Statistics). Springer-Verlag New 
York, Inc., Secaucus, NJ, USA, spinger edition, 2005. 

[3]  N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to 
nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings, 
1993. 

[4] M. Hürzeler and H. R. Künsch. Approximating and maximizing the 
likelihood for a general state-space model. 2001. 

[5] Joshua Wilkie. Numerical methods for stochastic differential 
equations. Physical Review E (Statistical, Nonlinear, and Soft Matter  

[6] F. Wendling, A. Hernadez, J.J. Bellanger, P. Chauvel, F. Bartolomei 
“Interictal to ictal transition in human temporal lobe epilepsy: Insights 
from a computational model of intracerebral EEG” JCN, 2005. 

[7] M. Clerc. Particle swarm optimization. ISTE, 2006. 
[8] B Porat., Digital processing of random signals, Prentice-Hall, 1994. 
[9] A. H. Jazwinski, Stochastic processes and filtering theory, Academic 

Press, 1970. 

TABLE I 
SIGNALS ML ESTIMATION SENSITIVITY 

  Mean σ Si(θ) 
A 3.47 0.267 S1(θ1)= 8.64e-3 
B 25.2 9.87 S2(θ1)= 1.003e-5 

intICTAL 
θ1 =(3,15,10) 

G 33.7 17.9 S3(θ1)= 2.18e-6 
A 4.9 0.062 S1(θ2)= 57.9 
B 20 0.325 S2(θ2)= 1.08 

preONSET 
θ2 =(5,20,50) 

G 48.2 1.85 S3(θ2)= 0.816 
A 7.43 0.414 S1(θ3)= 3.1 
B 5.24 0.323 S2(θ3)= 10.06 

ONSET 
θ3 =(7,5,50) 

G 53.3 16.4 S3(θ3)= 0.176 
A 7.05 0.229 S1(θ4)= 0.525 
B 11 0.248 S2(θ4)= 0.437 

ICTAL 
θ4 =(7,11,50) 

G 45.3 17.7 S3(θ4)= 1.101e-3 
Parameter estimation on ten simulated signals for different activities 

(models) (intICTAL, preONSET, ONSET, ICTAL). 
 

Fig. 6. Results of parameter estimation with simulated data. Ten 
signals were simulated by the model for 4 different values of theta 
corresponding to the different cases on the Fig. 1. 

TABLE II 
SIGNALS ML METHOD  MOMENT METHOD 

  Mean σ Mean σ 
A 3.42 0.338 16.26 9.24 
B 29.96 13.2 15.9 7.71 

intICTAL 
(3,15,10) 

G 53.6 20.5 38 31.6 
A 4.92 0.0362 5.72 0.375 
B 20.8 0.143 24.2 2.36 

preONSET 
(5,20,50) 

G 50.5 0.995 64.8 12.6 
A 7.38 0.713 23.9 6.71 
B 5.06 0.663 6.72 2.03 

ONSET 
(7,5,50) 

G 50.8 27 48.8 12.3 
A 7.2 0.436 11,1 24,3 
B 11.4 0.430 24,3 29,9 

ICTAL 
(7,11,50) 

G 34.4 18.2 29.9 8.2 
Comparison of two parameter estimation methods computed 10 times 

on the same simulated signal. The real parameter values are in brackets. 

H
A

L author m
anuscript    inserm

-00188489, version 1


